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Calculation of Pressure  Fields  from  Arbitrarily 
Shaped,  Apodized,  and  Excited 

Ultrasound  Transducers 
J ~ r g e n  Arendt Jensen and Niels Bruun Svendsen 

Abstract- A method for the simulation of pulsed  pressure 
fields  from  arbitrarily shaped, apodized and excited  ultrasound 
transducers is suggested.  It  relies on the Tupholme-Stepanishen 
method  for calculating pulsed  pressure  fields,  and can also handle 
the  continuous  wave  and pulse-echo case. The field is calculated 
by  dividing  the  surface  into  small  rectangles  and  then  summing 
their  response. A fast calculation is  obtained  by using the far- 
field  approximation.  Examples of the  accuracy of the approach 
and  actual  calculation  times are given. 

T 
I .  INTRODUCTION 

HE MOST IMPORTANT component in acquiring high 
quality images  for medical  ultrasound scanners is the 

probing  transducer.  Ultimately it determines the quality of 
the  data acquired, and thus the quality of the images and 
parameters displayed.  Considerable effort has therefore  been 
spend on  designing transducers  and  characterizing the field 
emitted and received [l],  [2]. 

Several  methods  for calculating the pressure field have  been 
developed  for  assisting in the design and characterization of 
various  transducer geometries. Most of the methods can be 
traced to the fundamental solutions of Rayleigh, King, and 
Schoch, of which a  review  can  be  found in [3].  

The  most  powerful approach  seems to be the method 
developed by Tupholme and Stepanishen [4]-[6], which gives 
an exact  solution  for  a  transducer  modeled as a  planar piston 
vibrating  uniformly in an infinite rigid,  planar baffle. Analytic 
expressions for  several  transducer  types  have been found [ 5 ] ,  
[7], but closed form solutions can not be found for all types. 
Especially the introduction of exotic  geometries  or apodization 
of the  transducer  surface  leads to analytically  unsolvable 
integrals. 

In this  paper we will develop a simulation approach  based 
on the Tupholme-Stepanishen approach, which can simulate 
transducers  with any apodization of the transducer  surface  and 
with any excitation of the transducer. 

Manuscript  received  June 12, 1991; revised October 21, 1991; accepted 
October 22, 1991.  This  work  was  supported i n  part by the Danish  Technical 
Research  Council,  with  grant 164218 ,  in part by Briiel and K j z r  A/S, in part 
by Novo’s  Foundation, in part by H.C.  0rsted’s  Foundation,  and in part by 
Trane’s  Foundation. 

The paper  proceeds along the following lines. Section I1 for- 
mulates the problem and details the underlying  theory.  Section 
111 gives various  implementation  details and Section IV lists 
a  number of examples  for different  transducer geometries and 
apodization  functions. It will be shown that the  method is fast 
and gives accurate answers. 

11. THEORY 

The purpose of this  paper is to devise  a  fast  and  accu- 
rate  method for  calculating the  pulsed  pressure field emitted 
from an arbitrarily shaped,  apodized, and excited  ultrasound 
transducer. 

It is assumed that the  transducer is mounted in an infinite, 
rigid baffle. Enforcing appropriate  boundary  conditions, the 
emitted field can be found by solving  the  wave equation for 
the velocity  potential 4) [4], [ 5 ] :  

from which  the pressure is calculated  as: 

where p0 is the  mean  density of the media, CO is the propaga- 
tion velocity.  and p1 is the over pressure. 

The  coordinate system shown in Fig. 1 is used in the 
calculation. The particle  velocity  normal to the transducer 
surface is denoted by ,[)(F2 + $3. t ) .  The solution to the 
homogeneous  wave equation  using Greens function is [S]: 

where S denotes the transducer surface. g is the time-dependent 
Green’s function and is 
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/ 
Transducer 

Fig. 1. Coordinate  system for calculating  the  incident field 

the point of interest  under the assumption of radiation into an 
isotropic, homogeneous, nondissipative  medium. 

If a  slightly curved transducer is used, an additional  term 
is introduced as  shown in Morse and Feshbach [S]. This term 
is called  the  second order diffraction  term in Penttinen and 
Luukkala [7]. It can be shown to vanish for a  planar  transducer, 
and as  long as the transducer is only  slightly  curved  and  large 
compared to the  wavelength of the ultrasound, the resulting 
expression is a  good  approximation to the pressure field [7]. 

If  it  is assumed that surface  vibration accounting  for the 
excitation  function and electromechanical  impulse  response 
can be split  into  a  spatial component a(T;  +Tfj) and a  temporal 
component U, ( f 2  ) then: 

where a(,?) is denoted  the  spatial source velocity  distribution 
[ 101. This implies that the vibration amplitude at a  certain  point 
on the surface  does not depend on time, so the amplitude of 
vibration is not influenced by the shape of the excitation. 

The  function 

hcL(F1.Fz>t- tz)  = n(Fz+F3)g(T;.t I F'2+F3,t2)dzF3 (6) L 
is called the apodized spatial impulse  response  and it relates 
the transducer  geometry to the acoustical  field.  By  this  function 
we can write 

$(F1 ,?5> t )  = l J E ( t )  *ha ( r ; :F2 , t t )  (7) t 

where ~ ~ ( t )  is the piston  velocity waveform, and the velocity 
potential is written  as  a  convolution in time  between  this and 
the apodized spatial  impulse response. 

If the particle  velocity is assumed to be  uniform over the 
surface of the  transducer, (5) can  be  reduced to  [6]: 

dj(71.,72.t) = l t w e ( t 2 ) L g ( F 1 , t  I F2+?3,tz)d2F3 dt2 (8) 

where the last integral equals the traditional spatial impulse 
response. 

Note that 11, depends  on the difference  between 71 and ?2, 

thus it is spatially  varying. To emphasize this h, is written 
ha(?l, f 2 >  t ) .  

The sound  pressure  for  the  incident field then is 

or 

Note  here  the  separation  between  the  excitation and the 
transducer geometry. The 7 l e ( t )  includes the electromechanical 
impulse response of the  transducer [ 2 ] .  

Explicit solutions  for a  number of transducer geometries 
have been found. Analytical expressions for the circular, flat 
transducer can be  found in [ 5 ] ,  and  for the circular, concave 
geometry in [7],  [9]. 

It must be  emphasized that only  two approximations are 
used  here. The first is the  assumption of a  large  and  slightly 
curved transducer, and the  second  assumption is that of sepa- 
rability between excitation and transducer geometry. Trans- 
ducers  can be constructed in which this  is a  very good 
approximation, so that the  pressure field calculated by this 
method is in good agreement  with the measured field. 

The  geometric  features of the  transducer  are  contained in the 
apodized spatial impulse  response h,(T;, Fz, t )  and from this 
the field for any excitation  function,  including  the continuous 
wave  case,  can be calculated. Further, it has  been shown that 
the  pulse echo field received by the emitting transducer  can 
be  calculated by [ l l ] :  

where vPe is the pulse-echo electromechanical impulse re- 
sponse including the excitation  function. So the  emitted  pulsed 
field, the  received  field,  and  the continuous  wave  case can 
be derived from the  apodized spatial impulse  response  as the 
electromechanical  impulse  response  usually  can  be determined 
from a simple  measurement. 

Thus, the original problem is transformed into calculating 
the  apodized  spatial  impulse  response.  Closed form  solutions 
have been  found for  some  cases  as mentioned  previously, but 
not for all geometries and rarely when apodization is used. 

A. Simulation Method 
In analytic  calculations the  solution is  found by evaluating 

which  part of a sphere with center at the field point that 
intersects the  transducer surface  [9].  The area of the strip on the 
radiator surface divided by the distance  to the field point gives 
the spatial  impulse response  at that time  instance  in the case 
of uniform vibration. When  apodization is  used, the  different 
areas  on  the  strip should  be  suitably weighted. 

In this simulation method  the  problem is reversed.  A spher- 
ical wave is emitted  from a  point on the aperture and all 
spherical  waves are summed at the field point.  weighted by 
the  inverse of the distance from the  aperture  point to the 
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field point. The apodized  spatial  impulse  response is then 
approximated by 

where r ,  denotes the points on the transducer  surface. 
Just dividing the surface  into  points has the drawback 

that quite  a  large  number of points must  be used as the 
variance of h, at  a  time  instance depends  on the  number of 
spherical waves received in one time  interval. The number 
of points can  be  drastically  reduced by dividing the surface 
into small rectangles and then summing the  responses  from 
these  rectangles. This  is the approach used  here. A similar 
approach has  also  been  studied by Ocheltree and  Frizzel  for 
the continuous  wave case [12]. Here we  are  studying the pulsed 
field case in which  the continuous  wave  case can  be  calculated 
as a  special case. 

Dividing the transducer  surface into  squares introduces an 
approximation to the true  geometry,  and the field will deviate 
from the true one.  The problem is reduced by using small 
squares, where the distance to the field point is large compared 
to the size of the  squares. Thus, it is appropriate to use a far- 
field approximation,  when  calculating the  contribution from 
each  individual element.  The exact  solution for  the  impulse 
response  from  a  rectangular piston is  derived in [6]  so only 
an intuitive  explanation for the  far-field  solution is given here. 
As the  impulse  response at a  point in front of a  piston is 
proportional to how  large part of the  piston that contributes 
to the  response  at  a  given  time,  the  problem of deriving the 
response is reduced to geometric  considerations  concerning 
the  distance  between  the field point  and the different  parts 
of the  transducer.  From  a  point  near  the piston surface  the 
isodistance curves  looks like shown in  Fig. 2(a), but if the 
distance increases  the curves tends to straight lines, which is 
shown in Fig 2(b). The first is the near-field situation and the 
latter is the  far-field  situation. 

To calculate the far-field response from the  rectangle  a 
description of the  piston  and  the  location of the field point 
as  shown in Fig. 3 is needed. The piston is described  by  its 
length and width  and to fix the  location of the field point, the 
piston is placed in a  coordinate system in the XY-plane with 
the  center  at  the origin.  Then the  location is defined by the field 
point’s  position  vector,  split  up into a  unit  vector (xe, ye, z,) 
and  a  distance, 1. 

In general  the far-field spatial impulse response  has  the 
shape of a  trapezoid as shown in Fig. 4, where t i  is the  time- 
of-flight from the  nearest  corner of the  piston to the field point. 
Likewise t 2  and t3 are the time-of-flight from the  second and 
third  nearest corner, and t l  is the  time-of-flight from the corner 
with the largest  distance to the field point. In special  cases two 
or more of the t’s are  equal. 

The trapezoid shape response  can  be  calculated  by  con- 
volving  two rectangular  pulses. The width of these pulses are 
calculated by projecting the length  and  width of the  piston 
onto the  line  through the rectangles center and  the field point. 

(b) 

Fig. 2 .  Isodistance curves on the  transducer surface. (a) Near-field. 
(b) Far-field. 

Y 

Fig. 3. Description of the  piston  and  its orientation. 

Fig. 4. Far-field response 

Based on the mentioned  description of the  system we  get 

where wy and W ,  are  the  side lengths of the  rectangle. 
The arrival  times are then  calculated by 
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tJ = t l  + at, + atz. (14) 

The  amplitude of the trapezoid is a  function of piston area 
and  distance to the field point. The  shape  depends on At1 and 
At,, but the  area of the trapezoid  integrated over the whole 
time  interval is always  equal to 

B. Arbitrarily Shaped Piston 

This  quite  simple result for the far-field response of a 
rectangular  piston  can be used when designing a  fast  numerical 
method for calculating  the  response of a piston of any shape. 
As for the  point source representation the piston is split up 
into  small  squares (or rectangles), but instead of representing 
the small  areas by point sources the far-field response  from 
the rectangles  is used. This  makes it possible to use larger  and 
therefore  fewer squares to describe the piston. The resulting 
response is calculated by summing up the responses from 
all the  squares. Apodizing is obtained by multiplying  the 
individual  responses by an apodizing  factor, that could  be 
a  function of e.g. the  radius of the  transducer. In a  similar 
manner a  time  delay  can  be  added to the  response, giving a 
different  phase  for  different  parts of the  transducer, like in a 
phased  array. 

C. Far-Field  Region 

The  size of the  rectangles must be chosen so that. the field 
point  lies in the far-field region. This is given by [ l ] :  

n 

w L  
I > > -  

4x 
where 1 is the  distance to the field point, W the  largest 
dimension of the rectangle and X the wavelength, which  equals 
c o / f ,  where f is frequency. I f f  is the highest frequency in the 
response  simulated, the side  length should  obey the relation 

(16) 

W << d w ~ .  (17) 

Examples indicating how close the side length can be chosen 
to this limit and what  accuracy then is obtained, are  given in 
Section  IV. 

111.  OVERVIEW OF PROGRAM 

The  prime application of this program is to investigate  fields 
from transducers of shapes with  unknown  analytic solutions 
and to study  the  influence of apodization and  phasing of 
elements. It is very difficult to imagine  the shape of these 
fields, and therefore  whether  correct  results are  calculated. In 
order to solve this problem, the program has been divided 
into  two parts. The first calculates the position  and  orientation 
of the  small  rectangles describing the transducer, and the 
second performs  the field calculation. The two parts  are 
independent  thereby  enabling  the  possibility of thoroughly 
testing and calibrating the field calculation,  which is transducer 
independent. The only  uncertainty is then the  placement of 
the  rectangles. This part of the program  can,  however,  be 
interfaced to a CAD program,  that can visualize  the  placement 

Time Is] XIO-7 

Fig. 5.  Simulated (-) and true (- - -) spatial impulse response of con- 
cave  transducer.  The  time on the  y-axis is relative.  Zero  corresponds to 
t = ; ; .63pS.  

of the rectangles. By this  method  accurate and reliable  results 
should be assured. 

IV. EXAMPLES 

In this section several  examples of use of the  program 
are shown. Responses  are compared to analytic solutions 
and  guidelines  for  choosing the number of elements and the 
resulting computing  times  are given. 

The first example is for a concave, nonapodized  transducer 
with an aperture  radius of 8 mm and a focal  distance of 150 
mm. An analytic  expression is found for this  geometry [9] and 
can  thus  be  compared to simulated  responses. 

The spatial  impulse  response at a  distance of 120 mm from 
the  surface is shown in  Fig. 5 from on the acoustical axis  and 
out in steps of 1 mm.  The transducer was divided  into 3177 
squares with  a  side length of 0.25 mm.  Calculating  the ten lines 
of the  spatial  impulse  response at a sampling frequency of l00  
MHz took 1.5 S on an HP/Apollo 90001425t workstation', and 
is  shown  as dashed lines in Fig. 5 .  We see that the  program 
quite  accurately  tracks the theoretical  spatial  impulse  response 
off the acoustical  axis. On the axis it is,  however,  more difficult 
to get the exact  position  and shape of the abrupt changes in 
the  spatial  impulse  response due to the employment of the 
far-field approximation. 

In the next example the concave transducer was apodized 
with a  Gaussian  distribution  function  defined as 

a ( T )  = e-a;(f)l (18) 

where R is the radius of the  aperture  and 7' the distance  from 
the center. ap  was chosen to be 2. The spatial  impulse  response 
is shown in Fig. 6. The characteristic  elimination of sharp 
edges in the  spatial impulse response is seen. 

To show  that the  pulse-echo response  can be calculated 
to good accuracy  a single  example is shown in Fig. 7. The 
measured and simulated  responses  were  obtained at a  distance 

'This workstation  has roughly the calculation  speed of a 40-MHz 486 PC. 
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Fig. 6. Simulated  spatial  impulse  response of Gaussian  apodized  con- 
'cave  transducer.  The  time on the  y-axis is relative.  Zero  corresponds to 
t = 7T.S3/tS.  

of 120 mm  from the transducer  surface.  The measured  pressure 
field was acquired by moving a  needle in steps of 0.2 mm with 
an accuracy of 0.006 mm, measuring in a  plane containing the 
acoustical  axis of the transducer.  Before  the measurement, the 
transducer  and  the  needle  were  aligned so that the  needle was 
parallel to the acoustical  axis. The data  were sampled at a 
frequency of 100 MHz.  The simulated field was calculated 
by measuring vp, as the response  from  a  planar  reflector, and 
then using (11) to calculate  the field. The simulation was  done 
with  a  element  size of 0.25 mm, and  the  calculation  took 12.1 
seconds. 

The  envelope of the  RF-signals is  shown  as a contour plot 
with 6 dB between  the  contours. The plots  span 20 mm in 
the  lateral  direction and 4 ps in the axial direction. An other 
example at 60 mm from the  transducer  surface is  shown in 
Fig. 8, indicating the good  agreement between  simulation and 
measurement.  Further details and examples can be  found in 

An important  parameter to be  selected is the  element size, 
which  essentially determines the  accuracy of the  result. The 
size should  depend on the  distance to the  field, as this 
determines how  well  the far-field approximation  is. In Table 
I the  quantity (w2f/(41co)) is  shown against  the  normalized 
mean square error (MSE) defined by 

P11. 

where N is the number of samples in the responses. 
The figures shown  were calculated for the concave, non- 

apodized  transducer  mentioned  previously at 120 mm  from 
the surface and 10 mm off the  acoustical  axis  at  a sampling 
frequency of 100 MHz. Also shown in the table is the 
calculation  time  and  calculation  time  multiplied by the  number 
of Flops  obtained in the  Linpack  benchmark  and  divided  by the 
number of elements (NCT). All experiments were conducted 
on an HPiApollo 9000/425t with  a  Linpack  rating of 1.8 Mflop. 
Using the last number in the  table  a  rough estimate of the 

01 
-10 -8 -6 -4 -2 0 2 4 6 8 

Lared dislance [mm] 

Fig. 7. Measured  and  simulated  pulse-echo  response for a concave trans- 
ducer.  Response at .r =l20 mm.  The  time on the !/-axis is  relative.  Zero 
corresponds to t = 77.S3ps. 

calculation  time on other computers  can  be  determined from: 

T =  NCT . Nsquares 
(20) Lin 

where  NsquareS is the number of elements and L,,, the 
Linpack rating. So for the newer HPiApollo 730 workstation 
with  a  Linpack  rating of 22 MFlops, it would  take 0.11 S to 
calculate  the  response  with  0.1-mm  rectangles. 

V. CONCLUSION 

A  method  for the calculation of fields from arbitrarily- 
shaped and apodized  transducers  has  been given. A  calculation 
time in the order of a  few seconds were  obtained by splitting 
the transducer  into small  squares, and summing their far-field 
responses. 

Any excitation of the transducer  can  be  handled and the 
continuous  wave solution  found by Fourier  transforming  the 
calculated  responses. It was also shown how to obtain  the 
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Fig. 8. Measured  and  simulated  pulse-echo  response  for  a  concave  trans- 
ducer.  Response at .r=60 mm. The time on the  y-axis is relative.  Zero 
corresponds  to t = 38.92ps. 

TABLE I 
TABLE OVER ACCURACY AND COMPUTATION 

TIME FOR DIFFERENT  ELEMENT SIZES 

No. of Side U& MSEa Calculation N@ 
elements length 4 f , ”  % time (S) 

788 0.5 mm 0.0169 14.7 0.1 233.77 
3177 0.25 mm 0.0042 6.4 0.3 173.93 

20  046 0.1  mm 6.76.10-4 3.5 1.4  128.64 

“MSE  is  mean  square error  (see  text). 
‘NCT  the  normalized  calculation  time  (see  text). 

pulse-echo field, so all characteristics of the field can be  found 
by this simulation method. 

The accuracy of the approach is on the order of 3 to 5 per- 
cent  compared  to the theoretical  spatial impulse  response (see 
(19)), when  a  reasonable  number of elements is used ensuring 
short calculation times. During  the  work with  the program, it 
was  found that the  main cause for the deviations to the true 
response, was the use of the far-field approximation rather than 

the geometric approximation of using  squares. We therefore 
hope to improve the accuracy  and  still attain short calculation 
time by improving  on this  approximation in future work. 
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