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A Test Statistic in the Complex Wishart Distribution
and Its Application to Change Detection In
Polarimetric SAR Data

Knut Conradsen, Allan Aasbjerg Nielsen, Jesper Schou, and Henning Skriver

Abstract—When working with multilook fully polarimetric syn-  horizontal-vertical (HV), vertical-horizontal (VH), and ver-
thetic aperture radar (SAR) data, an appropriate way of repre-  tical-vertical (VV). These signals form the complex scattering

senting the backscattered signal consists of the so-called covariancey ayyix that relates the incident and the scattered electric fields
matrix. For each pixel, this is a 3x 3 Hermitian positive definite

matrix that follows a complex Wishart distribution. Based on this [3]- '_I'he mhert_ant speckle in the SAR data can. be reduc_ed by
distribution, a test statistic for equality of two such matricesandan  Spatial averaging at the expense of loss of spatial resolution. In
associated asymptotic probability for obtaining a smaller value of this so-called multilook case, a more appropriate representation
the test statistic are derived and applied successfully to change de-of the backscattered signal is the covariance matrix in which

tection in polarimetric SAR data. In a case study, EMISAR L-band ; ;
data from April 17, 1998 and May 20, 1998 covering agricultural the average properties of a group of resolution cells can be

fields near Foulum, Denmark are used. Multilook full covariance expressed in a single matrix. The average covariance matrix is
matrix data, azimuthal symmetric data, covariance matrix diag- defined as [3]
onal-only data, and horizontal-horizontal (HH), vertical-vertical

(VV), or horizontal-vertical (HV) data alone can be used. If applied (SunShn)  (SmnSiy) (SwnSYy)

to HH, VV, or HV data alone, the derived test statistic reduces to (C) = | (SuvSkn)  (SuvShy)  (SnvSiy) (1)
the well-known gamma likelihood-ratio test statistic. The derived (SyvSin) (St (SyvviSiy)

test statistic and the associated significance value can be applied as

aline or edge detector in fully polarimetric SAR data also. where(-) denotes ensemble averagirfiglenotes complex con-

Index Terms—Covariance matrix test statistic, EMISAR, radar jugation; andS; is the complex scattering amplitude for receive

applications, radar polarimetry, remote sensing change detection. polarizf';ltionr and transmit_ polarizati_on (7’_ andt are eitherh
for horizontal orv for vertical). Reciprocity, which normally

applies to natural targets, givés, = Sy, (in the backscat-
tering direction using the backscattering alignment convention
UE TO ITS all-weather mapping capability indepenf3]) and results in the covariance matrix (1) with rank(@)
dently of, for instance, cloud cover, synthetic apertur@/lows a complex Wishart distribution [4]. The components in
radar (SAR) data hold a strong potential, for example, féfe covariance matrix containing both co- and cross-polarized
change detection studies in remote sensing applications.Skfttering matrix elements often contain little information. For
this paper, multitemporal SAR images of agricultural fieldgandomly distributed targets with azimuthal symmetry, the ele-
are used to demonstrate a new change detection method@nts are zero [5].
polarimetric SAR data. It is well known that the development In this paper, a test statistic for equality of two complex co-
of different crops over time causes changes in the backscatt@fiance matrices and an associated asymptotic probability mea-
The radar backscattering is sensitive to the dielectric propertige for obtaining a smaller value of the test statistic are de-
of the vegetation and the soil, to the plant structure (i.e., thiwed and applied to change detection in fully polarimetric SAR
size, shape, and orientation distributions of the scatterers) d@a. In [6], a change detection scheme based on canonical cor-
the surface roughness, and to the canopy structure (e.g., félations analysis is applied to scalar EMISAR data (see also
direction and spacing and cover fraction) [1], [2]. [7]-[10]).
The polarimetric SAR measures the amplitude and phasdf used with HH, VV, or HV data only, the test statistic re-
of backscattered signals in four combinations of the linegltices to the well-known test statistic for equality of the scale
receive and transmit polarizations: horizontal-horizontal (HHparameters in two gamma distributions.
The derived test statistic and the associated significance mea-

_ _ _ _ sure can be applied as a line or edge detector in fully polari-
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Il. THEORY data. ThenH, states that € wy wherewy is a subset of the
tﬁ@tQ of all possiblefl. H, states thaty € w; wherew, andw,

This section describes the complex normal and Wishart dis o S .
P gre disjoint, and oftef2 = wg U wy. The likelihood ratio

butions and the likelihood-ratio test for equality of two comple

Wishart matrices. For a more thorough description, see the Ap- maxge., L(6) 9
pendix. " maxgeq L(0) ®)
A. Complex Normal Distribution wherelL is the likelihood function reject#l, for small values.

If Hy is true (in statistical parlance “undék,”), then in our
caseS = X+Y € We(p,n+m,X)with¥ =1/(n+m)S =
1/(n+m)(X +Y). The likelihood-ratio test statistic becomes

We say that @-dimensional random complex vectgrfol-
lows a complex multivariate normal distribution with me@n
and dispersion matri¥, i.e.,

Z =2 - 2,]" € Nc(0,5) @ PR ) (10)
| o L (5)n(5)
if the frequency function is
1 { Tt } Here
f(2)= —=exp{—2"" X2
w1 Lo (22) = g B X exp e [71X]} (1)
n
= ——exp {—tr [E_lzz*T] } 3) P
|3 and
where| - | denotes the determinarit; denotes the trace of a . 1 11
matrix; and*” denotes complex conjugatioh)(and transpose L, (EI) = T, () EX | X" Pexp{—ntrl} (12)
™). P
i o wherel is the identity matrix{r/ = p). Similar expressions are
B. Complex Wishart Distribution valid for L, (%,) andL, (,). For the numerator of) we get
We say that a Hermitian positive definite randpmp matrix 1
X follows a complex Wishart distribution, i.e., L(Z) = ———— ||~ (™) | x| Py ™
Ly (n)T'p(m)
X € We(p,n, %) 4) cexp{—tr [BTHX +Y)]}  (19)
if the frequency function is and
1 1 _ _ R 1 1 —(n+m)
w(x) = o = |2 P exp { —tr [E 7w ®) L(s)-= X+Y
5, [ {=r[="ul} (®) = o e XY
where XY™ P exp {—(n +m)trl}.  (14)
L This leads to the desired likelihood-ratio test statistic
Tp(n) =w?@= D2 T T(n - j +1). (6)

(n 4+ m)Ptrtm) X ||y |m
nPPmP™ | X + Y|t

J=1

Q:

(15)
The frequency function is defined far positive definite.
If X andY are independent and both follow complex Wishatf » = m, which is typically the case for change detection, we

distributions get
X € We(p,n,X) andY € We(p,m, 2) (7)  WmQ=n2pln2+In|X|+In|Y|-2In|X+Y]|). (16)
then their sum also follows a complex Wishart distribution  |f
2 _
S=X+Y e We(p,n+m,3%). (8) p1 2 1<1+i_ 1 ) 17)
6p n m n4+m
C. Test for Equality of Two Complex Wishart Matrices and
Let the independenp x p Hermitian positive definite p? 1\* p*(p*-1)
matrices X and Y be complex Wishart distributed, e, 2= Ty 1 ) + 24
with 33, = 1/mY. We consider the null hypothesis ' (ﬁ tog m) — (18)
Hy, : ¥, = X,, which states that the two matrices are P
equal against the alternative hypotheis: 3, # 3. then the probability of finding a smaller value eRp1n Q is

In general, suppose that the observations on which we shall 5/ 9
base our test have joint densififx, #) whered is the set of £ {—20InQ <z} ~ P {x* (p*) < =}
parameters of the probability function that has generated the +w, [P {x” (p> +4) <z} — P {x* (»°) < =z}]. (19)
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For covariance matrix data,= 3. For HH, HV, or VV data, 2
p = 1. In the latter caseX andY are therefore scalats and o
Y, andQ reduces to S ]
Q= (nmrtm Xy (20) . 3
n"mm (X +Y)ntm =~
o
which is equivalent to the well-known likelihood-ratio test °
statistic for the equality of two gamma parameters [14], [15] S
(see the Appendix). o
Fig. 1 shows andws as functions of the number of looks for ° L ' ' ' ' '
n = m andp = 3. 0 10 20 30 40 50
n-looks
D. Azimuthal Symmetry & -
o
By swapping first rows and then columns two and three in j
(C) in (1), we obtain in the azimuthal symmetry case s |
(SwS5n)  (SunSi,) 0 X 0 g 7
<SVVS}>);}1> (SVVS:':\'> 0 = { 01 X } :X GEJ
0 0 (ShySE) 2 ° 2
(21) °
whereX isp1 xp1 (here 2x 2), andXy = (ShyS},) iSp2 X p2 ]
(here 1x 1). This matrix is not Wishart distributed. We now 2

considerX; € Wc(pl,n,Em),X2 € Wc(pg./n./ 212),Y1 € I l I I l
We(p1,m, Xy1), andYs € We(p2, m, 3,2), and we assume
thatX 1, X», Y1, andY, are mutually independent. n-looks
We want to test the hypothest¥y : ¥, = Z,1(= 21) _
andy,, = 23,2(: 22) against all alternatives. We have thé:'g' 1. pandw, as functions of the number of looks far= m andp = 3.
likelihood function
. DATA

L (X01, 322, 8y1, Xy2) To illustrate the change detection capability of the derived

= LW (2,1) L? (2,5) LO) (2,1) LW (2,5) . (22) test statistic, EMISAR and ground data from an agricultural test

site at the Research Center Foulum located in Central Jutland,

The likelihood-ratio test statistic becomes Denmark are used. Agricultural fields have been selected for the
(n 4 m)Pe+m) X [PV 7| X o | Y o™ analysis because of the large change in the polarimetric proper-
Q= Xy 4 Vo[ X+ Yo ties for such areas, due to the development of the crops with

time. Polarimetric parameters of agricultural crops have previ-
(n+m)P+m) | X ||y |™ p g p p

= X YT (23) ously been analyzed from this area [2].
nPnmpm + n+m

where the latter equality is due to the fact that the determinaAn't SAR Data and Calibration

of a block diagonal matrix is the product of the determinants of The EMISAR system is a fully polarimetric airborne

the diagonal elements, i.e., we get the same test statistic aSfAR system, and it operates at two frequencies: C-band

the full covariance matrix case. In this cagse= p? + p3. If (5.3-GHz/5.7-cm wavelength) and L-band (1.25-GHz/24-cm
wavelength) [11], [12]. The SAR system is normally oper-

1 . . . .
p=— (le) p1 + p p2) (24) ated frpm an altitude of approximately 12500 m; the spatial
resolution is 2 mx 2 m (one-look); the ground range swath
- 2pf-1(1 1 1 (25) is approximately 12 km; and typical incidence angles range
pi= 6p; n m mn+m from 35 to 60°. The processed data from this system are
q fully calibrated by means of an advanced internal calibration
an system. The radiometric calibration is better tha®5 dB, and
P2 . N2 p2(p?—1) +p2(p2—1) the channel imbalance is less th#0.5 dB in amplitude and
wW2=Tr _; 24 +5° in phase [12]. The cross-polarization contamination is
generally suppressed by more than 30 dB. The stability of the
1 1 1 1 ; . . .
. (—2 +— - m) — (26) system s very important in the change detection scheme set up
" m p in this paper.
then the probability of finding a smaller value e2p1n Q is A large number of acquisitions with both the C- and L-band
5/ o polarimetric SAR from 1994 to 1999 exist for the agricultural
P{-2pln@Q < z} = P {x* (p°) <z} test site. To illustrate the change detection capability of the de-

+ws [P{x*(p>+4) <z} —P{x*(»°) <z}]. (27) rived test statistic, L-band data from April 17, 1998 and May
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Fig. 2. L-band EMISAR image of the test area acquired on April 17, 1998, 52405120 m.

20, 1998 have been used. The two EMISAR images are shometric images were registered to a digital elevation model gen-
in Figs. 2 and 3, as color composites of the HH (green), HV (aerated from interferometric airborne data acquired by EMISAR.
tually the complex addition of HV and VH, red), and VV (blue)The registration was carried out by combining a model of the
channels. The HH and VV channels are stretched linearly beaging geometry with few ground control points, and the im-
tween—30 dB and 0 dB. The HV channel is stretched linearlgges were registered to one another with a root mean-square ac-
between-36 dB and-6 dB. The area is relatively flat, and cor-curacy of better than one pixel [13]. In the study, 13-look co-
rections of the local incidence angle due to terrain slope are matriance matrix data with a 5 m 5 m pixel spacing are used.
critical in this study, since the acquisition geometry for the two )

acquisitions are almost identical, and therefore the correctiBn Test Site

has not been carried out. The geometrical coregistration is, howThe area contains a number of agricultural fields of different
ever, very important in a change detection application, whesizes with different crops. The lengthy, dark blue feature in the
two images are compared on a pixel-by-pixel basis. The polampper left corner of Figs. 2 and 3 is a lake, while the bright
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oats

Fig. 3. L-band EMISAR image of the test area acquired on May 20, 1998, 52¢G&20 m.

greenish areas seen especially in the lower part of the imagestane are shown in Table | for reference. Five spring crop fields
forests (primarily coniferous forests). In the April acquisitionhave been used, i.e., one beet field, one pea field, two spring
the colors of the agricultural fields are predominantly bluistnarley fields, and one oats field. All spring crop fields are bare
due to the larger VV- than HH-backscatter coefficient for that the April acquisition with the surface being relatively smooth
bare fields for the spring crops and the sparsely vegetated fiethige to sowing or harrowing. At the May acquisition, the beet
for the winter crops. For the May acquisition, the spring crogdeld is still bare, whereas the other fields have some relatively
are mainly in the tillering stage, and the winter crops are at thlense and low vegetation. The three winter crop fields, i.e., two
end of the stem elongation stage, in the boot stage, or at thiater wheat fields and one rye field, have low vegetation for
beginning of heading, depending on the crop type. the April vegetation and relatively dense and high vegetation

A number of test areas have been selected for quantitatfee the May acquisition. Finally, a common spruce field, which
analysis of the test statistic. These areas are outlined in Figss irtually unchanged between the two acquisitions, is used in
and 3, and the development stage and the height of the vegéhta-investigation.
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TABLE |
DEVELOPMENT STAGES AND VEGETATION HEIGHTS (IN PARENTHESEQ

Crop April May
Beets bare (harrowed) bare

Peas
Spring barley 1
Spring barley 2
Oats
Winter wheat 1
Winter wheat 2
Rye

Coniferous

bare (rolled)
bare
bare (sowed)

bare

beginning of stem elongation

end of tillering (14 cm)

beginning of tillering (21 cm)

common spruce

middle of side shoot development (11 cm)
end of tillering (14 cm)

middle of tillering (12 cm)

end of tillering (22 cm)

end of stem elongation (44 cm)

end of stem elongation (42 cm)

end of boot stage (51 cm)

common spruce
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Fig. 5. (a) Correlation coefficientni,v» and (b) phase differencenn_ v
between HH and VV for the test areas shown in Figs. 2 and 3 for L-band in
April and in May.

A. Polarimetric Parameters

The polarimetric parameters used to describe the selected
fields are standard parameters derived from the covariance
matrix (1) [2]; they° backscatter coefficientg), , 72, , andy?,
where they® backscatter coefficient is slightly less dependent
on the incidence angle than the? backscatter coefficient
[2]; the correlation coefficientpy;,,, and the phase differ-
ence¢n,_vv Of the HH and VV components, which contain
important information about the scattering mechanisms; and
the co- and cross-polarized polarization signatures, which are
graphical representations of the polarimetric properties [2],
[3]. Fig. 4 shows they}, , 71, and~?, backscatter coefficients
for the various test fields and for both the April and the May
acquisitions. Correspondingly,iw and¢n,_v are shown in
Fig. 5, and the polarization responses are shown in Fig. 6.

1) Spring Crops: All spring crops (beets, peas, spring barley
1 and 2, oats) show classical behavior for rough surface scat-
tering for the April acquisition, i.e., highyy,, [Fig. 5(a)], small
bun—vv [Fig. 5(b)], low ), backscatter [Fig. 4(c)], larger’,
than+p, backscatter [Fig. 4(a) and (b)], and textbook examples
of surface scattering polarization responses (which are there-
fore not shown here). The actual backscatter level from the sur-

Fig. 4. ()7, (b)77,, and (c)yy, backscatter coefficients for the test areagace is, of course, controlled by the soil moisture and the surface
shown in Figs. 2 and 3 for L-band in April and in May.

IV. RESULTS AND DISCUSSION

roughness of the individual fields, and we observe rather weak
backscatter from the spring barley 1 and the oats fields (Fig. 4)
for the April acquisition due to very smooth surfaces.

In Section IV-A, polarimetric parameters for the fields used The beets field also shows rough surface behavior for the May

in the quantitative evaluation will be presented and discussedattquisition [Fig. 6(a)]. The pea field shows some volume scat-
provide the background for interpretation of the test statistic reering behavior for the May acquisition, due to the sparse vegeta-
sults. The results for the test statistic are presented and discusiged i.e., thep,,vv [Fig. 5(a)] has decreased, and the pedestal of
in Section IV-B. the polarization response has increased [Fig. 6(b)]. This effectis
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Fig. 6. Polarization signatures for the test areas shown in Figs. 3 for the L-band acquisition in May. Orientation ahglr@fsgponds to HH backscatter and
the left-hand signature is the copolarized signature, whereas the right-hand signature is the cross-polarized signature.

even more pronounced for the spring barley and the oats fieldenetration through the vegetation and a large surface scat-
due to a more dense vegetation [Figs. 5(a) and 6(c) and (d)]. fening component. The cross-polarized backscatter is, however,
the latter fields, a largeéy,, v+ is observed too [Fig. 5(b)], and asomewhat larger than for surface scattering, due to the volume
pronounced double-bounce response is observed, especiallystattering contribution [Fig. 4(c)]. The backscattering from the
oats [Fig. 6(c) and (d)]. The double-bounce scattering is masinter wheat 1 field is significantly larger than from the winter
likely caused by penetration through the vegetation, scatterimeat 2 field for both acquisitions (Fig. 4). The reason is that
from the ground surface, and scattering from the vegetatidhe sowing direction for the winter wheat 1 field is exactly
or vice versa. This phenomenon has previously been obserpedpendicular to the radar look direction. For the May acqui-
early in the growing season for winter crops [2]. sition, the winter wheat fields also show some double-bounce
2) Winter Crops: The backscatter coefficients from thescattering behavior [Figs. 5(b) and 6(e) and (f)]. The rye field
winter crops are, in general, larger than from the spring cropBows virtually no change in the polarimetric parameters
(Fig. 4), due to the contribution from the volume scatterindietween the two acquisitions, except for some increase in the
The behavior of the winter wheat and the rye fields resemble®, backscatter (Fig. 4). The coniferous forest area shows pro-
surface scattering for the April acquisition (Fig. 5), indicatingpounced volume scattering behavior for both acquisitions, i.e.,
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Fig. 7. Logarithm of the test statistia ¢) (16) for the images shown in Figs. 2 and 3 in the assumed azimuthally symmetric case.

small ppnyy [Fig. 5(@)], small¢nn—v, [Fig. 5(b)], strongy?, the average* In Q" for the test areas outlined in the previous
backscatter [Fig. 4(c)], and large pedestal for the polarizatigections in the following four different cases:

responses [Fig. 6(h)]. 1) using only the VV channel;
2) using only the three diagonal elements of the covariance
B. Test Statistic matrix;

3) using the covariance matrix but assuming azimuthal
symmetry;
using the full covariance matrix.

Figs. 7 and 8 show-1In Q" (16) for the azimuthally sym-
metric case and the diagonal-element-only case, respectively,
for the two images shown in Figs. 2 and 3. The test statistic is in- )
verted to show areas with large change as bright areas and afeathermore, Fig. 9(b) shows the average probability of finding a
with small change as dark areas. Consequently, when “laigeger value of “2p In Q" (derived from (19) and Theorem 6 in
values of the test statistic” is mentioned below, it means lar¢fee Appendix) for the four cases mentioned above. Fig. 9(b) also
values of “~ In Q" and vice versa for small values. We observindicates the 5% and the 1% significance levels, and the regions
that especially the forest areas appear very dark, indicating wirith probabilities lower thantheselevels are the regionswhere we
tually no change between the two acquisitions. For the agriculll typically reject the hypothesis of equal covariance matrices
tural fields, the results range from dark (no change) to brigfdr VV channels) at the two points in time, i.e., these are regions
(large change) areas depending on the crop type. Fig. 9(a) shawith major change between the two data acquisitions.
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Fig. 8. Logarithm of the test statistia () (16) for the test areas shown in Figs. 2 and 3 in the diagonal case.

Figs. 10 and 11 show in white for the images in Figs. 2 armbvariance matrix are used, and thelarimetric case where
3, where the hypothesis of equal covariance matrix has beenagimuthal symmetry is assumed (i.e., all the co- and cross-po-
jected at a 1% significance level for the azimuthally symmetriarization elements are zero).
case and the diagonal case, respectively. Clearly, we observe dd) Similar Polarimetric ParametersThe two regions with
tection of changes in the azimuthally symmetric case that havigtually no change between the acquisitions but with different
not been detected in the diagonal case, as well as improved deminating scattering mechanisms, i.e., beets (surface scat-
tection in the azimuthally symmetric case of changes that &ring) and coniferous forest (volume scattering), show both
ready to some extent have been detected in the diagonal casarge values of the test statistic and no significant difference

In general, the test statistic for the full covariance matrix isetween the diagonal and the polarimetric case. It is not
only slightly larger than that for the assumed azimuthally synpossible to reject the hypothesis of equal covariance matrices
metric case [Fig. 9(a)]. We may conclude that the additional iat a 5% significance level for any of the regions [Fig. 9(b)].
formation added by the co- and cross-elements of the covarhe rye field also has very similar polarimetric parameters for
ance matrix is small. Also, the change detection potential of tkiee two acquisitions, except fog, , as mentioned above, and
single VV channel is seen to be much less than for the othbe test statistic for the diagonal and the polarimetric cases
three cases. Therefore, the discussion below will concentrateasa relatively close [Figs. 7-9(a)]. The hypothesis of equal
comparing the results for two cases: tiagonal casewhere covariance matrices is rejected at a 5% significance level for
only the three diagonal backscatter coefficient elements of theth cases. Consequently, in these cases with relatively similar
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w
th

much larger test statistic is observed for the polarimetric case
[Figs. 7-9(a)]. The spring barley 1 field has a very large change
in the backscatter coefficients, due to the relatively smooth
surface at the April acquisition (Fig. 4), and we observe a very
large test statistic for both the diagonal and the polarimetric
cases [Figs. 7-9(a)]. The two spring barley fields have almost
the same,vv andon,_vv (Fig. 5), whereas the change in the
backscatter coefficients is largest for the spring barley 1 field,
- Hil - as mentioned above. This difference is clearly important for
beets peas sbl sb2 oats wwl ww2 1ye conifer both test statistics, where the test statistic for both the diagonal

() and the polarimetric case is much larger for the spring barley
1 field than for the spring barley 2 field. The hypothesis of
equal covariance matrices is rejected for all three fields at the
5% significance level in both the diagonal and the polarimetric
case. This is also the case at the 1% significance level, except
for the spring barley 2 field in the diagonal case. Consequently,
even when large changes in the backscatter coefficients ensure
detection with a nonpolarimetric method, the addition of
polarimetric information improves the detection of changes
with the new polarimetric test statistic.

Test statistic -InQ)
- - [ (=1 1=
[=] Lh [=] A (=)

[
L

<

(2rholnQ = z)

(=] {=] (=] (=]

OGR4t &
]

Probabili
(=1
=

ﬂj@h T T T

beets peas sbl sb2 oats wwl ww2 1ve conifer

(b)
Fig. 9. (a) Average~ 1n Q" for the test areas shown in Figs. 2 and 3 in four, _In this pap_er, a test Stgtlstlc for e.qua“ty of two comp_lex
different cases: 1) using only the VV channel, 2) using only the three diagonfd/fishart distributed covariance matrices and an associated
elements of the covariance matrix, 3) using the covariance matrix but assumaigymptotic probability measure for obtaining a smaller value
azimuthal symmetry, and 4) using the full covariance matrix. (b) Averagst the test statistic have been derived. The test statistic provides
probability of finding a larger value of=2p1In Q" (derived from (19) and . . . .
Theorem 6 in the Appendix) for the same four cases. a unique opportunity to develop optimal algorithms for change

detection, edge detection, line detection, segmentation, etc.,

V. CONCLUSIONS

&ind of fusion operator.

for punyy andior gun—vy: Three fields have very similar = \o o jemonstration of the potential of the new test statistic,

backsc_atter coefiicients for the two acqwsmpns, whereasﬂ,?e derived measures have been applied to change detection in
large difference betweepy,,,, and/or¢y,_., exists between

the tw isifi e th field (wh d fully polarimetric SAR data for a test area with primarily agri-
€ two acquisitions, i.e., the pea field (Wheig.~ ECreases . jtural fields and forest stands where two images acquired with
Oé’ﬁﬁroximately one-month interval have been used. In the case

U — ith areas with only small change in the polarimetric param-
changes significanty between the two acquisitions), and t fers between the two acquisitions, the new test statistic for
winter wheat 1 field (where bothy,, and ¢n,—., change '

. - rahe . polarimetric data performs equally well as the nonpolarimetric
significantly). A significantly larger test statistic is observed i est statistic. When the backscatter coefficients are virtually un-
the polarimetric case than in the diagonal case [Figs. 7-9(a)]

. . . . anged, but either the phase and/or the correlation coefficient
all three fields. Also, it is not possible to reject the hypOthesbc'etween the HH and VV polarizations have changed, the results

of equal covariance matn_ces ata 5% S|g_n|f|cance level for a@Vearly show that the new polarimetric test statistic is much more
of the three fields in .th? dlagonal case [Fig. g(p)]_ Qn the Othgénsitive to the differences than test statistics based only on the
handz th_e_ hypothesis is rejected n the p(_)lanmetrlc case ah &rkscatter coefficients. Also, in the case where all parameters
1% significance level for all three fields [Fig. 9(b)]. Thus, th?n the covariance matrix have changed between the two polar-
results clearly show that the new polarimetric test statistic iSations. the new test statistic Shows improved change detec-
very sensitive to differences in the full polarimetric informatioreion cap,ability. Consequently, the results show clearly that the

cor31ta||_ned In tge_:ﬁcovarlanc? ma'c;:I)I(. Polarimetri P new test statistic offers improved change detection capability for
) Large ifference for olarimetric arame-_fuIIy polarimetric SAR data.

ters: Finally, three regions show significant changes in
all polarimetric parameters, i.e., the backscatter coefficients,
the punvy, and thegp,_v, i.€., the two spring barley fields
and the oats field, which have a smooth bare surface at the
April acquisition and a relatively dense vegetation cover at theln change detection and edge detection in polarimetric SAR
May acquisition. For the spring barley 2 and the oats fielddata, it is useful to be able to compare two complex Wishart
we see a medium test statistic in the diagonal case, whereaistributed matrices.

at the May acquisition), the winter wheat 2 field (whexg,

APPENDIX
ANALYSIS OF COMPLEX WISHART MATRICES
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Fig. 10. Rejection of hypothesis of equal covariance matrices at 1% level for the assumed azimuthally symmetric case (white: rejection, ttae)accep

Most of the standard literature in multivariate analysis onliyeated the so-called block diagonal case, we have chosen to give
contains references to the real case (e.g., see [16]). This doessnther thorough description of the necessary results.
mean, however, that results for the complex case do not exist. IWe start with a short introduction to the complex normal
[4], the relevant class of complex distributions is introduced, arehd the complex Wishart distributions. We then compare two
[17] completed much of the work, either giving results or (indigamma distributions, which is the one-dimensional test often
rectly) pointing out how results may be obtained. It is, howevarsen in the radar community. Then we give a straightforward
not straightforward to deduce the relevant formulas from thdiorute force) derivation of the likelihood-ratio criterion for
work. testing the equality in the complex case. Then, we describe

In [18], many of the necessary formulas are deduced in #me so-called block diagonal case, which among other things
elegant way using the fact that the problem is invariant undeovers the case known in the radar community as the azimuthal
a group of linear transformations. The notation chosen is r@tmmetric case and the total independence case.
straightforward however. Some of their results appear in [19], After quoting results from [21] on asymptotic distributions,
an unpublished thesis in Danish, including results on comparing establish the necessary results on moments by brute force
covariance matrices. In [20], the theory for linear and graphiciaitegration. By straightforward but rather cumbersome calcula-
models in multivariate complex normal models is covered. tions, the results in [21] yield the desired results. Alternatively,

Since the formulas for the distribution of the likelihood ratimne may use results in [20] and derive expressions involving the
do not seem to be available and since no authors seem to haraduct of beta distributed random variables.



CONRADSENet al: TEST STATISTIC IN COMPLEX WISHART DISTRIBUTION 15

Fig. 11. Rejection of hypothesis of equal covariance matrices at 1% level for the diagonal case (white: rejection, black: acceptance).

A. Complex Normal Distribution

¥ is Hermitian positive definite and of the form

Following [4], we say that a-dimensional random complex ol (12 + 1f12) o109
vector Z follows a complex multivariate normal distribution (12 — iB12) 0109 ol
with mean0 and dispersion matrix, i.e., (13 —ifh3) 0103 (a3 —iff23) 0203 (30)
T In other words, we have for; = X; + Y]
Z =Zy - Zy|" € Nc(0,%) (28) , ) )
E{2;7;} = E{Xj+Y}'} =0 (31)
if the frequency function is E{Z;Z;} = (ajk +iBjk) o0k (32)
B. Complex Wishart Distribution
f(z)= L exp {_Z*Tg—lz} We say that a Hermitian positive definite randpmp matrix
7rp|12| X follows a complex Wishart distribution, i.e.,
_ _ -1 *T
= ——exp{—tr [X7'2z""]}. (29) X € We(p,n, =) 33)

7| 3|
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if the frequency function is and similarly forY". The likelihood function for the parameters
(B, By) thus becomes

1 1
_ n—p _ -1
)= Ly e {57} 69 (AL (B = L L L1
e \Pz) Ly \Py) = 70 S Ty gn gm
where L'(n) T'(m) B} By o
» Xrlym=lexp {—ﬂ— - /3_} (44)
Tp(n) =m?@ V2T T(n—j+1). (35) v
i=1 and under the hypothesit = 3, = 3, we obtain
If confusion concerning or 3 may arise, we writev(z; n, X) 1 1 1

rather thanw(z). The frequency function is defined ferposi- L(83) =

. . . o I'(n) ' ntm
tive definite, and in evaluating integrals the volume element be- (n) I(m) B

comes CXmly™mlexp {#} . (45)
p k—1
de = (dz11,. .., dryy,) H dejprdxjir (36) Taking the derivatives of the log likelihoods and setting them
k=1 j=1 equal to zero, we obtain the ML estimates

whereR and/ denote real and imaginary parts. For further de- . X
scription and useful results on Jacobians, etc., see [4] and [17]. Bz = n (46)

Itis emphasized that the formulas for the complex normal and R Y
Wishart distributions differ from their real counterparts. By = m (47)

Estimation of from a normal sample follows in Theorem 1. . (X4Y)

Theorem 1:Let Zy,...,Z, be independent, complex p= m (48)

normal random variables, i.e.,
Therefore the likelihood-ratio test statistic becomes

Z; € Nc(0,%). (37)
L B n+m nym
Then the maximum-likelihood (ML) estimator f& is Q= _ ( ) = (n +nm)m X Yn+m,
$=1y 727 (38) N (49)
(Ut The critical region is given by < ¢ or
andnX is Wishart distributed X (50)
(X +y)ntm = ©
n¥ € We(p,n, 3). (39) Straightforward calculations show that this critical region is of
Proof: See [4]. [ | the form
From Theorem 1, we easily obtain Theorem 2. Y < o or Y S (51)
Theorem 2: Let X andY be independent Wishart distributed x ~a¥%yx=
matrices SinceY/ X under the null hypothesis is distributed like Fisher’s
X € We(p,n,3) (40) 1€
n

Then the sum will again be Wishart distributed, i.e., ¢1 ande, may be determined by means of quantiles infhdis-

S=X+Y eWolp,n+mx). (ag) ibution.

. D. Test on Equality of Two Complex Wishart Matrices
Proof: Straightforward. [ | q y P

We consider independent Wishart distributed matrices
C. Test on Equality of Two Gamma Parameters

Let the independent random variabl&sandY (which are X € Wolp,m, %a) (53)
real scalars) be gamma distributé¢n, 3, ) andG(m, 8,). The Y € We(p,m, %) (54)

frequency function fotX is ) )
and wish to test the hypothesis

—T

gy L L ona - ,
F@ibe) = T g™ GXP{ N } cow>0(43) Hy:S, =%, =Sagainst, : S, #5,.  (55)
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We have the likelihood functions

1
L (n)Lp(m)
BT Z X TR
- exp {—tr [E;IX + EJIY]} (56)

Ly (32) Ly (%) =

1
L(Y)= —F—7+——
Ly(n)Lp(m)
> anllv. did) i
cexp{—tr [E Y (X +Y]}. (57)
The ML estimates are
- 1
3, =-X (58)
n
A 1
3, =—Y (59)
m
. 1
Y=—(X+4Y) 60
(X 1Y) (60)

Therefore, the likelihood-ratio test statistic becomes

o B wrmpe ey

L () (x,) e XY
(61)
Thus, we get the critical region
(n +m)P ) | X| Y|
C=<XY <qy. 62
(i <1~ )

E. Tests in the Block Diagonal Case

17

against all alternatives. The likelihood-ratio criterion becomes
the product of the criteria, i.e.,

I
NP XY™
Q - 21:[1QL - H NPt Pi™m |)(7 + Y1|n+m

=1

(68)
Since the determinant of a block diagonal matrix is the product
of the determinants of the diagonal elements, we obtain

NN XY
nPrmpm | X 4 Y|Pt

Q= (69)

i.e., the same result as in the general case [see (61)]. Note, how-
ever, that the distribution has changed, sid€andY are no
longer Wishart distributed.

F. Large Sample Distribution Theory

In [21] (as quoted in [16]), a general asymptotic expansion of
the distribution of a random variable whose moments are certain
functions of gamma functions has been developed. We state the
main result as a theorem, and we shall use it in determining the
(asymptotic) distribution of the likelihood-ratio criterion.

Theorem 3: Let the random variabl& (0 < W < 1) have
the hth moment

b Yi h a
[Th—y 3t Hl;':l L (y;(1+h) +n;)
(70)
whereK is a constant so that{W°} = 1 and} ;_, z; =
22:1 y;. For an arbitrary we set

In some applications (e.g., remote sensing), there are several _ _ _
independent Wishart matrices in each observation. They wille first three Bernoulli polynomials are denoted

often be arranged in a block diagonal structure like

X0 [ 0]

0 X5 0 X (63)

|

Pp2p1

where X; € We(pi,n, 2,i). This covers the so-called az-
imuthal symmetric case and the case with independence of co-

and cross-polarized signals. If we define

e 2,

0 ., (64)

itis important to note thaX is not Wishart distribute®« (p; +
p2,n, Ez)

We now consider similar partitionings & andY, i.e., we
have independent random matrices

Xi S WC(pZTL?EzZ)
Yi S WC(Pi-/m-/ Eyz)

(65)
(66)

fori =1,...,1.Wehavep = p1 +---+prandsetN = n+m.
We want to test the hypothesis
Y = zyz = 2i7

i=1,...,1 (67)

B = (1= p)wr (71)
e =(1-p)y;. (72)
1
Bi(h)=h~— (73)
By(h) =h* —h+ % (74)
Bs(h) = h® — ;hz + %h. (75)
We define
a b
f=—2 6= n- %w—b)] (76)
k=1 j=1
(=) Begn (Br + &)
"or(r+1) {; (pzk)"
b
o Bri (e +my)
j; (py;)" (77)
If we selectp so thatw; = 0, we have
P{=2plnW <z} ~ P{x*(f) < 2}
+wp [P {X*(f+4) <z} = P{XP(f) <2}]. (78)
Proof. See [16]. [ |
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Theorem 4: Let

X € We(p,n,X)
Y € We(p,m, X)

(79)
(80)

be independent complex Wishart distributed matrices. Then for
N =n+m and

_ Xy
U= X +Y|N (81) =
we have
Tp(n(1+h)Ty(m(1+h)) T,(N)
E{Uu" =2 P L . (82)
U [p(N(1+h))) Lp(n)T'p(m)
Proof: The joint frequency function of X,)Y) is

w(x;n, X)w(y; m, X). Therefore
E{Uh} = //uhw(:l:;n, Sw(y; m, X)dzdy (83)

and evaluation of this integral gives the desired result. =
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f=hHh+ -+ /1 (91)

p=%ﬂ1+~-~+%pz

S
S T

m W)
(93)

(92)

Then the asymptotic distribution of the likelihood-ratio criterion
is given by

P{-2plnQ < z} ~ P {3*(f) < =}
+w [P{XP(f+4) <z} = POAE) <2} (94)

state the important result on the (asymptotic) distribution of tions.

likelihood-ratio criterion.
Theorem 5: We consider the likelihood-ratio criterion

s [

| XY™

@ = oo X+ Y[V S
and define 3]
f=p (85)
[4]
Coo2f-1(1 1 1
p=1 6 f (n m N) (86) 51
I O A () 6]
wa= =g ! p) LY
1 1 1 1
Then

(8]
P{-2pQ < 2}~ P{x(f) < )
+ws [P{X*(f+4) <z} - P{x*(f) < z}]. (89)

Proof: Omitted, straightforward but cumbersome calcula-
tions. m [0
We now address the block diagonal case and state the main

result in Theorem 6.
Theorem 6: Let the situation be as described in Section A—E
and define fori = 1,...,1

[9]

11]
(89) [12]

(23]

(90)
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