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We present a theoretical study of radiative heat transport in nonlinear solid-state quantum circuits. We give
a detailed account of heat rectification effects, i.e., the asymmetry of heat current with respect to a reversal of
the thermal gradient, in a system consisting of two reservoirs at finite temperatures coupled through a nonlinear
resonator. We suggest an experimentally feasible superconducting circuit employing the Josephson nonlinearity
to realize a controllable low-temperature heat rectifier with a maximal asymmetry of the order of 10%. We also
discover a parameter regime where the rectification changes sign as a function of temperature.
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I. INTRODUCTION

Heat transport in nanoscale structures has become an ac-
tive and rapidly growing research area. Progress in experi-
mental methods has enabled the study of fundamental issues,
and lately the field has seen major breakthroughs, such as the
measurement of quantized heat transport,1 and manipulation
of thermal currents using external control fields.2,3 In solid-
state systems electron-electron and electron-phonon scatter-
ing are the most important channels for small systems to
exchange energy with the environment. However, recently it
was understood that at low temperatures one needs to take
into account the radiative channel which becomes the domi-
nant relaxation method in mesoscopic samples below the
phonon-photon crossover.2,4,5

In this paper we study rectification effects in thermal
transport mediated by electromagnetic fluctuations in solid-
state nanostructures. In a two-terminal geometry a finite rec-
tification means that heat current is not simply reversed when
the thermal gradient changes sign, but also the absolute mag-
nitude of the current changes. We define the rectification R
as

R = �J+ − J−�/max�J+,J−� , �1�

where J+ and J− are the magnitudes of the heat currents in
forward and reverse bias configurations, respectively �see
Fig. 1�. Previously rectification has been shown to take place
in systems where a classical6–8 or quantized9,10 nonlinear
chain is coupled asymmetrically to linear reservoirs, when
nonlinear reservoirs are coupled through a harmonic
oscillator,11 or in hybrid quantum junctions.12 Here we dem-
onstrate rectification in a fully quantum-mechanical and ex-
perimentally realizable model where photon-mediated heat
current flows between two linear reservoirs coupled asym-
metrically to a nonlinear resonator.

Our analysis is based on a nonequilibrium Green’s func-
tion method developed in Ref. 13, and the nonlinear trans-
port problem is solved with a self-consistent Hartree ap-
proximation. Rectification is studied as a function of the
operating temperatures, reservoir coupling strengths and ad-
mittances, and the strength of the nonlinearity. We also pro-
pose a concrete setup based on a superconducting quantum

interference device �SQUID� where the rectification effects
can be realized with current experimental technology at sub-
Kelvin temperatures. A similar circuit, operated in the linear
regime, was employed in the pioneering experiment demon-
strating photonic heat transport.2 By adjusting the external
magnetic flux through the circuit it is possible to tune the
rectification continuously between zero and the maximum
value. Using realistic parameters we find a rectification of
over 10%, and identify a regime where R changes sign as a
function of temperature. Experimentally rectification has
been observed in phonon transport through a nanotube14 at
room temperature with R=7% and in electron transport
through a quantum dot15 at 80 mK with R up to 10%.

II. MODEL

The thermal transport setup is depicted in Fig. 1. It con-
sists of two linear reservoir circuits with admittances YL���
and YR���. Temperatures of the left and right reservoirs are
Thigh and Tlow�Thigh in the forward bias setting, and vice
versa for reverse bias. We assume that heat can flow between
the reservoirs only through a mediating nonlinear resonator
circuit. The couplings between the reservoirs and the resona-
tor are taken to be inductive with mutual inductances ML and
MR. Using the Caldeira-Leggett mapping between linear ad-
mittances and bosonic reservoir modes the total Hamiltonian
takes the form H=HL+HR+HM +HC, where the middle cir-
cuit and reservoir terms are

forward bias reverse bias

FIG. 1. �Color online� In a heat transport experiment, thermal
energy flows from a hot reservoir �temperature Thigh� to a cold res-
ervoir �temperature Tlow�. To obtain the rectification R one must
measure the current for both thermal bias directions. In our model
the heat is transported by inductive magnetic coupling between the
reservoirs and the central nonlinear resonator.
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HM = ��0�b̂†b̂ +
1

2
� +

��

2
�b̂ + b̂†�4, �2�

HL/R = �
j�L/R

�� j�âj
†âj +

1

2
� , �3�

and the inductive coupling term is

HC = Î�MLîL + MRîR� , �4�

which involves the current operators for the central device Î

and for the reservoirs îL/R=� j�L/Rgj�âj + âj
†�, respectively.

The electric current operator for the central device can be

expressed as Î= I0�b̂+ b̂†� with I0=���0 /2L and �0=1 /�LC
where L and C are the linear inductance and capacitance of

the resonator; b̂, b̂† and reservoir operators are bosonic cre-

ation and annihilation operators, 	b̂ , b̂†
=1. The nonlinearity
of the central circuit is characterized by the second term in
Eq. �2�, corresponding to a quartic potential whose strength
is controlled by the parameter �. It must be emphasized that
Eq. �4� has a generic bilinear form and therefore our results
are relevant for other types of systems beyond the studied
realization.

The basis of our analysis is provided by the Meir-
Wingreen formula for the heat current,13,16

J = �
0

� d��2ML
2

2�
�2	SI��� − SI�− ��
Re	YL���
nL���

− 2SI�− ��Re	YL���
� . �5�

Here nL��� is the Bose function of the left reservoir and

SI���=�−�
� dtei��t−t��Î�t�Î�t��� is the current noise power of

the central circuit. The admittances YL/R��� are related to the
current correlation functions of the free reservoirs.13 In the
absence of the nonlinear term ��=0� the transport problem
can be solved exactly for arbitrary couplings and reservoir
admittances.13 No rectification takes place in this regime. In
the following we solve the nonlinear transport problem in a
self-consistent Hartree approximation, which is expected to
be accurate for small values of the nonlinearity. This ap-
proach does not fully account for the correlation effects due
to the interplay of nonlinearity and tunneling which are po-
tentially important in the ultra-low-temperature regime
Thigh ,Tlow	��0 /kB. However, analogously to interacting
electron-transport problems, the mean-field approach is ac-
curate in the sequential tunneling regime when the tempera-
tures are of the order of ��0 /kB.

As a first step we approximate the resonator Hamiltonian
as

HM � ��0�b̂†b̂ +
1

2
� + 3��
�b̂† + b̂�2, �6�

where we have used �b̂†+ b̂�4�6
�b̂†+ b̂�2 with the mean

field 
= �b̂†+ b̂�2�. Here the factor 6 is the number ways two
operators can be picked from a set of four. By performing a
diagrammatic expansion of the resonator Green’s function
one can show that this procedure is identical to the self-

consistent Hartree approximation. Because Eq. �6� is now
quadratic in bosonic operators, it is possible to bring it to
diagonal form by a canonical transformation. However, now
we have the added complication of an a priori unknown
mean field, which has to be evaluated self-consistently in a
nonequilibrium state. The transformed Hamiltonian and cur-
rent operators are

HM = ��̃0�b̃†b̃ +
1

2
�, Î = Ĩ0�b̃ + b̃†� , �7�

where �̃0=�0�1+ 12�

�0

and Ĩ0=��0

�̃0
I0. Thus the effect of the

nonlinear term is incorporated by a mean-field dependent
renormalization of the resonance frequency of the oscillator
and its current operator. For further development it is conve-

nient to introduce the correlation functions Î�t�Î�t���r

=−i��t− t��	Î�t� , Î�t��
� and Î�t�Î�t����=−iÎ�t��Î�t��. A non-
equilibrium equation-of-motion analysis,17 similar to the one
presented in Ref. 13, reveals that the current correlators are
given by

ÎÎ�r��� =
1

�ÎÎ�0
r����−1 − Ĩ0

−2�r���
, �8�

ÎÎ����� = Ĩ0
−2�ÎÎ�r����2����� , �9�

where ÎÎ�0
r���=2Ĩ0

2�̃0 / ��2− �̃0
2� is the retarded Green’s func-

tion of the uncoupled oscillator. The self-energies,

�r��� = −
iĨ0

2�

�
	ML

2YL��� + MR
2YR���
 , �10�

����� = −
2iĨ0

2�

�
	ML

2 Re	YL���
nL���

+ MR
2 Re	YR���
nR���
 , �11�

take into account the presence of reservoirs. Furthermore, the
mean field 
 is related to the lesser correlator via


 = �b̂† + b̂�2� = − I0
−2�

−�

� d�

2�i
ÎÎ����� . �12�

Equations �8�–�12� form a closed set of equations which
needs to be solved to find the current correlation functions.
The self-consistent solution proceeds by making an initial
guess for the mean field, calculating the correlation function
�9� corresponding to the initial value and calculating the up-
dated value of the mean field by evaluating the integral in
Eq. �12�. The procedure is repeated until convergence is
achieved. The current noise then follows immediately from

the lesser function SI���=−ImÎÎ���−�� which yields the
heat current after evaluating Eq. �5�. In the case of a vanish-
ing nonlinearity ��=0� this procedure recovers the exact so-
lution of the linear problem. To facilitate the analysis of the
rectifying mechanism we note that with the help of Eqs.
�8�–�12� we can write Eq. �5� in the form
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J = �
0

� d�

2�

4��3ML
2MR

2 Re	YL
Re	YR
�nL − nR�
�F��� + i�	ML

2YL + MR
2YR
�2

, �13�

where F���=���2−�0
2−12�0�
� / �2I0

2�0�. The frequency
dependence of YL/R��� and nL/R��� has been suppressed for
brevity.

For numerical calculations explicit expressions for
the admittances YL/R��� are needed. Here we assume that
the reservoir circuits effectively consist of a resistor, a ca-
pacitor, and an inductor in series, resulting in YL/R���
=RL/R

−1 	1− iQL/R� �
�L/R

−
�L/R

� �
−1, where RL/R, QL/R, and �L/R are
the resistance, quality factor and resonance frequency of the
left and right reservoir, respectively. The behavior of the sys-
tem is now uniquely determined by nine dimensionless pa-
rameters: � /�0, kBTlow/high /��0, ML/R

2 I0
2 /�RL/R, QL/R, and

�L/R /�0. Rectification can then be calculated from Eq. �1�,
by computing the forward and reverse bias currents, J+/−,
with the above prescription.

III. RESULTS

Let us illustrate some generic features of the model with
the simple setup of two purely dissipative reservoirs, QL
=QR=0, in which case the frequencies �L and �R are irrel-
evant. In Fig. 2 we plot the rectification against three differ-
ent variables. First, from Fig. 2�a� we see that already at
quite small values of nonlinearity, ��0.1�0, the rectification
has essentially reached its maximum. Such values for � are
well within the regime of validity of our approximations and
should also be easily achieved in the experimental setup pro-
posed below. Next, Fig. 2�b� exemplifies a very generic fea-
ture: having ML

2 /RL�MR
2 /RR tends to produce J+J−, and

vice versa. Finally Fig. 2�c� shows that the rectification in-
creases logarithmically with the temperature ratio Thigh /Tlow.
Therefore, to see an appreciable effect, the temperature dif-
ference Thigh−Tlow should be of the same order of magnitude
as the temperatures themselves.

For purely resistive reservoirs maximal value for the rec-
tification is about 2% 	Fig. 2�a�
. Larger values can be ob-
tained by adding a reactive part to one of the reservoir cir-
cuits. Then, as Fig. 3 shows, R can be made an order of
magnitude higher. The inset shows the current J+, normalized
with respect to the universal single-channel maximum heat

current Jmax=
�kB

2

3� �Thigh
2 −Tlow

2 �.18 According to Fig. 3, the
highest values for R are obtained for high temperatures,
where J+ tends to zero. High rectification and large current
are thus competing effects, and the optimal operating point
depends on the experimental constraints. In any case, it is
possible to obtain a rectification of �5% with J�0.1Jmax
and up to �15% with J�0.01Jmax.

From Fig. 3 we also see that decreasing �L increases
rectification, so both small �L and the condition
ML

2 /RL�MR
2 /RR favor the direction J+J−. We can also

combine these two trends in an opposing manner by making
�L large. This way one can produce a system where the
direction of rectification changes as a function of tempera-
ture. From Fig. 4 we see that in a system with a high-
frequency reservoir �here �L=10�0�, R is positive when
both temperatures are below ��0 /kB, but at higher tempera-
tures the same device produces a negative R. In contrast to
previous reports8,19 on the rectification sign reversal, in our
system only the reservoir temperatures need to be changed,
not the device parameters.

The direction of rectification can be understood as fol-
lows. Equations �9� and �12� show that the mean field 
 is
proportional to the self-energy ��. Due to the self-
consistency loop the relationship between 
 and �� is not
actually linear, but in practice making �� larger will also

a) b) c)
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FIG. 2. Rectification with purely resistive reservoirs,
QL=QR=0, as a function of �a� nonlinearity �, �b� coupling ML, and
�c� temperature ratio Thigh /Tlow. In all panels we have � /�0=0.07,
kBThigh /��0=0.2, kBTlow /��0=0.1, ML

2I0
2 /�RL=0.2, and

MR
2I0

2 /�RR=1, except for the variable on the horizontal axis. In
panel �c� Thigh is varied.
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FIG. 3. �Color online� Rectification with one reactive reservoir
�QL=0.1�. Here Thigh /Tlow=2 and the different curves correspond to
�L /�0=0.2 �solid�, 0.1 �dashed�, 0.05 �dash-dotted�, 0.02 �dotted�.
Other parameters as in Fig. 2.
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FIG. 4. �Color online� Change in rectification sign as a function
of operating temperature. Here the lower temperature is kept fixed,
with values kBTlow /��0=0.1 �solid�, 0.3 �dashed�, 1 �dash-dotted�,
3 �dotted�, and the higher temperature is varied. The left reservoir is
reactive with QL=0.1 and �L=10�0, and other parameters are as in
Fig. 2.
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increase 
. Next, Eq. �11� shows that �� is essentially the
product of Bose function nL/R��� and the effective coupling
strength �ML/R

2 Re	YL/R���
, summed over the two reser-
voirs. Because of this form, it follows that when comparing
the forward and reverse bias settings, larger �� is obtained
in the case when the more strongly coupled reservoir is hot-
ter. As a consequence, the mean field 
 is also larger when
the more strongly coupled reservoir is hotter.

To interpret physically the 
 dependence of the current J,
we analyze separately the numerator and denominator of the
integrand in Eq. �13�. The numerator is the product of the
energy ��, Bose window nL���−nR���, and effective reser-
voir coupling strengths, as defined above. Thus it can be seen
as a measure of the energy available for transport at the
reservoirs. On the other hand, the denominator is due to the

Green’s function �ÎÎ�r����2, giving the transmittance of the
central circuit. Equation �13� shows that an increasing 

effectively increases the central circuit resonance frequency,
thereby shifting the resonator transmission window to higher
energies. Because of the Bose functions, in most situations
the numerator is smaller at higher energies and the total cur-
rent decreases. But this is not always the case. It turns out
that if at least one of the reservoirs is reactive with high
resonance frequency ���0� and the reservoir temperatures
are high ����0 /kB�, the peak of the numerator is shifted to
high enough energies so that an increasing 
 produces on
increasing J. In summary, except for the case of high-
temperature and high-frequency reservoirs, larger current is
obtained in the configuration where the more weakly coupled
reservoir is hotter. This explains the sign of R in all our
results.

IV. EXPERIMENTAL REALIZATION

For low operating temperatures, with Thigh, Tlow approxi-
mately in the range 100 mK–1 K, the studied model can be
realized by the setup shown in Fig. 5. The system consists of
a superconducting loop containing a Josephson junction

characterized by its Josephson energy EJ and shunt capaci-
tance C. The loop itself is assumed to have a finite induc-
tance dominating the potential landscape. The Hamiltonian
of the system is20

HM = ECq̂2 + EL��̂ − �x�2 − EJ cos �̂ , �14�

where the charging and inductive energies are EC=e2 /2C,
EL= �� /2e�2 /2L, and �x denotes the external magnetic flux
through the loop �in units of � /2e�. The superconducting
phase across the junction �̂ and the charge at the capacitor q̂
�in units of electron charge� are treated as conjugate observ-
ables 	�̂ , q̂
=2i. The charging term can be thought of as the
kinetic energy and the �-dependent terms as an effective
potential energy of a fictitious particle. In the following we
assume that �x�� and EJ�2EL so that the potential has a
single minimum at �̂=�0, with �0��. With these assump-
tions the phase is bound close to the minimum so that we can
approximate the potential accurately by expanding the cosine
term to the fourth order,

HM = ECq̂2 + �EL +
1

2
EJ cos �0��̂2 −

1

24
EJ cos �0�̂4

� ECq̂2 + E2�̂2 + E4�̂4, �15�

the second line defining the quantities E2 and E4. In general
there should also be a �̂3 term, but with �0�� this is small.
Further, within the mean-field approximation one has
�̂3� �̂�̂2�, producing just a shift in the origin. Writing the
charge and phase in terms of bosonic creation and annihila-
tion operators we recover exactly Eq. �2� with parameters
��0=4�ECE2 and ��=2

ECE4

E2
. The current operator of the cir-

cuit is given by Î= I0�b̂+ b̂†�, where I0=4e�ECE2
3�1/4 /�. Thus,

in the parameter regime E2�E4 we have effectively realized
our weakly nonlinear resonator model.

As the above considerations show, varying the externally
applied field �x about � moves the potential minimum �0
which in turn changes the values of the parameters �0 and �.
In particular, � is maximized at �x=�0=� and vanishes
when �0→��� /2. Figure 5 demonstrates the resulting
continuous tuning of rectification performance.

V. CONCLUSIONS

In conclusion, we have analyzed heat rectification effects
in radiative heat transport through a nonlinear quantum reso-
nator. This system is particularly interesting because it can be
realized by an experimentally feasible superconducting cir-
cuit. The proposed system is operated in a low-temperature
regime and can be controlled by applying external magnetic
fields. Despite its simplicity, the system is capable of produc-
ing a rectification of over 10%. We have shown that in a
suitable parameter regime the direction of rectification
changes as a function of temperature and given a physical
explanation for the phenomena.

1 1.1 1.20

1

2

0

0.1

0.2

0.3

0.4

0.5

FIG. 5. �Color online� Rectification and heat current through the
SQUID system as a function of the control flux �x. Parameter val-
ues at �x=� as in Fig. 2, except Thigh=2Tlow=0.4��0 /kB. Inset:
schematic of the SQUID setup with two linear reservoir circuits
inductively coupled to a superconducting loop containing one Jo-
sephson junction.
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