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Automatic Classification of Offshore Wind Regimes
with Weather Radar Observations
Pierre-Julien Trombe, Pierre Pinson, Member, IEEE and Henrik Madsen

Abstract—Weather radar observations are called to play an
important role in offshore wind energy. In particular, they can
enable the monitoring of weather conditions in the vicinity of
large-scale offshore wind farms and thereby notify the arrival
of precipitation systems associated with severe wind fluctuations.
The information they provide could then be integrated into an
advanced prediction system for improving offshore wind power
predictability and controllability.

In this paper, we address the automatic classification of off-
shore wind regimes (i.e., wind fluctuations with specific frequency
and amplitude) using reflectivity observations from a single
weather radar system. A categorical sequence of most likely wind
regimes is estimated from a wind speed time series by combining
a Markov-Switching model and a global decoding technique, the
Viterbi algorithm. In parallel, attributes of precipitation systems
are extracted from weather radar images. These attributes
describe the global intensity, spatial continuity and motion of
precipitation echoes on the images. Finally, a CART classification
tree is used to find the broad relationships between precipitation
attributes and wind regimes.

Index Terms—Weather radar, wind variability, Markov-
Switching model, classification tree, wind energy, offshore, Horns
Rev.

I. INTRODUCTION

UNLIKE fossil fuels or nuclear energy, the availability
of renewable sources of energy (e.g., solar, hydro, wind

power) is directly governed by the dynamics of the atmo-
sphere. It is therefore important to monitor weather conditions
for assessing, forecasting and integrating these resources into
power systems. In that respect, remote sensing observations of
the atmosphere have become essential for the management of
energy systems and, in offshore wind energy, they have already
led to significant advances in a wide range of applications.
These applications include the use of satellite SAR images
for improving the accuracy of wind maps over coastal areas,
airborne SAR measurements for studying wake effects at large
offshore wind farms, and LiDAR and SoDAR measurements
for sampling vertical wind profiles (see [1] and references
therein).

A new application of remote sensing tools in wind energy is
now under experimentation at Horns Rev, in the North Sea. It
consists of using weather radar observations for monitoring
weather conditions in the vicinity of large-scale offshore
wind farms [2]. This application is motivated by the need to
improve offshore wind power predictability at high temporal
resolutions [3]. In particular, the high variability of offshore
wind fluctuations is a serious problem for wind farm and trans-
mission system operators because it increases the uncertainty
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associated with the short-term prediction of wind power [4].
Statistical analysis of wind data from Horns Rev showed that
this variability was actually the result of frequent and sudden
changes of wind regimes (i.e., wind fluctuations with specific
frequency and amplitude) over waters [5], [6]. Subsequent
analysis showed that large wind fluctuations tended to be
coupled with specific climatological patterns and, particularly,
the occurrence of precipitation [7]. This suggests that pre-
cipitation could be used as an early indicator for high wind
variability. Our idea is thus to take advantage of the extended
visibility provided by weather radars for notifying the arrival
of precipitation systems in the vicinity of offshore wind farms,
and adapting the forecasting strategy accordingly.

In view of integrating weather radar observations into wind
power prediction systems, it is necessary to understand the
precipitation settings associated with high wind variability
at offshore sites. In some other meteorological contexts, the
settings favoring the development of severe weather with
the formation of precipitation are well documented [8], [9].
However, no detailed precipitation climatology over the North
Sea exists to our knowledge. As a first step towards this
understanding, we start by analyzing precipitation over the
largest spatial scale enabled by the weather radar system used
for monitoring the weather at Horns Rev, that is within a
window of radius 240 km. Weather radar observations show
that the passage of some meteorological phenomena producing
precipitation was coupled with severe wind fluctuations while
that of some other phenomena, also producing precipitation,
was not [2]. Capturing the differences between precipitation
systems by ”eye” becomes increasingly difficult with the vol-
ume of data. This difficulty may further be increased by other
factors such as (i) the relatively small range of single weather
radar systems which only enables a partial observation of
precipitation systems; (ii) seasonal variations of precipitation
which implies that two similar events on weather radar images
at two different times of the year may have different levels
of severity. This calls for the use of statistical classifiers
for generating a consistent catalogue of situations where the
variability of wind fluctuations is explained by attributes (i.e.,
characteristics) of precipitation systems.

Traditionally, classification applications using precipitation
attributes aim at improving the understanding of precipitation
itself. For instance, an automated classification procedure for
rainfall systems is proposed in [10]. Alternatively, [11], [12]
address the classification of precipitation objects (i.e., storms)
that require to be defined and identified a priori. Yet, a major
drawback of these approaches is that they rely on an expert
training performed manually with its inherent shortcomings:
(i) the potential lack of consistency since two experts may
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disagree on how to classify an event, or a same expert may
classify two similar events differently; (ii) it is limited in
the volume of data that can be treated. Our study differs
in two aspects. First, the target variable is not precipitation
but wind. And second, it does not require any expert training
for the classification and therefore avoid the aforementioned
shortcomings. Instead, a categorical sequence of wind regimes
is automatically estimated from a wind speed time series
by combining a global decoding algorithm, the Viterbi algo-
rithm [13], with the Markov-Switching model proposed in [5].
In parallel, a number of precipitation attributes are computed
from weather radar images. These attributes describe the
global intensity, spatial continuity and motion of precipitation
echoes on the images. Finally, a CART classification tree, is
used for finding relationships between precipitation attributes
and wind regimes observed at Horns Rev. The motivation for
using such a classification technique is that it can explore
large amounts of data and, yet, produce a simple partition
with interpretable rules [14].

The rest of the paper is organized as follows. In Section II,
we describe the data. In Section III, we give an overview of the
procedure for extracting the most likely sequence of regimes
from wind speed time series. In Section IV, we compute a
number of precipitation attributes from weather radar images.
In Section V, we present the classification tree technique and
apply it to the problem of the automatic classification of
offshore wind regimes. Finally, Section VI delivers concluding
remarks.

II. DATA

A. Wind data

Wind data were collected from the nacelle anemometry and
SCADA systems of the Horns Rev (HR1) wind farm [15].
The original measurements consisted of individual time series
of wind speed and wind direction, for each of the 80 wind
turbines of HR1. Two aggregated time series of wind speed
and wind direction were obtained by jointly averaging these
individual time series over 10 minute intervals. The time
series span the year 2010. Due to some technical problems,
measurements are missing over 2 periods of about 5 and 12
days, respectively. There are 2664 missing values out of 52560
(i.e., 94.9% of data availability). No attempt was made to fill
in those gaps. The wind distribution is shown in Figure 1.
The wind rose shows 3 preferred wind directions. While
the prevalence of northwesterly directions is consistent with
other wind data analysis at Horns Rev (see [6]), the frequent
occurrences of northeasterly winds are more exceptional since
it is usually the direction where the wind is suppressed in
Denmark. This phenomenon can be explained by a strong
annual wind variability in 2010. Note also that strong winds,
above 15 m s−1, are more frequent for westerly than easterly
directions.

B. Weather radar data

Weather radar data consist of 2D images of precipitation
reflectivity. More specifically, they correspond to 1 km height
pseudo-CAPPI (Constant Altitude Plan Position Indicator)
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Fig. 1. Wind distribution at the Horns Rev 1 wind farm, in 2010. Data were
collected from the nacelle anemometry and SCADA systems [15].

image products, with a 2×2 km grid resolution. They were
produced by a C-Band Doppler radar located in Rømø, approx-
imately 57 km to the East of the HR1 wind farm. The radar
is operated by the Danish Meteorological Institute (DMI),
using a 9 elevation scan strategy and an operational range
of 240 km [16]. One image is generated every 10 minutes.
Clutter removal filters are applied during the data acquisition
process. Data quality control is also performed a posteriori and
persistent clutter is removed following the automatic method
introduced in [17]. For a complete description of the radar
settings and images, we refer to [2]. About 2000 images are
missing over the year 2010 (i.e., 96.1% of data availability).

III. ESTIMATION OF WIND REGIMES

In this section, we estimate a categorical sequence of
wind regimes from the time series of wind speed presented
in Section II. Such a procedure can also be viewed as a
segmentation of the time series where the latter is partitioned
into homogeneous sections. Our plan is to use this sequence
of wind regimes as the dependent variable (i.e., the variable
to predict) for growing a classification tree in Section V.

Numerous studies have pointed out the nonstationary be-
havior of offshore or near-offshore wind fluctuations at the
minute scale [6], [18], [19]. Numerically, this nonstationarity
translates into sudden shifts in the amplitude and/or frequency
of wind fluctuations. Such patterns of fluctuations can be
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analyzed either in the frequency domain, with an empirical
spectral decomposition technique as in [6], or in the time
domain with Generalized AutoRegressive Conditional Het-
eroskedasticity (GARCH) models [18], or Markov-Switching
AutoRegressive (MSAR) models [5]. The advantage of MSAR
models over other techniques is that they are clearly tailored
to address the extraction of a hidden sequence of regimes, as
discussed in [20].

We follow a 2-step procedure. First, a MSAR model is fitted
to the time series of wind speed. Secondly, a global decoding
method, the Viterbi algorithm [13], is used for computing the
most likely sequence of wind speed regimes, under the fitted
MSAR model.

A. Regime-switching modeling with MSAR models

MSAR models are an extension of Hidden Markov Models
(HMM). They are widely used for the modeling of time
series characterized by structural breaks in their dynamics.
The underlying assumption of these models, both HMM and
MSAR, is that there is an unobservable Markov process which
governs the distribution of the observations [20]. Compared to
HMM, MSAR models have an additional capability, they can
accommodate autocorrelated data and include autoregressors
in the model formulation. Applications of MSAR models to
wind data include [5], [21].

The wind speed time series we use for this study does
not show any well pronounced diurnal cycle. In addition, we
disregard the potential long-term drift and seasonal variations
of wind speed since the available time series only spans a one
year period. For the sake of simplicity, we do not specifically
deal with the wind speed truncation in 0. We only assume that
wind speed has an autoregressive behavior in each regime. Let
{yt}, t = 1, . . . , n, be the time series of measured wind speed
at the HR1 wind farm. The MSAR model with m regimes and
autoregressive orders (p1, . . . , pm) is defined as follows:

Yt = θ
(Zt)TXt + σ(Zt)ε

(Zt)
t (1)

with

θ(Zt) = [θ
(Zt)
1 . . . θ(Zt)

pZt
]T (2)

Xt = [Yt−1 . . . Yt−pZt
]T (3)

where {εt} is a sequence of independently distributed random
variables following a Normal distribution N (0, 1); and Z =
(Z1, . . . , Zn) is a first order Markov chain with a discrete
and finite number of states (i.e., regimes) m and transition
probability matrix P of elements (pij)i,j=1,...,m with:

pij = Pr(Zt = j|Zt−1 = i), i, j = 1, . . . ,m (4)
m∑
j=1

pij = 1, i = 1, . . . ,m (5)

There exist two distinct methods for estimating the pa-
rameters of a MSAR model with given number of regimes
m and autoregressive orders (p1, . . . , pm), the Expectation-
Maximization (EM) algorithm and direct numerical maxi-
mization of the Likelihood. The respective merits of these

2 methods are discussed in [20], along with practical solu-
tions for their implementation. As for this study, we esti-
mate MSAR models by direct numerical maximization of the
Likelihood owing to its lower sensitivity to starting values.
Let Θ = (θ(1), . . . ,θ(m),P ,σ) be the set of parameters to
estimate. The Maximum Likelihood Estimator (MLE), Θ̂MLE ,
is obtained by maximizing the Likelihood function L(Θ):

Θ̂MLE = argmax
Θ

L(Θ) (6)

= argmax
Θ
δ(

n∏
t=1

PDt)1
T (7)

with

δ = 1(Im − P +Um)−1 (8)
Dt = diag(η(t, 1), . . . , η(t,m)) (9)

η(t, i) =
1

σ(i)
φ

(
Yt − θ(i)TXt

σ(i)

)
, i = 1, . . . ,m (10)

δ is the stationary distribution of the Markov chain; 1 is a unit
vector of size m; Im and Um the Identity and Unity matrices
of size m ×m; Dt a diagonal matrix; and φ the probability
density function of the Normal distribution.

We estimate four MSAR models, from one up to four
regimes. For each of these MSAR models, the optimal autore-
gressive orders in each regime are determined by following a
forward selection procedure based on Likelihood Ratio (LR)
tests, as described in [22]. Then, all four models are compared
with one another by performing LR tests, leading to the
rejection of the MSAR model with four regimes. For MSAR
models from one to three regimes, Table I summarizes some
of the important parameter estimates that help interpreting the
regimes. In particular, the elements of the diagonal of the tran-
sition probability matrix, diag(P ), give an estimation of the
mean persistence of the regimes over time. As for the vector
of standard deviations σ, it expresses the relative variability
of wind speed fluctuations in each regime. The estimates of
the autoregressive coefficients are of lesser importance and,
instead, we just report the optimal autoregressive order in
each regime. Regimes are ranked by ascending values of
standard deviation. Both with 2 and 3 regimes, there is an
inverse relationship between wind fluctuation variability and
persistence (i.e., the more variable, the less persistent).

TABLE I
SUMMARY STATISTICS ON MSAR MODELS FITTED TO THE TIME SERIES OF

WIND SPEED.

m (p1, . . . , pm) diag(P ) σ

1 5 - 0.51
2 (5,5) (0.98, 0.92) (0.31, 0.96)
3 (4,3,6) (0.98, 0.95, 0.89) (0.25, 0.47, 1.28)

B. Global decoding

Global decoding consists of estimating the most likely
sequence of regimes ẑ = (ẑ1, . . . , ẑn) under a fitted model,
as opposed to local decoding which consists of estimating the
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Fig. 2. (Upper panel) Time series of wind speed recorded at the Horns Rev 1 wind farm. The temporal resolution is 10 minutes. (Lower panel) Estimated
sequence of regimes, for 2 and 3 regimes. Regimes can be interpreted in terms of wind variability, from low in regime 1 to high variability in regime 3.

most likely regime at time t, ẑt, independently of the regime
values at other times. The most likely sequence of regimes ẑ is
found by maximizing the joint probability of the observations
and states of the Markov chain:

ẑ = argmax
z

Pr(Z = z,Y = y) (11)

where Y = (Y1, . . . , Yn). For estimating ẑ, we use the Viterbi
algorithm [13]. For that purpose, let us introduce the following
notations:

Y (i) = (Y1, . . . , Yi) and Z(i) = (Z1, . . . , Zi) (12)
ξ1i = Pr(Z1 = z1, Y1 = y1) = δiη(1, i) (13)

ξti = max
z(t−1)

Pr(Z(t−1) = z(t−1), Zt = i,Y (t−1) = y(t−1))

(14)

for t = 2, . . . , n. The quantities ξti can be seen as the most
probable sequence leading to regime i at time t, among all
possible sequences Z(t−1). Finally, ẑ is found by the solving
the following backward recursion, starting from n:

ẑn = arg max
i=1,...,m

ξni (15)

ẑt = arg max
i=1,...,m

ξtipi,ẑt+1
for t = n− 1, . . . , 1 (16)

The most likely sequence of wind regimes was computed
under the fitted MSAR models, with both 2 and 3 regimes.
The result is illustrated in Figure 2 over a 6 day episode where
a clear change of wind speed variability, from low to high, can
be observed on October 18, 2010. Note that the regimes are
more stable (i.e., there are fewer switchings) for the sequence
with 2 regimes than with 3.

IV. PRECIPITATION IDENTIFICATION AND ATTRIBUTES

A. Precipitation identification

Weather radar images can contain 2 sources of information
which fall either into the meteorological sources (e.g., rain,
hail, snow) or into non-meteorological sources (e.g., clutter
due to buildings, wind farms, ground, sea). Echoes caused
by non-meteorological targets can usually be identified and
filtered out during the data acquisition process or a posteriori
data quality control when they have non-random patterns
(see [23] for illustrative examples on the Danish weather radar
networks). However, not all non-meteorological echoes can be
removed and, in some cases, significant portions of weather
radar images remain contaminated by non-meteorological ar-
tifacts [2]. Regarding the images used in this study, the
most serious problems are due to anomalous propagation
(anaprop) of the radar beam. We observe these problems more
frequently during the summer season, from April to September
in Denmark. In some extreme cases, the contamination can
extend up to 20% of the image pixels over several hours.
Image pre-processing operations such as median filtering are
inefficient for removing anaprop echoes.

In this subsection, our goal is to develop a method for
assigning a binary label to each image indicating the detection
of precipitation (potentially mixed with noisy echoes) or not.
In [24], rainfall is identified by computing the proportion of
wet pixels (i.e., pixels recording positive rainfall) over the
entire image. A rainfall event is then defined as a continuous
period of time where the coverage proportion of wet pixels
over the whole image is above a threshold of 25%. This
approach is clearly an over-simplified view of the problem
and could not apply to our images, even by optimizing the
threshold level. In other applications and, particularly, severe
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weather nowcasting, storm identification is addressed by defin-
ing thresholding and contiguity heuristics [25]. These later
methods are tailored for very specific types of precipitation
being depicted by high reflectivity echoes on weather radar
images.

We propose an alternative method for identifying precipi-
tation, irrespectively of the mean reflectivity. It is based on
the assumption that contiguous pixels recording precipitation
have a higher correlation than contiguous pixels contaminated
by noise. This assumption is supported by [26] which shows
that the shape of precipitation echoes tends to be elliptical.
We use a geostatistical tool, the correlogram, as a measure of
spatial correlation of precipitation echoes for each image [27].
In order to capture the potential anisotropy of precipitation
echoes, these correlograms are produced in 2 dimensions,
based on the estimation of directional correlograms ρ(h) of
vector h as follows:

ρ(h) =
γ(h)

γ(0)
(17)

γ(h) =
1

N(h)

∑
(pi,pj)|hpipj

=h

(Ipi − Ipj )2 (18)

where γ(h) is a directional variogram computed by summing
over all paired pixels (pi, pj) with intensities (Ipi , Ipj ) and
separated by a vector h. N(h) is the number of paired pixels
(pi, pj) matching this latter criterion. These 2-dimensional
correlograms are computed with the gstat package of the R
programming environment [28].

Figure 3 shows 4 sample images and their associated
correlograms. A zoom in the central part of the correlogram is
also provided for illustrating the local continuity of reflectivity
values. The images were chosen to reflect various types of
precipitation systems (e.g., small and scattered precipitation
cells, banded or widespread precipitation system) and a case of
anaprop. In particular, the small spatial correlation of anaprop
echoes can well be observed, it drops below 0.4 for all 1-
lagged (i.e., adjacent) pixels, whatever the direction. Note also
the quick decorrelation in space for small scattered cells but,
unlike for anaprop, the spatial correlation is larger than 0.4 up
to 3-4 lagged pixels. The anisotropy of banded systems can
also be well be captured by these correlograms.

For a given image, we consider that precipitation is detected
if the correlation is larger than 0.6 for all 1 and 2-lagged pixels
(i.e., the central 5x5 neighborhood of the correlogram). Then,
we define a precipitation event as a period with a minimum
duration of 1 hour (i.e., 6 consecutive images) over which
precipitation is detected. If the time between the end of a
precipitation event and the beginning of a new one is less
than one hour, we consider it to be the same event. Table II
summarizes the number of events identified and their mean
lifetime in 2010.

B. Precipitation types

Precipitation is commonly described as either stratiform,
convective or a mix of these two. In the mid-latitudes, strat-
iform precipitation develops in a variety of situations where
the atmosphere is stably stratified. Typical examples of these

situations are warm fronts where masses of warm air gradually
lift over cold masses of air. These fronts have the particularity
of propagating relatively slowly and spreading over large
horizontal scales up to and beyond 100 km. On weather
radar images in 2D, stratiform precipitation is thus generally
identified as a widespread region of moderate, homogeneous
and continuous intensity with a slow dynamics. Winds asso-
ciated with pure stratiform precipitation usually have a small
vertical velocity and low turbulency. In comparison, convective
precipitation develops in unstable atmosphere and have a
much higher spatial variability, with many scattered and heavy
precipitation showers occurring locally, over horizontal scales
from a few kilometers up a few tens of kilometers, potentially
forming complex convective systems over several hundreds
kilometers. In addition, the updraft associated with this type of
precipitation is stronger, resulting in highly turbulent winds.
In the mid-latitudes, convective precipitation prevails during
the summer and over warm oceans. On weather radar images
in 2D, convective precipitation is depicted by small clusters
of high reflectivity propagating relatively quickly. However,
in many cases, convective precipitation can be embedded
into stratiform regions and forms more complex precipitation
structures.

C. Precipitation attributes

For each image where precipitation is identified, we com-
pute a number of attributes linked the global intensity, spatial
continuity and motion of precipitation. These attributes are
meant to describe the main characteristics of the different types
of precipitation discussed hereabove. They are summarized in
Table III.

On weather radar images, the intensity of precipitation is
measured in decibel of reflectivity (dBZ). Within a same
precipitation system, the distribution of intensity may not
be homogeneous and, with the occurrence of severe weather
traditionally associated with high values of reflectivity, it
tends to be positively skewed. So, in order to describe the
distribution of precipitation intensity, we propose a set of non
parametric statistics composed of (i) location measures with
the median (i.e., the 50th quantile), the 75th, 90th, 95th and
99th quantiles; (ii) dispersion measures with the interquartile
range (i.e., the range between the 25th and 75th quantiles);
(iii) shape measures with the skewness to inform on the
asymmetry of the distribution, and the kurtosis to inform on its
sharpness. Only pixels with strictly positive reflectivity values
are considered. Note that we choose to use robust statistics
with, for instance, the median in place of the mean and the
99th quantile in place of the maximum in order to filter out
the potential effects of residual noise.

For measuring the spatial continuity of precipitation, we
again use the correlogram introduced in this Section and
follow the procedure presented in [10]. It assumes that each
correlogram contains an elliptical object that can be described
by its eccentricity and area. The procedure is as follows: (1) the
correlogram is transformed into a binary image by means of
a thresholding operation, with the threshold value arbitrarily
chosen between 0 and 1; (2) a connected-component labelling
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Fig. 3. Image samples (left column) and their associated correlograms in 2 dimensions (right column). (a-b) A case of anomalous propagation without
precipitation. (c-d) Small scattered convective precipitation cells. (e-f) Banded precipitation system. (g-h) Widespread precipitation system.
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TABLE II
MONTHLY STATISTICS: NUMBER OF PRECIPITATION EVENTS IN 2010 AND THEIR MEAN LIFETIME

Jan. Feb. March Apr. May June July Aug. Sept. Oct. Nov. Dec. Total

Number of events 23 19 40 20 32 18 24 25 20 24 36 21 302
Mean lifetime [hours] 22.7 24.2 08.6 14.9 11.1 12.3 20.4 21.9 20.5 21.2 16.2 20.4 17.1

algorithm is used to identify all connected regions on the
binary image [29] and only the region intersecting with the
center of the image is kept; (3) the edge of that region is
identified with the Canny edge detector [30]; (4) an ellipse
is fitted on the detected edge by minimizing the least square
criterion [31]. In this study, this procedure is performed twice,
for threshold values of 0.4 and 0.7, and the eccentricity (i.e.,
the ratio of the major axis over the minor axis) and the area
of the elliptical object are computed for both values. For the
threshold value of 0.4, these attributes are likely to reflect the
large-scale continuity of precipitation whereas, for the value
of 0.7, they will capture the more local continuity.

The horizontal motion of precipitation is computed with an
optical flow method. This type of method is very useful for
estimating the visible flow field (u, v) between 2 consecu-
tive images. The two underlying assumptions that define the
optical flow formulation are brightness constancy and spatial
smoothness. Brightness constancy means that the intensity of
an object is conserved over time, despite its likely change of
position between 2 consecutive images. Spatial smoothness
refers to the coherence between neighboring pixels which
should ideally have a similar motion [32]. The formulation
we use is the one Black and Anandan proposed in [33] owing
to its robustness to outliers. It is expressed as an Energy
minimization problem with the objective function E(u, v)
defined as follows:

E(u, v) = EBC(u, v) + λESS(u, v) (19)

where λ a regularization parameter (i.e., the larger λ, the
denser the flow field); EBC and ESS are the functions
resulting from the brightness constancy and spatial smoothness
constraints:

EBC(u, v) =
∑
i,j

f(I1(i, j)− I2(i+ ui,j , j + vi,j)) (20)

ESS(u, v) =
∑
i,j

[g(ui,j − ui+1,j) + g(ui,j − ui,j+1)

+ g(vi,j − vi+1,j) + g(vi,j − vi,j+1)] (21)

where I1 and I2 are 2 consecutive images, f and g are 2
penalty functions. Following the implementation of Black and
Anandan, we set f = g = log(1 + 1

2 (
x
σ )

2), the Laurentzian
function with scale parameter σ. The expression of ESS is
formulated with a pairwise Markov Random Field (MRF)
discretization, based on a 4-neighborhood [34]. Since our goal
is to estimate a unique speed and direction for each pair of
consecutive images, we extract the median Cartesian flow from
the flow field and convert it into its Polar components (i.e.,
speed and direction). Flow direction is then transformed into a
categorical variable by binning its values into 8 sectors (North
(N), North-East (NE), . . . ).

Finally, we also add a seasonal attribute in the form of a
categorical variable to allow for potential seasonal patterns of
precipitation. We consider that there are only two seasons in
Denmark so that the variable takes value Summer from March
to August, and Winter from September to February. In summer,
the North Sea is on average colder than the air whereas, in
winter, the opposite holds true and favors thermal instabilities
in the atmosphere [7].

V. AUTOMATIC CLASSIFICATION

For the automatic classification of precipitation systems,
we use a tree-based classification technique called CART,
in a supervised learning framework (i.e., the classification
is governed by the categorical sequence of wind regimes
computed in Section III). These trees, also known as decision
trees, are attractive in many aspects. First, for the relative
simplicity of their principles based on a recursive partitioning
of the data set. Second, they provide a powerful alternative
to more traditional classification techniques (e.g., discriminant
analysis and logistic regression) which generate a global model
for the entire data set while variables may interact in a highly
complex and nonlinear way and require to be fitted locally.
Finally, because their interpretation is mainly visual and can
lead to a straightforward understanding of the relationships
between variables [14]. Applications of classification trees to
precipitation data extracted from weather radar images can be
found in [11], [12].

A. CART classification trees

Let Y be the dependent categorical variable taking values
1, 2, . . . ,K, and (X1, . . . , Xp) the set of p predictors (i.e., the
independent variables) that can either be continuous or cate-
gorical. Growing a classification tree consists of a recursive
partitioning of the feature space (i.e., the space composed of
the p predictors each with n observations) into rectangular
areas. Each split consists of a dichotomy applied on a single
predictor (e.g., X2 < 3 if X2 is continuous or X2 = ”a” if it
is categorical). The feature space is first split into 2 groups so
that the response of Y is maximized in each of the 2 groups.
This procedure is recursively repeated and each of the 2 groups
is partitioned into 2 new sub-groups, and so on. Splits are
more commonly called nodes. A terminal node (i.e., node that
cannot be further split) is called a leaf.

For each node, the splitting predictor and rule are deter-
mined so as to minimize the impurity level in the resulting two
nodes. For a given node, let p = (p1, . . . , pK) be the vector of
proportions of elements in class 1, . . . ,K. There exist several
impurity measures and the one we use in this study is known
as the Gini index. It measures how often a randomly chosen
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TABLE III
DESCRIPTION OF PRECIPITATION ATTRIBUTES USED FOR GROWING THE CLASSIFICATION TREE.

Attribute acronyms Type (source) Unit Description

skew & kurt Intensity (reflectivity images) - Skewness and Kurtosis of reflectivity distribution
q50, q75, q90, q95 & q99 Intensity (reflectivity images) dBZ 50th, 75th, 90th, 95th & 99th reflectivity quantiles
iqr Intensity (reflectivity images) dBZ Interquartile range (range defined by the 25th and 75th reflectivity

quantiles)
speedOF Motion (optical flow) m s−1 Median speed of the flow field
dirOF Motion (optical flow) N, NE, E, SE, Median direction (8 sectors) of the flow field. Direction are in

S, SW, W, NW meteorological conventions, they indicate the direction of origin.
spaArea04, spaArea07 Spatial continuity (correlogram) km2 Area of the ellipse fitted on correlograms for threshold values

0.4 and 0.7
spaEcc04, spaEcc07 Spatial continuity (correlogram) - Eccentricity of the ellipse fitted on correlograms for threshold values

0.4 and 0.7
season Temporal Sm./Wt. Summer (from April to September), Winter (from October to March)

element from the node would be incorrectly labeled if it were
labeled according to the frequency distribution of labels in the
node. The Gini index iG(p) is computed as follows:

iG(p) = 1−
K∑
j=1

p2j (22)

When growing a tree, the tradition is to build a complex
tree and simplify it by pruning (i.e., removing the nodes
that over-fit the feature space). This is done by minimizing
the misclassification rate within leaves over a 10-fold cross-
validation procedure.

B. Experimental results

The classification is performed using the sequence of wind
regimes computed in Section III as the dependent variable,
and the precipitation attributes extracted from the weather
radar images and listed in Table III as predictors. Observations
where no precipitation is detected are filtered out. After that,
more than 29000 observations remain for the classification.
We choose to grow the tree for the sequence of wind regimes
with 2 regimes. There are 76% of observations in regime 1 and
24% in regime 2. The final tree is shown in Figure 4. Branches
going downwards to the left indicate that the splitting rule is
satisfied.

The classification tree we grew is interesting in two aspects.
First, it reveals the broad patterns of precipitation systems
associated with the different wind regimes. For instance, the
leftmost leaf which contains 35% of the total number of
observations, shows that 93% of the observations for which
the speed of precipitation echoes is smaller than 12 m s−1

(i.e., speedOF<12) and the maximum reflectivity is smaller
than 29 dBZ (i.e., reflQ99<29) are in Regime 1. On the
opposite side of the tree, the rightmost leaf which contains
14% of the total number of observations, indicates that 59%
observations for which the speed is larger than 12 m s−1, the
maximum reflectivity larger than 30 dBZ and the precipitation
comes from North-West, West or South are in Regime 2. One
recurrent pattern in this tree is that when precipitation systems
comes from North-East, East or South-East, wind fluctuations
tend be classified in Regime 1, the regime with the lowest
variability. This is consistent with the results in [7] that show

that wind fluctuations are more variable for westerly flows
than for easterly flows.

Secondly, the tree highlights the predictive power of each
of the variables used in the classification. Some variables may
repeatedly be used for generating new nodes whereas some
other variables may not be used at all. This contrasts with
the hierarchical clustering technique proposed in [10] where
all variables equally contribute to classify observations, with
the risk of including non informative variables and degrading
the accuracy of the classification. In the present experiment,
one can notice that only 4 predictors are used in the final
tree, the motion speed and direction of precipitation echoes
(i.e., speedOF and dirOF), the season and the maximum
reflectivity (i.e., reflQ99). Note that the maximum reflectivity
value (i.e., reflQ99) is the only intensity related attribute used
in the final tree. This attribute characterizes the most extreme,
yet marginal, intensity recorded on the images, highlighting
the necessity to consider precipitation information at smaller
scales in the future. Moreover, none of the 4 variables derived
from the correlogram (i.e., spaArea04, spaArea07, spaEcc04
and spaEcc07) is used. The most likely reason for the small
predictive power of correlograms is the too complex organi-
zational structure of precipitation systems. In particular, when
there are spatial discontinuities between precipitation echoes
(i.e., precipitation echoes are separated by regions recording
no precipitation), correlograms are only informative locally
and cannot capture the full extent of the precipitation system.
Inversely, when small clusters of high intensity are embedded
into a large and continuous region of moderate intensity,
correlograms tend to only capture the large-scale feature. This
suggests the development of hierarchical techniques where
precipitation would be analyzed at multi-scale, as a potential
line of work in the future.

VI. CONCLUSION

In this work, we proposed an automatic procedure for classi-
fying offshore wind regimes based on precipitation attributes
extracted from weather radar images. We found that winds
with a high variability are more likely to be observed with the
passage of precipitations systems being advected at relatively
high speeds, preferably from West and North-West, and having
large maximum reflectivity values. This result is consistent
with earlier data analysis [7] and confirms the potential of
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Fig. 4. Classification tree explaining wind regimes at the Horns Rev 1 wind farm with precipitation system attribute extracted from weather radar images.
Wind regimes and precipitation system attributes are computed in Section IV and V, respectively.

weather radar observations for providing appropriate informa-
tion to future wind power prediction systems. However, the
insights we gained on the relationship between precipitation
and wind are not readily integrable into prediction systems.

We studied wind fluctuations in a univariate framework,
only considering wind speed. It has the merit of keeping the
complexity of the procedure reasonable. Yet, wind should ide-
ally be considered and treated as a bivariate process of speed
and direction because patterns of wind speed fluctuations may
either be direction-dependent or coupled with specific patterns
of wind direction fluctuations. For instance, larger wind speed
fluctuations are observed for westerly flows at Horns Rev [7].
However, the statistical modeling of circular time series (e.g.,
wind direction) that feature autocorrelation is quite cumber-
some and it is preferable to transform wind speed and direction
into their associated (u, v) components, as in [18], for instance.
That way, both variables of the bivariate process are non-
circular and unbounded, and traditional methodologies can be
applied. In that view, an interesting generalization of our work
could consist of applying MSAR models in a vectorial form
as introduced in [35], on the transformed (u, v) components
of the wind.

As for precipitation, we considered it over a unique and
large spatial scale which is suitable for a preliminary investi-
gation aiming at defining a rough climatology of precipitation
and wind. However, our approach clearly overlooks the im-
portant organizational structure of precipitation systems. This
acts as a limiting factor for improving the accuracy of the
classification of offshore wind regimes. A potential line of
work to overcome that limitation consists of identifying precip-
itation entities at more appropriate spatial scales, potentially at
multi-scales. These entities could then substitute precipitation
system as the experimental units for extracting attributes. In
our view, there exist two potential techniques to address this

problem. First, the extended watershed technique presented
in [36] which provides a consistent and flexible framework for
detecting convective storms over small spatial scales. Second,
the multi-scale segmentation technique introduced in [37]
which enables to split precipitation systems into sub-regions
with specific textural properties.

Finally, there are a number of issues that we did not address
in this study and that are left for future work. Firstly, the
sensitivity of the results to the data length will be analyzed
with the acquisition of new data or, if new data were not
to become available, the application of resampling techniques
such as bootstrap will be investigated. Secondly, this work
aimed at classifying wind regimes at time t based on the
weather conditions as seen by a weather radar at the same time
t. It is planned to repeat the same study with lagged weather
radar images, at time t− k, in order to examine the detection
of early precipitation patterns. Thirdly, the temporal dimension
of the sequence of images was not considered while each time
series of precipitation attributes is characterized by a relatively
strong autocorrelation. Further research will therefore be en-
couraged in this direction and data mining techniques dealing
with autocorrelated data will receive specific attention.
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