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Monte Carlo full-waveform inversion of crosshole GPR data
using multiple-point geostatistical a priori information

Knud Skou Cordua1, Thomas Mejer Hansen1, and Klaus Mosegaard1

ABSTRACT

We present a general Monte Carlo full-waveform inversion
strategy that integrates a priori information described by geos-
tatistical algorithms with Bayesian inverse problem theory. The
extended Metropolis algorithm can be used to sample the a pos-
teriori probability density of highly nonlinear inverse problems,
such as full-waveform inversion. Sequential Gibbs sampling is a
method that allows efficient sampling of a priori probability
densities described by geostatistical algorithms based on either
two-point (e.g., Gaussian) or multiple-point statistics. We out-
line the theoretical framework for a full-waveform inversion
strategy that integrates the extended Metropolis algorithm with
sequential Gibbs sampling such that arbitrary complex
geostatistically defined a priori information can be included.
At the same time we show how temporally and/or spatially
correlated data uncertainties can be taken into account
during the inversion. The suggested inversion strategy

is tested on synthetic tomographic crosshole ground-penetrating
radar full-waveform data using multiple-point-based a priori
information. This is, to our knowledge, the first example of ob-
taining a posteriori realizations of a full-waveform inverse
problem. Benefits of the proposed methodology compared with
deterministic inversion approaches include: (1) The a posteriori
model variability reflects the states of information provided by
the data uncertainties and a priori information, which provides a
means of obtaining resolution analysis. (2) Based on a posteriori
realizations, complicated statistical questions can be answered,
such as the probability of connectivity across a layer. (3) Com-
plex a priori information can be included through geostatistical
algorithms. These benefits, however, require more computing
resources than traditional methods do. Moreover, an adequate
knowledge of data uncertainties and a priori information is re-
quired to obtain meaningful uncertainty estimates. The latter
may be a key challenge when considering field experiments,
which will not be addressed here.

INTRODUCTION

Albert Tarantola was one of the pioneers of seismic full-waveform
inversion (see Tarantola, 1984, 1986, 1988). Using a steepest descent
algorithm, he obtained the update gradient in each iteration by cor-
relating a forward-propagated wavefield with the residual wavefield
propagated backward in time from the receiver positions. This ap-
proach has later been referred to as the adjoint method (Talagrand
and Courtier, 1987). The first numerical tests based on finite-
difference simulations of the seismic signal showed promising re-
sults (Gauthier et al., 1986). Since then, several full-waveform inver-
sion algorithms, based on Tarantola’s pioneering work, have been
developed and applied to seismic data (e.g., Mora, 1987; Crase
et al., 1990; Pica et al., 1990; Djikpéssé and Tarantola, 1999).

Ground-penetrating radar (GPR) crosshole tomography is a pop-
ular method used to obtain tomographic images of near-surface geo-
logical structures and geophysical parameters. The crosshole GPR
experiment involves a transmitting radar antenna (20 MHz–
1 GHz; see Reynolds, 1997) lowered into a borehole and a receiving
antenna placed in an adjacent borehole. The boreholes are typically
separated by a distance of 5 m–20 m and are 5 m–100 m deep (e.g.,
Ernst et al., 2007a; Looms et al., 2008). An antenna is kept fixed in
one borehole, while the other antenna is moved between multiple
locations in the opposite borehole. The fixed antenna is moved to
a new position and the procedure is repeated. At each combination
of antennae positions a signal is transmitted between the antennae.
In this way an arbitrary dense tomographic data set that covers the
interborehole region can be obtained (Peterson, 2001).
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Ernst et al. (2007a, 2007b) introduced and applied the adjoint-
based optimization algorithm for inversion of tomographic cross-
hole GPR full-waveform data. They demonstrate that subwave-
length features can be resolved when the full-waveform
information of the GPR signal is accounted for during the inversion,
which was a considerable improvement, compared with traditional
ray-based inversion strategies. The inversion scheme of Ernst
et al. (2007b) was later adopted for inversion of seismic waveform
data by Belina et al. (2009). Recently, the algorithm of Ernst et al.
(2007b) has been improved such that it exploits the full vector field
of the electromagnetic wave propagation and allows for arbitrary
antennae geometry (Meles et al., 2010). Klotzsche et al. (2010) de-
monstrate an application of the improved code to crosshole GPR
waveform data acquired in a gravel aquifer. Lately, Meles et al.
(2011) demonstrated that the adjoint-based method of Ernst
et al. (2007b) becomes less sensitive to the starting model when
the inversion is conditioned to the long wavelengths of the signal
in the initial part of the inversion and higher frequencies are gra-
dually incorporated.
The adjoint-based approach is desirable because, in relatively few

iterations, it is able to obtain a model of geophysical parameters that
minimize a misfit (i.e., objective) function between the observed
and modeled waveforms. However, this inversion strategy has some
limitations. First, the method is based on linearization of the inverse
problem and, therefore, it cannot be guaranteed that the global mini-
mum is found (e.g., Tarantola, 2005). Second, the convergence cri-
terion is chosen somehow subjectively, which may adversely result
in noise propagating into the model estimate (e.g., Ernst et al.,
2007b). Finally, the method is based on a linear assumption of
the forward relation and is limited to Gaussian data uncertainty
and a priori information, which results in a Gaussian approximation
of the a posteriori uncertainty estimate (Tarantola, 1984; Pratt and
Worthington, 1990). Here we propose an algorithm that naturally
deals with these limitations.
In a Bayesian formulation, the solution to the inverse problem is

given as an a posteriori probability density (Tarantola and Valette,
1982). The a posteriori probability is based on the independent
states of information provided by the data (related to the model
parameters through a physical law), an associated data uncertainty
model (that takes into account data noise and data simulation inade-
quacies), and the a priori information on the model. The combined
states of information contained in the a posteriori probability den-
sity are reflected in the model variability of the a posteriori sample.
Hence, data uncertainties will not cause artifacts in the solution, but
rather influence the degree of a posteriori model variability if the
nature of the uncertainties is appropriately accounted for in the un-
certainty model. Resolution analysis is naturally obtained from the a
posteriori model variability. One may simply be interested in cal-
culating the covariance of the a posteriori model parameters, but
more sophisticated questions, such as the probability of geological
connectivity or the residence time of a fluid, may also be answered
by the a posteriori statistics (Mosegaard, 1998).
The extended Metropolis algorithm (Mosegaard and Tarantola,

1995) can be used to sample the a posteriori probability density,
even for highly nonlinear inverse problems. This algorithm does
not need a closed form mathematical expression of the a priori in-
formation, but a “black box” algorithm that is able to sample the a
priori probability density is sufficient. Hansen, et al., (2008;
2012) suggested a method that provides a means of controlling

the perturbation step size and efficiency when sampling a priori
information defined through any geostatistical algorithms that is
based on sequential simulation (e.g. Gomez-Hernandez and
Journel, 1993). This method is referred to as sequential Gibbs sam-
pling (Hansen et al., 2012). They demonstrate that this method
could serve as a black box algorithm in the extended Metropolis
algorithm. Sequential Gibbs sampling can be used to sample a priori
models based on either relatively simple two-point based statistical
models, such as Gaussian-based a priori models, or more complex
multiple-point-based statistical models. This provides a means of
using complex a priori statistical models that allow reproduction
of geologically plausible structures, such as channels and tortuosity.
Such complex patterns (i.e., spatial autocorrelation) can be learned
from so-called training images and reproduced by simulation algo-
rithms based on multiple-point statistics (e.g., Strebelle, 2002).
Multiple-point algorithms offer the flexibility of simulating realiza-
tions with high entropy (e.g., Gaussian distributions) as well as low
entropy (i.e., a few facies) structures or a combination of both
(Journel and Zhang, 2006). See for example Remy et al. (2008)
for different examples of such complex statistical models. In this
way, the extended Metropolis algorithm becomes very flexible with
regard to the choice of a priori model.
Since his seminal work on the full-waveform inverse problem,

Albert Tarantola had the vision that realistic a priori information
for inversion could be learned from a large collection of “training
images” of the subsurface (Mosegaard, 2011). In this paper we
demonstrate how this is made possible by using the extended
Metropolis algorithm in conjunction with a priori information de-
fined by a geostatistical algorithm using sequential Gibbs sampling.
Initially, the theoretical background for this inversion strategy is
outlined. Subsequently, the theory is applied to a tomographic
crosshole GPR full-waveform inverse problem in which the a priori
information is inferred (i.e., learned) from a training image and rea-
lized through the geostatistical algorithm Single Normal equation
SIMulation (Snesim) (Strebelle, 2002). Full-waveform data traces
are often contaminated by noise and are, in addition, subject to un-
certainties related to inadequacies in the data simulation algorithm.
These components of data uncertainty do often exhibit some degree
of temporal correlation. In this study, we consider a Gaussian-
distributed data uncertainty component with a temporal autocorre-
lation. We show how this uncertainty is accounted for in the inver-
sion through the data uncertainty model.
Tarantola (2005) was a proponent of the movie strategy, in which

“movies” of multiple realizations from the a priori and a posteriori
probability densities are compared, to understand the additional in-
formation provided by the data compared with the a priori informa-
tion. Features that occur frequently in the a posteriori movie are
regarded as well resolved. We show that the movie strategy provides
a means of obtaining resolution analysis of the full-waveform
inverse problem. Moreover, we demonstrate how a posteriori reali-
zations can be used to quantify the probability of lithological con-
nectivity. The term resolution is, in this paper, used such that high a
posteriori model variability refers to low resolution and vice versa
(Mosegaard, 1998). To our knowledge this is the first example of
sampling the a posteriori probability density of a tomographic full-
waveform inverse problem. Resolution analysis of the problem re-
veals that the combined states of information from the full-wave-
form data and the a priori information provides a high-resolution
subsurface image, even in the case of considerably sparse data
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coverage. Finally, we demonstrate how the geostatistically formu-
lated a priori information serves as a guide in the initial burn-in part
of the inversion procedure. In this way, convergence of the sug-
gested full-waveform inversion algorithm becomes independent
of the initial model.
The present method is completely explicit with regard to the data

uncertainty model and a priori information. Establishment of an
adequate a priori information and data uncertainty model (compris-
ing data noise and modeling inadequacies) demands effort from the
user to obtain trustworthy a posteriori probability density. These
issues are far from trivial when considering field experiments
and are beyond the scope of this work.

METHODOLOGY

Consider that the subsurface can be represented by a discrete set
of model parameters, m (referred to as the model) and that a data
set, d, of indirect observations of the model parameters is provided.
The model parameters describe some physical properties of the sub-
surface that influence the data. Hence, the forward relation between
the model and the data can be expressed as the relation (e.g.,
Tarantola, 2005)

d ¼ gðmÞ; (1)

in which g is a linear or nonlinear mapping operator that often relies
on a physical law. In this particular study the model represents a
tomographic image of dielectric permittivity of the subsurface ma-
terial, and data are waveforms of the vertical electrical component
of electromagnetic waves propagated across the model between two
boreholes. The forward relation in equation 1 is given as a finite-
difference time-domain (FDTD) solution of Maxwell’s equations
(Ernst et al., 2007b). However, any numerical wave propagation
modeling strategy (for GPR or seismic signals) can be applied.
The inverse problem is to infer information about the model para-
meters on the basis of a set of data (and their uncertainties), a priori
information about the model, and the forward relation between the
model and the data.
In a Bayesian formulation the solution to the inverse problem is

given as an a posteriori probability density, which can be formulated
as (e.g., Tarantola, 2005)

σMðmÞ ¼ cρMðmÞLðmÞ; (2)

where c is a normalization constant, ρMðmÞ is the a priori probabil-
ity density, and LðmÞ is the likelihood function. ρMðmÞ describes
the probability that the model satisfies the a priori information.
LðmÞ describes how well the modeled (i.e., simulated) data explain
the observed data, given a statistical description of the data noise
and modeling inadequacies (from here on referred to as the data
uncertainty model). Hence, the a posteriori probability density de-
scribes the resulting state of information on the model parameters
provided by the independent states of information given by the data
(related to the model through the forward relation) and an a priori
state of information on the model parameters. Hence, an adequate
specification of the data uncertainty model (through the likelihood
function) as well as the a priori information are crucial in order to
ensure a correct a posteriori state of information (i.e., solution of the
inverse problem).

Sampling the a posteriori probability density

A highly nonlinear inverse problem refers to the case in which the
a priori probability density is far from being Gaussian or the like-
lihood function is highly non-Gaussian (typically) due to the non-
linear forward relation between model and data. According to
equation 2 the product of these non-Gaussian probability densities
signifies a highly non-Gaussian a posteriori probability density. In
the case of full-waveform inversion, the forward relation is expected
to be highly nonlinear. Moreover, realistic a priori information, as
we introduce here, is typically far from being Gaussian.
The extended Metropolis algorithm is a versatile tool which, in

particular, is useful to sample the a posteriori probability density of
nonlinear inverse problems using arbitrarily complex a priori infor-
mation. This algorithm is convenient in that it does not need an ex-
plicit expression of the a priori probability density. A black box
algorithm that is able to perform a random walk in the a priori prob-
ability density is sufficient (Mosegaard and Tarantola, 1995). In this
study we use sequential Gibbs sampling, which will be described
below, as the black box algorithm for sampling the a priori prob-
ability density.
The extended Metropolis Algorithm consists of two rando-

mized steps:

1) Exploration: one proposes a candidate model,mpropose, which is
a perturbation of a current model, mcurrent, and at the same time
is a realization of the a priori probability density.

2) Exploitation: one decides if the proposed model should be ac-
cepted or rejected. The proposed model is accepted with the
Metropolis acceptance probability (referred to as the Metropolis
rule)

Paccept ¼ min

�
1;
LðmproposeÞ
LðmcurrentÞ

�
; (3)

where LðmproposeÞ∕LðmcurrentÞ is the ratio between the likelihood
evaluated in the proposed and the current model, respectively. If
accepted, the proposed model becomes the current model and is
a realization of the a posteriori probability density. Otherwise the
proposed model is rejected and the current model counts again.
Thus, in each iteration, the sample size of the a posteriori probabil-
ity density increases.
The exploration step constitutes the strategy by which proposed

models are drawn from the a priori probability density. For small ex-
ploration steps the proposed model will be relatively highly corre-
lated with the current model, compared with large exploration
steps. Thus, according to equation 3, small exploration steps will re-
sult in a high acceptance probability and vice versa. Recall that each
evaluation of the likelihood function involves a computationally ex-
pensive (FDTD) forward calculation. It is, therefore, important to
choose an appropriate exploration step size that does not explore
the a posteriori probability density too slowly, but on the other hand
does not waste too many expensive evaluations of the likelihood that
are very unlikely to be accepted. In particular, the exploration strategy
becomes very important when dealing with high-dimensional prob-
ability densities, since traditional sampling strategies may lead to a
very inefficient exploration strategy (Hansen et al., 2008; 2012). Re-
cently, Hansen, et al., (2008; 2012) introduced a flexible sampling
strategy to sample high-dimensional a priori probability densities
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defined by geostatistical algorithms. This sampling strategy provides
a means of using a variable exploration step size when sampling such
high-dimensional probability densities. This method is briefly out-
lined in the following.

Sampling geostatistically defined a priori information

Hansen et al. (2012) suggest a strategy referred to as sequential
Gibbs sampling, which is a method that is capable of sampling prob-
ability densities defined by geostatistical algorithms based on sequen-
tial simulation. Originally, sequential simulation was used to generate
realizations of two-point based statistical models, such as Gaussian
models (e.g., Gomez-Hernandez and Journel, 1993). Two-point sta-
tistical models are limited to specify the spatial variability between
pairs of data (hence the name two-point statistics) defined by a cov-
ariance model. Two-point statistics does not provide enough informa-
tion to model plausible geological structures, such as channels and
tortuosity. This can be overcome by using a model based on multiple-
point statistics, as suggested by Guardiano and Srivastava (1993). In
multiple-point-based statistical models, the a priori information is
learned from a training image. The training image is scanned by a
template that jointly considers spatial variability among a number
of (more than two) pixel values in the image to obtain a joint prob-
ability distribution that holds information about these spatial correla-
tions. The model parameter values are subsequently sequentially
simulated from conditional probabilities on the basis of the jointly
considered pixel values (e.g., Strebelle, 2002). The algorithm origin-
ally suggested by Guardiano and Srivastava (1993) was, however,
computationally unfeasible. It originally was not until an efficient
way of storing multiple-point statistics in machine memory was pro-
posed that the use of multiple-point based models became computa-
tionally feasible (Strebelle, 2002). See e.g., Remy et al. (2008) for
numerous examples of the application of sequential simulation from
both two-point and multiple-point-based a priori models.
In this study sequential Gibbs sampling serves as the black box

algorithm that samples the a priori probability density ρMðmÞ, de-
scribed by a geostatistical simulation algorithm, with a controllable
exploration step size. The flow of the sequential Gibbs sampling is
as follows:

1) An initial unconditional realization of the a priori probability
density, mcurrent, defined in a 2D regular grid of model para-
meters is provided.

2) A square subarea, corresponding to model parameters msubarea,
with side-length Estep(exploration step size) of the current
model mcurrent is randomly chosen.

3) A realization of the conditional probability density
ρMðmsubareaj ~mcurrentÞ is obtained using sequential simulation.
~mcurrent are the current model parameters outside the subarea.
ρMðmÞ is an a priori probability density that may be described
by either two- or multiple-point statistics. This step is an applica-
tion of the Gibbs sampler where sequential simulation is used to
efficiently generate a realization from the conditional probability
density (hence the name sequential Gibbs sampling). In practice
this is performed simply by running the sequential simulation al-
gorithm conditional to the model parameters outside the subarea.
In this way a new, perturbed model, mpropose is obtained.

4) The proposed model becomes the current model and steps 2 and
3 are repeated to obtain multiple realizations of the a priori
probability density.

Recall that, when applying sequential Gibbs sampling as an a
priori model sampler in the extended Metropolis algorithm, the cur-
rent model mcurrent is reused if the proposed model mpropose is re-
jected by the Metropolis rule. Moreover, the resemblance (i.e.,
correlation) between the current and proposed model, and thus
the average Metropolis acceptance probability (cf. the Metropolis
rule), can be controlled by the explorations step size Estep (i.e.,
the side length of the resimulated area).

The likelihood function and correlated data
uncertainties

GPR or seismic full-waveform data are often contaminated with
temporally correlated uncertainties along the individual waveform
traces or spatially correlated (i.e., static) errors among data related
to certain transmitter (source) or receiver positions. The probabilistic
formulation of the inverse problem allows for an arbitrary data un-
certainty model and it is, therefore, possible to account for these cor-
relations in the data uncertainties. In the present study we consider
that data uncertainties are Gaussian distributed with a temporal cor-
relation along the individual waveform traces, but are uncorrelated
among the individual traces. This type of uncertainty influences the
state of information on the model parameters provided by the data
and is, therefore, accounted for through the likelihood function. This
particular likelihood function takes on the following form

LðmÞ ¼ c
YK
k¼1

exp

�
−
1

2
ðgðmÞk − dkobsÞTC−1

D ðgðmÞk − dkobsÞ
�
;

(4)

where gðmÞk and dkobs are vectors that contain the simulated and ob-
served waveform traces related to the kth transmitter-receiver pair.K
is the total number of waveform traces (i.e., transmitter-receiver
pairs). The factor c is a normalization constant. The term CD is
the data covariance matrix that defines the variances and covariances
of the data uncertainties. The temporal correlation of the data uncer-
tainties is described by an exponential correlation function (e.g.,
Goovaerts, 1997)

CDði; jÞ ¼ c exp

�
−3 sði; jÞ

a

�
; (5)

where c is the sill (i.e., variance) and a is the range (i.e., correlation
length) of the uncertainties. The term sði; jÞ is the temporal distance
between the ith and jth sample point along the waveforms. CD is a
symmetric N × N matrix, where N is the number of samples in the
individual waveform traces.
Cordua et al. (2009) quantified the influence of static-like errors

in crosshole GPR experiments, which are data uncertainties that are
spatially correlated among data related to the individual transmitter
and receiver positions. This kind of data uncertainty may also be
accounted for through the data covariance matrix, but this is not
considered here. For a description of how to set up a data covariance
matrix that accounts for static (i.e., spatially correlated) errors, see
Cordua et al. (2008).

The burn-in period

If the probability that a sampling algorithm at any time enters an
infinitesimal neighborhood Nj, that surrounds the model mj, is

H22 Cordua et al.
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equal to the probability that it leaves this neighborhood, the
algorithm is said to satisfy microscopic reversibility. It can be
shown that if a sampling algorithm satisfies microscopic reversibil-
ity, then the a posteriori probability density is the only equilibrium
distribution for the algorithm, and the algorithm will converge to-
ward this equilibrium distribution independently of the starting
model. This property is satisfied by the extended Metropolis algo-
rithm (see Mosegaard and Sambridge [2002] for a detailed descrip-
tion of the Metropolis algorithm). In practice, the extended
Metropolis algorithm has reached the equilibrium distribution when
the likelihood values start to fluctuate around a constant level (re-
ferred to as the equilibrium level) and the data are fitted within their
uncertainties. When this phase is reached the algorithm is said to be
burned-in. In case of a nonlinear full-waveform inverse problem the
structure of the a posteriori probability density is completely un-
known. If this distribution is multimodal, several modes may exist
that fit data with the uncertainty. Hence, no guarantee can be given,
no matter the choice of sample strategy, that the a posteriori prob-
ability density is appropriately represented (i.e., that all modes are
represented) by a finite sample size.
The a posteriori probability density is defined over a high-

dimensional space and leaves only small areas of significant prob-
ability. Therefore, the burn-in period may be long because the
algorithm during this period randomly walks across large parts
of this high-dimensional space searching for a small area of signifi-
cant probability. As a consequence, we suggest performing large
exploration steps in the initial part of the burn-in period and then
gradually decreasing the exploration step size as the algorithm ap-
proaches the equilibrium level. In this way, the large-scale structures
of the model are relatively quickly established in the initial part of
the burn-in period, after which the algorithm gradually establishes
the smaller-scale structures. However, microscopic reversibility
cannot be guaranteed when the exploration step size is not kept con-
stant while running the algorithm. Therefore, the algorithm is
stopped when “apparent” burn-in has been reached and the explora-
tion step size is subsequently set to a constant value.
The algorithm is started in an unconditional realization of the a

priori model, which is expected to be far away from volumes of
significant a posteriori probability density. We suggest adaptively
adjusting the exploration step size during the burn-in period such
that the Metropolis acceptance probability (equation 3) controls the
exploration step size. This is controlled by updating the exploration
step size after every M successive exploration steps of the
Metropolis algorithm. The exploration step size update is performed
just after the exploitation step (step 1) of the algorithm. Consider
that the algorithm is at iteration number K, where K is a multiple of
M. Then the exploration step size Eiþ1

step during iteration number
K þ 1 to K þM þ 1 (i.e., the next M iterations) is given as

Eiþ1
step ¼ Ei

step

Paverage

Pcontrol

; (6)

where Ei
step is the exploration step size during iteration numberK-M

to K (i.e., the M preceding iterations). Paverage is the average Me-
tropolis acceptance probability (equation 3) during iteration number
K-M to K and Pcontrol is a subjectively chosen constant acceptance
ratio that the algorithm tries to adhere to by adjusting the explora-
tion step size according to equation 6. For larger values of Pcontrol,
the exploration step size decreases faster and converges to a lower
level, than it does for smaller values. The minimum possible

exploration step size involves resimulation of one model parameter,
whereas the maximum step size is an (unconditional) simulation of
all the model parameters that are statistically independent of the
previous model.

A SYNTHETIC CROSSHOLE GPR
FULL-WAVEFORM INVERSE PROBLEM

The methodology outlined above is tested on a synthetic tomo-
graphic crosshole GPR full-waveform data set. Wavefield simula-
tions of the GPR signals (i.e., the forward relation) are obtained
using FDTD calculations of Maxwell’s equations in transverse elec-
tric mode (Ernst et al., 2007b). This FDTD method provides grid-
based time-domain calculations of the electromagnetic wavefield
propagation. The transmitting and receiving antennae are simulated
as vertically orientated dipole-type antennae and are aligned parallel
with the vertical boreholes. Transmitted and received signals con-
cern the vertical component of the electrical field (Holliger and
Bergmann, 2002). The FDTD algorithm by Ernst et al. (2007b)
yields second-order accuracy in both time and space, and performs
the calculations in 2D Cartesian coordinates. The edges of the
FDTD grid are surrounded by a generalized perfectly matched layer
(GPML) to absorb artificial boundary reflections.
The a priori information of the inverse problem is provided by the

Snesim algorithm. Snesim is a fast geostatistical simulation algo-
rithm that produces realizations (conditional or unconditional to
point data) from a high-dimensional probability density that con-
tains the spatial relations (i.e., patterns) learned from a training im-
age for a relatively low number of categorical values (Strebelle,
2002). Figure 1 shows a training image that mimics a matrix of un-
consolidated sand with embedded channels of gravel situated in an
unsaturated environment. The geological information contained in
the training image may have been obtained from outcrops in a near-
by gravel pit and/or a natural cliff. The training image applied here
does not necessarily represent a realistic near-surface environment,
but is rather used to demonstrate the principle that geologically
realistic features, such as complex channel structures, can be
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Figure 1. Training image containing geological information of the
environment at which the crosshole GPR experiment is conducted.
This information is used as a priori information in the waveform
inversion.
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represented by a multiple-point-based a priori model in the inver-
sion procedure. Electromagnetic signals in the near-surface sedi-
ments are sensitive to the dielectric permittivity, the electrical
conductivity, and the magnetic permeability of the materials. In this
study we limit ourselves to considering only the influence of the
dielectric permittivity, which is primarily governing the phase ve-
locity of the signal. The relative dielectric permittivity of the sand
and the gravel channel is set to εr ¼ 4.0 (0.150 m∕ns) and εr ¼ 3.0

(0.173 m∕ns), respectively (e.g., Ernst et al., 2006). The relative
dielectric permittivity is given as εr ¼ ε∕ε0, where ε is the absolute
dielectric permittivity and ε0 is the dielectric permittivity of
free space.
Figure 2 shows the synthetic reference model to be considered

and is, at the same time, an unconditional realization of the training
image obtained using Snesim. The electrical conductivity is set to a
constant value of 3 mS∕m and in the following it is assumed
known. Near-surface materials are considered nonmagnetic and
the magnetic permeability is set to the magnetic permeability of free
space (e.g., Davis and Annan, 1989).
A full-waveform synthetic data set is calculated using the FDTD

algorithm. A Ricker wavelet with a central frequency of 100 MHz is
used as the source pulse. The source pulse is assumed known during
the inversion. The recorded synthetic GPR full-waveform data are
the vertical component of the electrical field. The experiment is con-
ditioned by data from four transmitters (two in each borehole) at
depths of 3 m and 9 m. The receivers are equidistantly distributed
in the two boreholes with a separation distance of 1.5 m (see
Figure 2). Data acquired with a transmitter-receiver angle larger
than 45° from horizontal are omitted since, in practice, these data
are violated by effects of wave guiding in the boreholes (e.g., Pe-
terson, 2001) and travel paths between the antenna tips instead of
the center of the antennae (Irving and Knight, 2005). These effects
are, among several other sources of uncertainty, a result of inade-
quate forward modeling which has to be seriously considered in
field experiments. Such effects either have to be handled through
a refined forward modeling approach, or accounted for in the like-
lihood function through a statistical description of the data uncer-
tainties imposed by both data noise and modeling inadequacies. See

the discussion for a further treatment of these issues. The data geo-
metry leads to a total of 20 recorded waveform traces. The resulting
transmitter-receiver positions are connected with dotted lines in Fig-
ure 3 on top of the grid of the 6240 unknown model parameters.
Gaussian-distributed data uncertainties with a temporal autocor-

relation described by the exponential correlation function in
equation 5 are added to the waveform data. The temporal correlation
length a (i.e., the range) is set to 12.7 ns. Figure 4 shows the five
waveform traces related to the uppermost transmitter position in the
left borehole (see Figure 2), which are related to the transmitter-
receiver pairs marked by the numbers 1 to 5 in Figure 3. The
noise-free simulated waveforms are plotted as dotted blue curves
and the uncertain waveforms (noisy waveforms) are plotted as
red curves. The 20 uncertain waveform traces are used as observed
data in this study and have an average signal-to-noise ratio of 13.6.
The uncertainty imposed on the “noise-free” data mimic the total
contribution of data noise and modeling inadequacies. In the next
section, full-waveform inversion will be performed on the uncertain
waveform data with a priori information based on a geostatistical
model inferred from the training image in Figure 1.

RESULTS

Burn-in

In the present example the algorithm is started in a realization of
the multiple-point a priori model learned from the training image,
unconditional to any information from the data. In this way the start-
ing model is independent of data and relies only on the a priori in-
formation. The initial exploration step size has a side length of
Estep ¼ 12 m, which corresponds to the maximum dimension of
the model size. Hence, the exploration step size cannot exceed this
side length and at this point the algorithm produces statistically
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independent realizations. The control acceptance, Pcontrol, is set to
10% to obtain a relatively large exploration step size during the
burn-in period. The exploration step size is evaluated after each
20th iteration (i.e.,M ¼ 20) according to equation 6. The evolution
of the adaptive exploration step size during the first 1000 iterations
is seen in Figure 5. It is observed that the exploration step size is
constant and high in the very first part, after which it gradually de-
creases and stabilizes at a constant level of approximately
Estep ¼ 2 m. The associated development of the model is demon-
strated in Figure 6. It is seen that the large-scale structures are very
quickly brought into place, whereupon only fine-scale features of
the model are accepted by the Metropolis rule (equation 3). After
approximately 17,000 iterations the likelihood values start to fluc-
tuate around an equilibrium level and the data residuals resemble a
normal distribution with approximately the same standard deviation
as the distribution of the noise. At this stage it is assumed that the
algorithm has reached burn-in and produces representative realiza-
tions of the a posteriori probability density.

A posteriori statistics

The last model accepted by the Metropolis rule in the burn-in
period is used as the starting model when the Metropolis algorithm
is subsequently restarted with a constant exploration step size of
1 m. The results obtained in this study demonstrate that the equili-
brium level does not change after the Metropolis algorithm is re-
started with a constant exploration step size. In addition the data
residuals of this period resemble a normal distribution with a stan-
dard deviation of 2.17 · 10−4. As a comparison the standard devia-
tion of the normal distributed noise is 2.24 · 10−4, which
demonstrates that the data are fitted within the data uncertainties.

Hence, this shows that the algorithm has reached burn-in and that
the adaptive exploration step size may be appropriate when the step
size converges toward a constant level (which is the case in our
study). This burn-in strategy may serve as an approximate way
of determining which exploration step size should be used to obtain
a certain average acceptance probability. See Gelman et al. (1996)
for an investigation on the choice of acceptance probability.
After 300,000 iterations the algorithm was stopped. During the

sample period the algorithm had an average acceptance probability
of 40%. Figure 7 shows the autocorrelation between the first model
after burn-in and its correlation to the next150,000 models obtained
from the a posteriori probability density. These models are not sta-
tistically independent because any proposed model in the Metropo-
lis algorithm is a perturbation of a current model or when a
proposed model is rejected the current model counts again. There-
fore, the autocorrelation analysis of the a posteriori sample shows
some correlation length between successive models. In the example
shown in Figure 7, statistical independence is obtained after ap-
proximately 5800 iterations. This point is approximated as the point
at which the autocorrelation curve intercepts the average level of the
correlation curve after it has converged to a constant level. The aver-
age is shown as a dotted line in Figure 7 and is calculated as the
average correlation coefficient between iteration 20,000 and
300,000. A similar analysis is performed on 10 models picked at
different iteration numbers, equally distributed across the a poster-
iori sample, which gives an average of 6745 iterations of separation
to obtain statistically independent realizations from the a posteriori
sample.
In a probabilistic formulation, the solution to the inverse problem

is not a single model estimate, but a sample of multiple model rea-
lizations drawn from the a posteriori probability density. Each rea-
lization is a tomographic image of the subsurface. Displaying
multiple images together corresponds to a movie. The strategy
of displaying and studying the solution to the inverse problem using
such movies is referred to as the movie strategy (Tarantola, 2005).
Roughly speaking, the a priori probability density is filtered by the
likelihood function that results in the a posteriori probability den-
sity. Hence, displaying a “movie” of a priori realizations together
with a movie of a posteriori realizations helps one to understand the
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characteristics of the a priori information imposed on the inverse
problem and to understand the state of information provided by
the data (and their uncertainties). In particular, when the a priori
information is provided through a black box algorithm, and no
closed-form mathematical expression of the a priori probability
density exists, an a priori movie may be important to understanding
whether the state of information provided by the a priori probability
density is commensurate with the a priori expectation of the user.
See Koren et al. (1991) for a seminal example of using the movie
strategy for a seismic inverse problem.
Figure 8 shows eight statistically independent realizations drawn

from the a priori probability density (i.e., an a priori movie). This
movie shows the state of information provided by the a priori prob-
ability density inferred from the training image by the Snesim algo-
rithm. This movie shows a reproduction of the channel structures
inferred from the training image, but with no resemblance between
the location of the channels in individual realizations, as these mod-
els are unconditioned by any data. Figure 9 shows eight statistically
independent realizations from the a posteriori probability density.
The result clearly demonstrates a high degree of resemblance
between the individual a posteriori realizations as a result of the
conditioning to the full-waveform data. The high resemblance re-
veals that the data provides a high resolution of the inverse problem,

despite sparse data coverage (see Figure 3). Moreover, the indivi-
dual realizations only slightly deviate from the reference model (see
Figure 2), which confirms the good resolution provided by the full-
waveform data, their uncertainties, and the training image. The a
posteriori realizations in Figure 9 show some isolated small-scale
features, which are not seen in the training image. These noncon-
tinuous effects are caused by the Snesim simulation technique
because the algorithm occasionally reduces the number of condi-
tioning data events (i.e., pixel values) to avoid singularities during
calculation of the conditional probabilities. A total of 45 statistically
independent realizations are obtained from the 300,000 a posteriori
realizations based on the model autocorrelation analysis (see
Figure 7). These realizations can be used to ask higher-order statis-
tical questions such as what the probability of connectivity is be-
tween a channel observed in the left borehole and a channel
observed in the right borehole. Figure 9d, 9f, and 9h shows some
examples of missing connectivity between the boreholes marked
by red circles. For example it is found that in five out of the 45 rea-
lizations there is no connection between the points A and B as
marked in Figure 9a. Hence, this gives an approximate a posteriori
probability of connectivity between points A and B
of ð45 − 5Þ∕45 ¼ 89%.
Figure 10 shows the mean and variance calculated from the a

posteriori sample. It should be noted that the
mean model is no longer a realization of the a
posteriori probability density, but is only a statis-
tical representation of the sample. The mean
tells, in this particular case, the relative a poster-
iori probability of the presence of a channel at a
certain position in the subsurface. The variance
reveals that the uncertainty of the spatial location
of the channels increases toward the edges of the
channels and declines significantly when moving
away from the edges.
Waveform data associated with the 45 statisti-

cally independent realizations from the a poster-
iori probability density are calculated for the
receiver related to the uppermost transmitter
position in the left borehole (see transmitter-
receiver pairs marked by the numbers 1–5 in

Figure 3). This data variability associated with the model a poster-
iori variability is plotted in Figure 11a (blue curves) together with
the observed data (red curves). The (a posteriori) simulated wave-
forms show a high degree of similarity and appear in the plot almost
as a single fat curve, but are in fact composed of 45 independent
waveform curves. Hence, the a posteriori data variability demon-
strates that the model a posteriori variability is only associated with
very little variability in the waveforms. Moreover, Figure 11a shows
that the simulated waveforms fit the observed data very well.
Figure 11b shows the data residuals (blue curves) of the simulated
waveform data together with the uncertainty component of the ob-
served data (red curves). This plot reveals that the residuals
(i.e., misfits) approximately fluctuate around the uncertainty com-
ponent and resemble the noise statistics (variance and temporal
autocorrelation) satisfactorily.

DISCUSSION

Hansen et al. (2006) demonstrated that linear inverse Gaussian
theory and simple kriging (i.e., two-point statistics) can be merged
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into one single theory. The method of sequential Gibbs sampling
used with the extended Metropolis algorithm has provided a further
step toward bridging probabilistic inverse problem theory and the
field of geostatistics, even for highly nonlinear and non-Gaussian
inverse problems (Hansen et al., 2008; 2012). Hansen et al.,
(2009; 2012) discussed how the complexity of inverse problems
(i.e., the time needed to obtain an a posteriori sample) is reduced
when a statistical a priori model with some degree of spatial corre-
lation between the model parameters is considered. They showed
that the effective dimension of the solution space of the inverse pro-
blem, using two-point-based a priori models, is considerably de-
creased when the a priori expected range of spatial correlation is
increased. On the other hand, when no spatial correlation was con-
sidered, the high-dimensional inverse problem became unsolvable.
Further, it was seen that whether the model parameters take values
from a set of real or binary numbers had insignificant influence on
the effective dimension compared with the degree of correlation be-
tween the model parameters. Hence, we consider the reduction of
the effective dimension due to a priori defined spatial autocorrela-
tion to be one of the keystones that makes Monte Carlo inversion of
a computationally hard, full-waveform inverse problem feasible,
even with thousands of (here 6240) model parameters.
In this study we wish to demonstrate that we are able to freely

choose multiple-point-based a priori information, defined by, e.g.,
the Snesim algorithm, for Monte Carlo-based inversion. We consid-
ered a model with categorical parameters only, but this choice of
using a multiple-point-based a priori model was a first step away
from using simplified a priori models like the Gaussian model.
We believe that such models are often chosen out of mathematical
convenience rather than for the sake of geophysically and geologi-
cally based a priori expectations.
On the basis of the studies of Hansen et al. (2009), we believe that

the solution space of the full-waveform inverse problem (i.e., the
complexity of the inverse problem), considered in this study, is pri-
marily reduced due to the multiple-point-based spatial correlations,
and not significantly due to the binary model parameters. Accord-
ingly, full-waveform inversion may also be tractable when making

use of two-point-based statistical a priori models with both contin-
uous and categorical model parameter values, as long as some de-
gree of spatial correlation can be considered a priori. This is also
confirmed by our preliminary studies on this topic. The above dis-
cussion is encouraging with regard to the possibility of using a
priori models based on either two-point statistics, multiple-point
statistics, or a combination of both, as long as the chosen a priori
model imposes some degree of spatial autocorrelation of the model
parameters (see Journel and Zhang [2007] and further discussions at
the end of this section). This provides a flexible tool for defining an
appropriate a priori model that actually captures our a priori
expectations.
The suggested inversion strategy is very general and may be

equally applicable for tomographic inversion of any kind of data
(e.g., GPR, seismic, x-ray, or electroencephalography data) or
for reflection seismic inversion. In the example presented here
the algorithm only inverts for the dielectric permittivity, whereas
the electrical conductivity is kept fixed. The method could, how-
ever, be extended to invert for both parameters by introducing a
step, just before the exploration step, that randomly chooses in
which of the two fields the exploration should be performed.
A pseudo-full-waveform inversion approach for tomographic

GPR data was proposed by Gloaguen et al. (2007). In their ap-
proach, multiple model realizations were obtained using a stochas-
tic ray-based inversion strategy. Full-waveform simulations were
subsequently calculated in these multiple models. Models related
to waveform data that showed the best fit to the observed data were
regarded as estimates of the waveform inversion. However, their
approach does not guarantee a data fit within the uncertainties
and the accepted models are not realizations from an a posteriori
probability density function.
In this study the sequential Gibbs sampler is applied such that a

continuous block of model parameters are resimulated in each step.
Irving and Singha (2010) also used a type of sequential Gibbs sam-
pling, but resimulated a subset of model parameters scattered ran-
domly across the model. Note that sequential Gibbs sampling will
correctly sample the a priori probability density function regardless
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of how that subset of model parameters to be resimulated is chosen
(Hansen et al., 2012). Whether the continuous or the scattered ex-
ploration strategy should be used is still to be investigated, as such a
choice may affect the computational efficiency when the sequential
Gibbs sampler is used with the Metropolis algorithm. To understand

exploration strategies of high-dimensional spaces, more analytical
approaches are required.
Ray-based inversion experiments on the same scale as the setup

used in this study typically involve in the order of 700 to 1600 trans-
mitter-receiver pairs to obtain a reasonable resolution (e.g.,

Tronicke and Holliger, 2005; Looms et al.,
2008; Nielsen et al., 2010). In this study a high
degree of resolution was obtained with as few as
20 transmitter–receiver pairs. However, in field
experiments modeling inadequacies may lead
to considerably more uncertainty in the data than
considered in this study, which in turn leads to a
lower resolution. In crosshole GPR full-wave-
form inversion the long spatial wavelengths of
the model are typically used as a starting model.
This model is obtained through ray-based inver-
sion of first-arrival traveltimes and amplitudes of
the waveform data (Ernst et al., 2007a; Meles
et al., 2010). The data set considered in our study
is expected to be too sparse to provide any useful
information for a ray-based starting model. We,
therefore, choose to start the full-waveform in-
version in an unconditional realization of the a
priori probability density, and burn-in is obtained
anyway. Hence, the role of the a priori model is
more than simply finding a posteriori model rea-
lizations that jointly honor data and the a priori
model. It turns out that the use of a consistent a
priori model acts as a guide in the burn-in process
that allows the initial model to be far away from
the true solution. The successful convergence
from the data-independent starting model ob-
served in the present study may be explained
as a reduction of the complexity of the problem
through the informative a priori information de-
fined through the geostatistical algorithm (see
Hansen et al., 2009; 2012). This encouraging ob-
servation suggests that future effort should be to-
ward incorporating complex statistical a priori
information into (adjoint) optimization based in-
version approaches.
The most commonly used method for full-

waveform inversion today is based on adjoint
methods, as suggested by Tarantola (1984). This
approach has some limitations: (1) Uncertainty
estimates may theoretically be obtained through
an a posteriori covariance, but only for a linear
approximation of the forward relation limited
to a Gaussian description of the data uncertainty
and a priori model (Tarantola, 1984). (2) The
method is based on simple Gaussian a priori in-
formation (if any at all); and (3) it relies on a sub-
jective convergence criterion that may adversely
result in data uncertainties propagating into the
model estimate. The method we propose over-
comes many of the limitations of using the ad-
joint-based approach. (1) It allows for arbitrary
data geometry and density. (2) Complex a priori
inversion can be included using any geostatistical
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algorithm that can be used for sequential simulation or any other
probabilistically defined a priori information (see Mosegaard and
Tarantola, 1995). (3) The full uncertainty of the inverse problem
can be quantified by analyzing the a posteriori sample. (4) There
are no complications related to the incorporation of refined and
complex forward algorithms. (5) Temporally and spatially corre-
lated data uncertainties can be accounted for either through the data
covariance matrix or any other mathematical description of the un-
certainties (Cordua et al., 2008, 2009). (6) Finally, if the correct data
uncertainty model is known there is no risk of uncertainties propa-
gation into a single model estimate, but data uncertainties are in-
stead reflected in the a posteriori model variability.
The adjoint-based approach has some benefits that the presented

method lacks: In the case of dense data coverage, full-waveform
inversion based on the adjoint-based approach may not need any
a priori model at all, as the data themselves are sufficient to allow
inference of a solution (Tarantola, 1984). The adjoint-based method
has been successfully tested on field data (Ernst et al., 2007a;
Klotzsche et al., 2010). In addition the suggested probabilistic in-
version strategy needs substantially more (computationally expen-
sive) forward calculations than does the traditional adjoint-based
approach.
In the synthetic test performed here, each iteration involves (1) a

model perturbation using Snesim which takes approximately 0.5 s,
and (2) a forward calculation of the four transmitter positions,
which is run in parallel (the number of parallel computations equals
the number of transmitter positions). Each forward calculation takes
approximately 12.5 s on a standard desktop computer with an Intel
Core i7 processor. Thus, the total computation time of 300,000
iterations becomes approximately 45 days. As a comparison, the
adjoint-based method needs approximately 20 iterations to con-
verge to a solution estimate (Ernst et al., 2007a), which involves
20 FDTD forward calculations (for comparison with observed
data), 20 backward (in time) calculations (for update direction),
and 20 forward calculations (for step length) (Ernst et al.,
2007b). Hence, obtaining one estimate using the adjoint-based
method is approximately 5000 times faster than the time needed
to obtain 45 independent realizations from the a posteriori probabil-
ity density using the Monte Carlo method. However, the adjoint-
based method and the Monte Carlo strategy are not directly com-
parable. The adjoint method is an optimization method that searches
for one (in some sense) optimal solution. Additionally, the adjoint
method assumes the full-waveform inverse problem to be a global
optimization problem and, therefore, the method is always in risk of
getting trapped in a local minimum. The Monte Carlo strategy, on
the other hand, aims at characterizing the a posteriori probability
density. Moreover, it can mathematically be shown that the Metro-
polis algorithm will converge toward the correct equilibrium distri-
bution independently of the complexity of the data uncertainty and
the a priori model (e.g., Mosegaard, 1998). Roughly speaking, the
adjoint-based method serves as a fast way of obtaining an approx-
imate maximum a posteriori estimate based on a limited data un-
certainty and a priori model. The strategy suggested here could
subsequently be started in this estimate to obtain a characterization
of the correct a posteriori probability density (i.e., resolution ana-
lysis) based on a realistic data uncertainty and a priori model and the
full nonlinearity of the forward relation. The significant time ex-
pense of the Monte Carlo strategy may in the future be mitigated
through parallelization of the individual FDTD calculation on, for

example, clusters or graphical processing units (GPU) and by run-
ning several algorithms in parallel.
In this study the suggested algorithm was applied on a synthetic

test case with a simple reference model. Perfect knowledge about
the data uncertainty model, the a priori information, and the source
pulse was assumed. Moreover, the electrical conductivity was as-
sumed known. Hence, the robustness of the algorithm has to be
further tested by considering more complex synthetic models of
both the dielectric permittivity and electrical conductivity and larger
data sets. According to equation 2, knowledge about the statistical
properties of the data uncertainties and the a priori information
evenly influences the a posteriori probability density function.
Hence, to ensure a trustworthy a posteriori probability density
the user needs to specify a realistic statistical description of the data
uncertainties and the a priori information. This may, however, be a
very challenging task when dealing with field experiments. On the
other hand, if one does not choose the a priori information the in-
version algorithm will implicitly make this choice. For example,
least-squares and adjoint-based inversion algorithms implicitly con-
sider a Gaussian a priori and data uncertainty model. In the method
that we propose here, one is free to choose a Gaussian description of
the a priori and data uncertainty model, but the user has the flex-
ibility to choose other more complex descriptions.
In field experiments the list of sources of uncertainties involves

both a background noise component and (typically) a major com-
ponent related to modeling errors (i.e., discrepancies between ob-
served data and simulated data due to shortcomings of the forward
relation), such as: (1) source pulse uncertainty, (2) 2D assumption,
(3) local antennae coupling effects, (4) effects of discretization,
(5) small-scale near borehole heterogeneities, (6) numerical attenua-
tion, (7) media dispersion, (8) point-dipole antenna assumption,
(9) effects of high angle travel paths due to wave guiding and an-
tennae spread, (10) unknown antennae positions.
Some of the above mentioned modeling inadequacies can be ac-

counted for through more sophisticated FDTD algorithms (see e.g.,
Bergmann et al., 1998; Holliger and Bergmann, 2002; Ernst et al.,
2006; Irving and Knight, 2006). Alternatively, these modeling un-
certainties should be accounted for through the data uncertainty
model (although it results in higher a posteriori model variability).
Forward modeling inadequacies may lead to a combination of cor-
related and uncorrelated data uncertainties that may be accounted
for through a data covariance matrix (e.g., Cordua et al., 2008;
2009) or a more complex description. See e.g., Peterson (2001),
Cordua et al. (2008, 2009), and Irving and Knight (2005) for de-
scriptions and quantifications of some of these uncertainties.
Statistics of the background noise component could be calculated

in the signal recorded before the first arriving signal at the receiver.
In this period only noise is recorded at the receiver. This may be
obtained by performing an experimental covariance analysis of this
part of the signal and then subsequently fitting an analytic covar-
iance model to the experimental covariance. The analytic covar-
iance model can then be used to set up an appropriate likelihood
function that accounts for the inferred noise component. For more
details on how to determine an experimental covariance model (i.e.,
semivariogram) and how to fit an analytic covariance model see
e.g., Journel and Huijbregts (1978) or Goovaerts (1997).
Ernst et al. (2007a) suggested a method based on deconvolution

for source pulse estimation, which may also be applied together
with our inversion strategy. Then uncertainty related to this process
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needs to be quantified or a Bayesian formulation of the source pulse
determination could be an integral part of the inversion (see Buland
and Omre [2003] for an example of Bayesian wavelet estimation).
Modeling error statistics related to the 2D assumption may be

determined through simulation. Consider that a 3D a priori model
is established: Forward simulations from, say, 100 realizations of
the 3D a priori model could be compared with forward simulations
obtained in the associated 2D profile in the transmitter-receiver
plane of the 3D model. By subtracting 3D and 2D simulations
an estimate of the modeling error statistics associated with the
2D assumptions could be obtained. In the same way modeling error
statistics related to other inadequacies in the forward algorithms
may be simulated by comparing the results from simple algorithms
with more adequate algorithms. In this way adequate computation-
ally expensive forward calculations can (in principle) be substituted
with an appropriate data uncertainty model and a faster approximate
forward simulation.
While the use of training images to describe a priori information

allows complex a priori information to be quantified, the establish-
ment of a priori information through a training image for field data
experiments may be challenging. The training image represents a
concept of the patterns expected a priori independently of the ob-
served data. These expectations may be based on previous studies in
the area based on, for example, kriging and inversion conditional to
soft (e.g., seismic) and hard (borehole) data and/or studies of out-
crops (e.g., Zhang, 2008). To compromise with the distinct facies
(i.e., low entropy) seen in the training image applied here, the a
priori model could constitute a combination of information from
a training image and a high entropy (e.g., two-point statistically)
based a priori model. In any case, we suggest that the movie strategy
should be used to ensure that the algorithm or the mathematical ex-
pression (or a combination of both) that describes the a priori in-
formation also reflects the a priori expectations of the user. See
Zhang (2008) for a description of how to convert geological infor-
mation into training images that can be used with multiple-point
statistical simulation algorithms. Journel and Zhang (2006) demon-
strated that even for a training image with combined high- and low-
entropy information that only approximately captures the complex
low entropy structures of the true model, a better conditional mod-
eling result was obtained than for a pure high entropy Gaussian a
priori model.
To apply the proposed full-waveform inversion strategy to field

data, the major challenge concerning a way of handling modeling
uncertainties (probably through a combination of a statistical de-
scription and a more adequate modeling algorithm) and to obtaining
realistic a priori information that involves training images (from
previous studies) still needs to be addressed. Finally, challenges re-
garding mitigating the computational expense of the Monte Carlo
strategy are left for future research.

CONCLUSION

We have outlined the theoretical background for a Monte Carlo-
based full-waveform inversion strategy based on the extended
Metropolis algorithm in conjunction with complex geostatistical
based a priori information. The use of geostatistical algorithms
for the description of a priori information can be accomplished
in an efficient way through the method of sequential Gibbs sam-
pling, which allows for inclusion of a priori information described
by any geostatistical algorithm based on sequential simulation.

This, in turn, provides a means of using a priori information
described by both two-point and multiple-point statistical a priori
models. Inclusion of such statistical a priori information reduces
the complexity of the inverse problem, which is a keystone in
the feasibility of performing Monte Carlo sampling of the compu-
tationally hard full-waveform inverse problem. We have demon-
strated the potential of this inversion strategy by sampling the a
posteriori probability density of a tomographic full-waveform in-
verse problem using complex a priori information inferred from
a training image using the geostatistical algorithm Snesim. The
methodology provides a means of evaluating the a posteriori uncer-
tainty, which is not provided using traditional adjoint-based optimi-
zation strategies for full-waveform inversion. However, it should be
noted that, if the goal is a single inverse estimate based on pure
Gaussian statistics, the adjoint-based optimization approach for in-
version of full-waveform data is computationally considerably fas-
ter than the suggested inversion strategy. Establishment of adequate
(e.g., a multiple-point-based) a priori information and a data uncer-
tainty model for field data are critical to obtain meaningful a poster-
iori uncertainty estimates. Moreover, the major computational
expenses of the Monte Carlo strategy have to be mitigated, which
are all challenging tasks that need future research.
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