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An approach for the design of microfluidic viscoelastic rectifiers is presented based on a

combination of a viscoelastic model and the method of topology optimization. This presumption

free approach yields a material layout topologically different from experimentally realized

rectifiers, and simulations indicate superior performance for the optimized design in the regime of

moderate elasticity. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4728108]

Micropumps are needed for medical delivery as well as

lab-on-a-chip systems, and they can be constructed using a

variety of actuation principles.1 Interest has gathered around

the possibility of combining an oscillating diaphragm with

no-moving-parts valves/rectifiers, which rely on the inertial

properties of the fluid for their working mechanism.2 In

example, the method of topology optimization has been

applied to reproduce the Tesla valve as the optimal design

for these devices.3 Inertial effects, and thus also the perform-

ance of inertial rectifiers, however decreases as devices are

scaled down. Viscoelastic effects on the other hand do not

vanish at the micro scale, and therefore rectifiers have been

suggested4,5 on this basis.

Topology optimization with a memory free non-

Newtonian fluid has been demonstrated,6 but the working

mechanism of viscoelastic rectifiers is related solely to the

memory of the fluid due to past deformations. Topology opti-

mization considering fluid memory has not previously been

demonstrated, and this is probably due to the fact that merely

modeling such a fluid in complex geometries has been a long

standing challenge for the scientific community. We find that

it is possible to combine recent model developments7 with a

high level implementation of topology optimization8 to

determine the optimal material layout that maximizes the

flow rate ratio in a rectifier device. The optimization allows

for porous material, so to confirm that the design does not

rely on this, we perform simulations without it, and such a

quantitative investigation of viscoelastic rectifiers outside an

experimental setting has not previously been demonstrated.

The fluid memory is described with a differential consti-

tutive model, where the spatial configuration of, e.g., the

molecules, or whatever gives rise to the viscoelastic proper-

ties, is taken into account. A popular approach is to study a

solution of spring connected point mass pairs (dumbbells) in

a Newtonian solvent considering only orientation and elon-

gation of fluid elements. In such models, the conformation

tensor A is used to describe configurations, and it is related

to the dumbbell end-to-end vector a, such that

TraceðAÞ ¼ ha2i=a2
eq, where h� � �i is a statistical average,

and aeq is the equilibrium length of the end-to-end vector.

The finite extensibility model by Chilcott and Rallison9 fea-

tures both a finite maximum dumbbzell extensibility amax as

well as a constant shear viscosity, like Boger fluids10

�
kðAÞ

k
ðA � IÞ ¼

DA

Dt
� A � $ vþ ð$ vÞT � A
h i

; (1)

kðAÞ ¼ 1

1� TraceðAÞ=a2
max

; (2)

s
e
¼

gp

k
kðAÞðA � IÞ; (3)

where I is the identity matrix, v is the velocity, k is the dumb-

bell relaxation time, D/Dt is the material derivative, gp is a

dumbbell viscosity, and kðAÞ can be thought of as a nonlinear

spring constant modification. s
e

is the dumbbell stress tensor,

which is put into the Stokes equation, when assuming a creep-

ing isothermal and incompressible viscoelastic fluid. Adding

the usual continuity equation for mass conservation yields

0 ¼ $ � ð�pI þ gs _c þ s
e
Þ; (4)

0 ¼ $ � v; (5)

where p is the pressure, gs is the solvent viscosity, and _c

¼ $ vþ ð$ vÞT is the rate of deformation tensor. It has been

shown that the solution of Eqs. (1)–(5) with the finite ele-

ment method is troubled by the existence of discontinuous

velocity gradients $ v, at element borders.11 The remedy is

to construct a continuous approximation G, for use on the

right hand side of Eq. (1) and to add gpð _c �G �GTÞ as a

zero on the right hand side of the Stokes Eq. (4). A signifi-

cant development occurred with the introduction of the log-

conformation method7 involving a substitution A ¼ e
s
, such

that Eq. (1) is transformed to take the form

Ds

Dt
¼ Rðs;GÞ;

where the computation of the reaction term R as well as the

conformation tensor e
s

involves calculation of eigenvectors

and eigenvalues of s.7,12 This change of variables guaranteesa)Electronic mail: kristian.jensen@nanotech.dtu.dk.
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the positive definiteness of the conformation tensor, making

it a much more robust formulation. It however also compli-

cates the equations and associated linearizations signifi-

cantly, and therefore, the optimization in this work relies

heavily on a commercial high level finite element package13

and related implementation of topology optimization.8

We implement topology optimization by adding the

usual Darcy damping term14 �aðqÞv, to the right hand side

of the Stokes equation (4). The idea is that wherever the

design variable q is equal to unity, the damping term van-

ishes such that the governing equation for a fluid domain is

recovered; conversely, where the design variable is equal to

zero, it results in very large damping terms amax, such that

the velocity becomes marginal, and the no slip boundary

condition is enforced in an approximative way. A continuous

optimization problem can then be formulated by interpolat-

ing the damping term in the design variable, but the conver-

gence properties of the optimization is sensitive to the choice

of interpolation. In this work, a PDE filter15 is applied to the

design variable producing a filtered design variable ~q, with a

minimum length scale Lmin, Eq. (6). Then, a projection func-

tion,16 Eq. (7), defines the projected design variable �q, which

is used in the usual convex relation,14 Eq. (8).

~q ¼ qþ L2
min$

2~q; (6)

�q ¼ 1

2
þ

tanhðnð~q � 1
2
ÞÞ

2 tanhðn=2Þ ; (7)

a ¼ amax

qð1� �qÞ
�q þ q

: (8)

Here n defines the steepness of the projection function, while

the convexity of the damping term in the projected design

variable is determined by q.

Introducing a characteristic length scale L, pressure Dp�,
and damping amax allows for the governing equations to be

written in dimensionless form17 such that the following

dimensionless parameters arise

Da ¼
gs þ gp

L2amax

; b ¼ gs

gs þ gp

; and We ¼ k
Dp�

gs þ gp

:

The Darcy number Da, describes the magnitude of the vis-

cous term relative to the damping term in solid regions.

Hence, excessively large Da will give a bad approximation

of the no slip boundary condition, while convergence prob-

lems will arise for the optimization with too small Da. b
expresses the proportion of viscous effects due to the solvent,

while the Weissenberg number We indicates the relative

strength of elastic to viscous effects. Experimental rectifiers

work most efficiently in the regime of high elasticity/We,

where a transition to unsteady flow occurs, whereas we focus

on optimization of steady solutions in the regime of moder-

ate elasticity and correspondingly smaller driving pressures

and/or relaxation times. Note that the Weissenberg number

and thus also the device performance is independent of the

characteristic length scale provided the driving pressure is

fixed, and inertia can be neglected.

We use a standard approach12 for both the stabilization

of the convective equation and for the representation of the

various physical variables. The filtered design variable is

represented by second order Lagrange elements, while the

design variable itself is considered constant in all elements.

Furthermore, an isotropic triangular mesh is used to avoid

favored design directions.

We use a fully implicit scheme to evolve in time for 20

dumbbell relaxation times starting from a viscoelastic fluid

at rest, and then proceed by initializing a non-linear solver

with the final transient solution.18 Optimization iterations

without steady solutions can occur, in which case the last

transient solution is used for the sensitivity analysis.

Although this approach is inconsistent, it does not become

an issue for the optimization, since unsteady flows is a rare

occurrence at the Weissenberg numbers considered. Our

optimization setup is periodic and pressure driven as

sketched in Fig. 1. The objective function /, to be minimized

is the flow rate ratio

/ ¼
_V 
_V!
¼
Ð
�v � x̂drÐ
v! � x̂dr

;

where the arrows indicate the flow configuration. We com-

pute the objective function gradient @//@q, with an adjoint

method and combine it with the method of moving asymp-

totes19 for updating the design variables.

In terms of model parameters we choose b¼ 0.59, as it

is representative of Boger fluids and used widely in bench-

marks of numerical algorithms for this reason. To avoid

early transition to unsteady flows a2
max ¼ 100 can be used,

and with this we are able to perform optimizations at We¼ 5

without serious issues with unsteady solutions. The driving

pressure is set at 7.17 Dp* to give a unity average velocity

for the initial empty design and thus also an effective We

number closer to the imposed. Finally, we find that the

optimization performs well with a characteristic mesh size

h¼L/10, Lmin ¼ h; Da ¼ 10�5; q ¼ 4 � 10�6, and n ¼ 10.

Optimizations with and without imposed symmetry both

result in a contraction followed by an obstacle as shown17 in

Figs. 2(a) and 2(b). The working mechanism is best under-

stood by considering Figs. 2(c)–2(g) specific to the symmet-

ric case, while adopting the dumbbell fluid picture and

focusing on the strongly accelerating nature of the flow in

the obstacle wake close to the rear stagnation point: The

acceleration will cause the forward dumbbell mass to move

FIG. 1. Optimization setup with periodic velocity vector and conformation

tensor at the inlet/outlet boundaries, where the pressure is fixed at either 0 or

Dp depending on the flow configuration (! or  ). There is no tangential

stress at the inlet/outlet boundaries and only pressure contributes to the nor-

mal stress. The no slip boundary condition is imposed on the top and bottom

boundaries, and the design variable is defined in the central rectangle only.
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faster than the rear mass, and in this way, a wake of elon-

gated dumbbells appears, Figs. 2(c) and 2(d). The dumbbells

are particularly elongated in the reverse flow configuration

due to the high flow velocity in the contraction, and the wake

causes a damping that gives rise to a local velocity minimum

in the contraction center, Figs. 2(e)–2(g).

As indicated in Fig. 2, the effective size of the obstacle

is smaller than a plot of the filtered design variable on a lin-

ear scale suggests. This is due to the relation between the fil-

tered design variable and the damping term (Eq. (8)), and it

means that the projected design variable should be thresh-

olded around 6 � 10�4 to produce a performing design with-

out porous material. It however seems that it is the curvature

in the left region of the obstacle that is essential, which

allows for the use of a significantly larger airfoil like

obstacle.

The results of symmetric simulations with a state-of-the-

art hyperbolic design5 and a design derived from topology

optimization are shown17 in Fig. 3 in the case of boundary

conditions and model parameters identical to that of the to-

pology optimization. Although unsteady flows are often

encountered, the objective function shows clear convergence

up to We¼ 5 with respect to spatial discretization and simu-

lation time (not shown). The simulations indicate that the

contraction-obstacle-design not only has superior perform-

ance in the considered regime but also that the rectification

effect sets in strongly at small Weissenberg numbers.

In conclusion, we have presented results for topology

optimization of a viscoelastic rectifier and found a design

that promises superior performance in the regime of moder-

ate elasticity.
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FIG. 2. The filtered design variable is plotted together with streamlines for

optimizations without (a) and with (b) symmetry. Both the dumbbell exten-

sion (c)–(d) and the velocity magnitude (e)–(f) are shown in the symmetric

case for the two flow directions together with a 6 � 10�4 contour of the pro-

jected design variable in blue. The working mechanism is illustrated by plot-

ting the dumbbell extension and velocity magnitude through a cross section

connecting the contractions (g).

FIG. 3. Two designs are characterized in terms of their flow rate ratio as a

function of the Weissenberg number for different number of degrees of free-

dom (DOF). Effective Weissenberg numbers Weeff are calculated as

2We _V!=L2
cont, where Lcont is the width of the contractions.
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