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Abstract

Needs for high-accuracy tool positioning and accurate trajectory following have renewed the focus on controller design for machine
tools. While state-of-the-art solutions, based on Proportional (P) and Proportional-Integral (PI) cascades, achieve sufficient nominal
performance, axis positioning accuracy quickly degrades in the presence of additional wear-related friction. Sliding-mode and
nonlinear adaptive controllers with no cascaded architecture can alleviate such performance deterioration at the cost, however, of
significantly increased design complexity. This is mainly due to the fact that such architectures facilitate addressing more nonlinear
phenomena, such as load dynamic friction. This paper investigates three nonlinear controllers with cascaded architecture for
machine tool axis positioning. A comparative analysis of the positioning solutions is carried out and it is shown that a cascaded
scheme comprising a proportional and a super-twisting sliding-mode controller offers superior friction-resilient axis positioning.
Moreover, its design complexity is comparable to that of the conventional P-PI solution. Experimental results obtained from a
single-axis test setup equipped with commercial industrial equipment validate the theoretical findings.

Keywords: Machine-tool control, axis drive-train, friction, super-twisting sliding-mode control, nonlinear adaptive control,
immersion and invariance control, robustness, high accuracy positioning.

1. Introduction

Modern industrial manufacturing using automated machine
tools requires high-accuracy positioning of the machine axes.
A number of mechanical phenomena, especially friction, may
compromise the appropriate positioning of the machine end-
tool relatively to the workpiece, thus degrading the finishing
quality. To ensure that workpiece tolerances are maintained, the
machine drives are equipped with position-control algorithms
that take into account the friction characteristics of the axes.

State-of-the-art machine tool axis control solutions comprise
cascades of P and PI controllers for the axis position and velo-
city, respectively. The position controller outputs a velocity re-
ference to the velocity controller, which in turn, delivers the
appropriate torque command for the motor that will move the
axis to the desired position [1]. A large corpus of documented
machine tool positioning methods exists in the literature (see
[2, 3, 4, 5] and the references therein for a general overview
and classification of the methods). Variable-gain P-PI appro-
aches have also been made for improving accuracy in motion
control systems [6, 7] and transient performance [8].

The effect of friction on machine axis positioning is usually
counteracted by including appropriate feedforward terms in the
P-PI control scheme [9, 10]. The structure and complexity of
the compensating solutions is related to the level of detail at
which the various friction phenomena are described [11], as
well as the regime of the axis motion. Modelling and com-

pensation of friction during slow axis motion was pursued in
[12, 13]. Presliding friction was addressed in [14] for a two-
mode motion profile. Observers were used in [15], in which
friction was considered a disturbance signal. An approach
for friction estimation based on model inversion was made in
[16, 17]. A comparative study on model-based and model-free
methods for compensating friction via feed-forwards terms was
presented in [18]. A feedforward observer was used in [19, 20]
for compensation of nonlinear presliding friction. The design
of this observer, tailored for motion control applications, was
generalized in [21]. The combination of cascaded P-PI motion
controls with nonlinear friction rejection at micro-positioning
was evaluated in [22, 23], where the authors demonstrated the
methods’ performance limitations in terms of steady-state po-
sitioning accuracy. Feed-forward compensation of friction was
pursued in [24], where a frequency domain characterisation of
the nonlinear friction was obtained, using low amplitude/low
frequency excitation signals. Particle Swarm Optimization-
based tuning of a PID controller was used in [25] to achieve
sufficient compensation of nonlinenar friction.

The majority of these compensation schemes assume con-
stant friction model parameters, which are obtained from offline
identification experiments [26, 27]. Under nominal conditions
these conventional axis positioning solutions achieve sufficient
accuracy. However, they quickly degrade in performance if the
friction parameters change. The need for friction-resilient ope-
ration even under equipment wear has motivated research in
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the area of model-based nonlinear control for friction compen-
sation.

A substantial amount of work on nonlinear adaptive and Sli-
ding Mode Control (SMC) methods has been reported in the
literature in relation to friction rejection. The reader is in-
dicatively referred to [28, 29, 30, 31, 32, 33], as well as to
[34, 35, 36, 37, 38, 39, 40, 41]. Although the powerful ro-
bustness properties of these controller families have been ex-
tensively analysed, their performance and applicability to ma-
chine tool control had not been adequately assessed, especially
in comparison to the conventional P-PI cascades. Such a com-
parative study was carried out in [42], in which the performance
of three nonlinear controllers, namely of an Adaptive Back-
stepping Controller (ABSC), an Output Super-twisting Sliding
Mode Controller (OSTSMC) and an Adaptive Super-twisting
Sliding Mode Controller (ASTSMC), was experimentally as-
sessed with respect to high-accuracy and robustness against
unknown and increasing friction. All three controllers shared
the same direct-position architecture, i.e. no explicit position-
velocity cascades were included in their design. The results
showed that the ABSC offered significantly higher accuracy
in axis positioning even under conditions of unknown friction.
This however, came at the cost of increased complexity, since
the design of the controller required the tuning of 19 parame-
ters.

This paper extends the study done in [42] by revisiting the
position-velocity cascaded architecture for machine tool axis
positioning. The proposed designs comprise a P controller for
the position loop, followed by a nonlinear controller for the mo-
tor velocity. The motivation for this approach was to utilize the
friction-resilience of the nonlinear controllers and at the same
time reduce the design complexity that direct positioning met-
hods introduce. Similarly to [42], the designs are based on
sliding-mode and nonlinear-adaptive control principles. Spe-
cifically, a Super-twisting Sliding Mode Controller (STSMC),
a certainty-equivalence Nonlinear Adaptive Controller (NAC)
and a Immersion and Invariance Adaptive Controller (I&I-AC)
are proposed for the motor velocity. The theoretical properties
of each solution are elaborated and the controller’s performance
is assessed through experiments conducted on state-of-the-art
machine tool equipment. The proposed nonlinear methods are
systematically compared to the standard P-PI cascade and to the
controllers from [42], based on criteria for robust positioning
accuracy, efficiency and overall complexity of each method.

The paper is structured as follows: Section 2 describes the
considered physical system and presents the problem being ad-
dressed, while Section 3 introduces the mathematical model of
the machine axis. Section 4 presents the design of the propo-
sed control schemes used for axis positioning, along with the
stability and convergence properties of the closed-loop system.
Experimental results on the performance of the control sche-
mes are presented in Section 5, while Section 6 offers an overall
comparison of the controllers to the methods proposed in [42].
Finally, conclusions and future work are discussed in Section 7.
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Figure 1: (Top) Machine-tool axis, whereωm, ωl are the motor and load angular
velocities, respectively. (Bottom) Equivalent double mass oscillator with Jm, Jl
being the drive motor and generalized load inertias, respectively, KS the spring
constant corresponding to the shaft stiffness and DS being the damping coeffi-
cient of the shaft. The torque generated by the drive motor is denoted with Tm,
the interconnecting torque is Tl, N = 1 is the gearing ratio between motor and
load and TF,m,TF,l is the friction on the motor and the load side, respectively.

2. System description and problem formulation

2.1. System in context and accuracy

A machine tool axis can be considered as a system of two
interacting inertias (motor and load) connected through a shaft
with friction. The inertia and friction on the load side corre-
sponds to the lumped masses and friction torques on the linear
axis of the machine, as illustrated in Figure 1. The drive-train
abstraction introduced in [42] for describing a machine tool axis
is also adopted in this paper.

The purpose of a machine tool axis control is to achieve
accurate tracking of a position profile by the axis end-point
(e.g. the tool), i.e. to accurately position the generalized load.
In standard machine tool applications the required workpiece
tolerances correspond to a positioning accuracy in the range
1 − 10 µm. For machines with linear axes that typically have
lead screws with pitch size 2−10 mm, such requirements corre-
spond to an angular positioning accuracy between 5 · 10−3 and
2 · 10−2 rad [1]. The accuracy requirement considered in this
study is 10−2 rad.

2.2. Positioning-degrading friction

The decelerating friction forces that develop between the va-
rious surfaces of the machine parts may hinder the accurate po-
sitioning of the axis. Although the effects of friction are usually
accounted for when commissioning the machine drive, these
feed-forward compensation schemes assume constant friction
characteristics. However, these characteristics can change over
time due to equipment wear and varying environmental con-
ditions. Typical examples include deformation of the bearing
surfaces of the motors and linear axes, lubrication film failure
or low room temperature, which can cause increased Coulomb
friction and viscosity [43].
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The friction acting on the drive motor is different than the
one affecting the load. The first is primarily due to the contact
of the bearing surfaces and possibly additional heat losses due
to eddy currents. On the other hand, load friction develops in
the gearing mechanism, the linear axis ball screw system and
the various intermediate contact surfaces. However, since the
cascaded control architectures discussed in this study concern
only the drive motor dynamics, the load friction is not explicitly
modelled. Especially in the case of stiff machine axes, changes
in load friction are directly reflected in the motor friction para-
meters.

2.3. Problem formulation

The control objective of this study is stated in the following:

Problem 1 (Friction-resilient accuracy control for single-axis
machine tool). Consider a single-axis machine tool system con-
sisting of a drive motor connected to a load with a flexible shaft.
Let the tool positioning error be denoted by eθ and let T max

C,m be
an upper bound for the Coulomb friction magnitude TC,m on the
motor side. Design a closed-loop control strategy that ensures:

|eθ(t)| ≤ 10 mrad ∀t ≥ t0 > 0 and for TC,m ≤ T max
C,m

where t0 denotes a time after the starting up of the positioning
task for the machine.

In the above problem formulation the bound T max
C,m describes

the maximum value of Coulomb friction, above which allevia-
tion of the positioning degradation is not addressed by means
of low-level axis control.

3. Mathematical model

The drive-train system consists of the drive motor, the shaft
and the load. The closed-loop electrical dynamics of the motor
can be approximated by a first-order system with time constant
much faster than the mechanical dynamics of the single-axis sy-
stem. It is, therefore, a common assumption in motion control
studies that the torque produced by the motor is the torque com-
mand plus a torque disturbance de, i.e. Tm = u + de as shown in
figure 2.

Apart from the fast electrical dynamics, the torque perturba-
tion de includes several cogging torques and parasitic ripples
coming from current sensor offsets and inverter nonlinearities.
Analytical modelling and identification methods of such torque
ripples have been reported in the literature [44, 45, 46, 47, 48],
while compensation of the input torque perturbation is mainly
achieved via appropriate feed-forward terms in the current con-
trol loop [49, 50] and it is not addressed in the current study.
Instead, the assumption that there exists appropriate feedfor-
ward compensation of de, introduced in [42], is also adopted
here, i.e.

Tm u u .

Drive
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Figure 2: (Top) Single axis system with closed-loop electrical dynamics. The
torque command u is translated into the quadrature current reference signal
irq through the motor torque constant kT . (Bottom) Reduced-order single-axis
system.

The dynamics of the drive-train read:

ω̇m =
1
Jm

u − 1
Jm

TF,m − 1
NJm

Tl (3.1)

θ̇m = ωm (3.2)

ω̇l = − 1
Jl

TF,l +
1
Jl

Tl (3.3)

θ̇l = ωl (3.4)

where TF,l is the friction on the load side and the intercon-
necting torque Tl is given from

Tl = KS

(
1
N
θm − θl

)
+ DS

(
1
N
ωm − ωl

)
. (3.5)

The friction torque TF,m acting on the motor is described by the
following equation [51]:

TF,m =

TC,m + (TS ,m − TC,i)e
−
(
ωm
ωS

)2 sgn(ωm) + βmωm (3.6)

where the Stribeck velocity ωS is considered known from off-
line identification and sgn(·) is the signum function defined as

sgn(y) =



1 if y > 0
υ ∈ [−1, 1] if y = 0
−1 if y < 0

. (3.7)

Apart from the Coulomb and viscous components, this friction
model also includes the stiction aspect that relates to the pres-
liding phenomenon [52]. During very slow axis motion pro-
files (almost zero speed) the stick-slip phenomenon is the
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Table 1: System model nomenclature.
Symbol Description Units

States and Outputs

ωm, ωl Motor/load angular velocity rad s−1

θm, θl Motor/load angular position rad

Inputs

θr Load position reference rad

ωr Motor velocity reference rad s−1

u Torque command N m

Constant parameters

N Gearing ratio −
Jm, Jl Motor/load inertia kg m2

KS Shaft stiffness N m rad−1

DS Shaft damping coefficient N m s rad−1

TC,m Motor Coulomb friction N m

TS ,m Motor static friction coefficient N m

ωS Motor Stribeck velocity rad s−1

βm Motor viscous friction coefficient N m s rad−1

Disturbances

de Input torque ripples and harmonics N m

TF,m,TF,l Motor/load friction N m

Tl Load torque N m

most dominant friction component. More sophisticated des-
criptions of friction have been proposed for such regimes in
[53, 54, 27, 55, 56, 57]. However, the complexity introduced
by these models, significantly increases the difficulty of desig-
ning, implementing and maintaining nonlinear model-based so-
lutions for friction compensation. This is mainly due to ad-
ditional dynamics and large number of unknown parameters
(see for example the LuGre [58] and Generalized Maxwell Slip
[59] friction models). At low speeds the ”limit” behaviour of
friction, reflected in the stiction coefficient (or breakaway tor-
que) is sufficient to facilitate effective friction compensation. A
list with the most important variables and notation of the drive
train model is provided in Table 1.

4. Axis position control methods

4.1. Control architecture

The advanced nonlinear control strategies to position the load
will be discussed in this section. Three different control al-
gorithms based on sliding-mode and nonlinear adaptive prin-
ciples are proposed for robust axis positioning with respect to
unknown and increasing Coulomb friction. All three designs
have a position-velocity cascaded architecture. This structure
maintains the outer loop P controller of the P-PI cascade in stan-
dard machine tool control, but the velocity PI controller is re-
placed by its nonlinear counterpart, as shown in Figure 3. This

implies that all the proposed designs start from considering the
drive motor velocity error dynamics.

Similar to the conventional P-PI cascades, the motor velocity
reference ωr is the output of the position proportional controller
plus a feedforward term that is equal to the first derivative of the
position reference θ̇r, i.e.

ωr = kposeθ + Nθ̇r , (4.1)

where eθ , θr − θl is the axis positioning error and kpos > 0
is the gain of the P controller. Since the time derivatives of
the reference signal are usually available up to the acceleration
level, the derivative of the velocity reference ωr can also be
calculated by differentiating (4.1), as shown below:

ω̇r =
d
dt

(
kposeθ + Nθ̇r

)
= kpos

(
θ̇r − ωl

)
+ Nθ̈r . (4.2)

If eω , ωm − ωr is the motor velocity tracking error, then it is
easy to show that the position error dynamics are given by

ėθ = −kpos

N
eθ − 1

N
eω + ∆ω (4.3)

with ∆ω , 1
Nωm−ωl being the velocity difference between mo-

tor and load. The magnitude of this term is negligible for rigid
connection between motor and load, while in case of flexible
shafts it plays a key role in selecting the proportional gain kpos,
together with the motor-load position difference and the shaft
compliance [60, 61]. From (4.3) it can be seen that after some
transients, it holds that |eθ| ≤ 1

kpos
(|eω| + N |∆ω|), i.e. appro-

priate bounds on the velocity error give sufficient positioning
accuracy.

Compared to solutions employing direct load position nonli-
near controllers [42], this architecture facilitates relatively sim-
ple designs (the controlled system is scalar) and offers some
degree of modularity, since the position and velocity control-
lers can be tuned separately. The low design complexity allows
for enriching the friction description with stiction, as mentio-
ned in Section 3. This inclusion was motivated from the fact
that stiction contributes to positioning degradation during axis
motion reversals. As it will become clear in Section 4, this mo-
delling choice only affects the design of the proposed adaptive
controllers.

nonlinear
controller for ωm

J−1
m

∫
P for θlθr, θ̇r

θm

∫interconnection
systemload

ωm

θm
Tl

ωl, θl

ωlθl

ωr
u

TF,m

−

Tl

−

Position control cascade

Figure 3: Position-velocity cascaded axis control.
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4.2. Super-twisting sliding-mode control
The first proposed axis positioning method is based on sub-

stituting the velocity PI controller with a STSMC, which is a
second-order sliding-mode algorithm [62, 63]. Control sche-
mes using sliding modes, first introduced in [64], have two
very attractive features: disturbance rejection and finite-time
convergence. The inherent robustness of sliding mode control-
lers against unknown dynamics and disturbances is achieved by
using discontinuous terms in the control laws.

Over the past three decades there has been a growing in-
terest in higher-order sliding mode algorithms. The motiva-
tion for studying higher-order SMCs is the effect of chatte-
ring on the actuators of the system induced by standard SMCs
[65, 66, 67, 68]. The application of the STSMC and its adap-
tive counterparts [69, 70] in motion control systems has been
demonstrated in several works in the literature [71, 72] but high
accuracy positioning has not been explicitly addressed.

For the regulation of the drive axis velocity error at zero the
sliding variable s is defined as

s , eω = ωm − ωr . (4.4)

Its dynamics read:

ṡ =
1
Jm


u−TF,m − KS

N

(
θm

N
− θl

)
− DS

N

(
ωm

N
− ωl

)

︸                                              ︷︷                                              ︸
ψ(x)

−Jmω̇r



=
1
Jm

[
u + ψ(x) − Jmω̇r

]
. (4.5)

The STSMC control law is chosen as

u = Jmω̇r + uS MC , (4.6)

where uS MC is given in [62]

uS MC = −k1|s| 12 sgn(s) + v (4.7)
v̇ = −k2sgn(s) (4.8)

and the derivative of the velocity referenceωr is calculated from
(4.2).

Remark 1. The STSMC algorithm ensures that the system re-
aches the sliding manifold

S =
{
ωm(t) ∈ R

∣∣∣s(ωm(t)) = ṡ(ωm(t)) = 0,∀t ≥ tr
}

in some finite-time tr, provided that the control law gains are
appropriately selected and that the first time-derivative of the
matched perturbation ψ(x) is bounded by a finite positive scalar
ξ. However, this is not the case for the selected friction mo-
del since the sgn(·) function is discontinuous at ωm = 0. This
means that when the motion changes direction, the system will
leave the sliding surface and will reach it again very quickly for
appropriate positive gains k1, k2.

Remark 2. The tuning of the STSMC gains, can be formulated
as a Linear Matrix Inequality (LMI) problem [73] and a basic

requirement is that the integral gain k2 should be larger than the
bound of the perturbation rate ψ̇(x). Specifically, selecting the
gains as

k2 > ξ , k1 = 1.41
√

k2 + ξ

ensures finite-time convergence of s to zero [74]. Even with
a smooth approximation of the sgn(·) function, such require-
ment leads to high values of k1, k2, making the algorithm more
demanding in terms of control power and more sensitive to me-
asurement noise.

4.3. Nonlinear adaptive control

Adaptive control has been an active field of research since
the early sixties. Over this time, a large corpus of literature has
been developed covering topics such as regulation and tracking
of linear and nonlinear systems, disturbance rejection, etc. Tu-
torial presentations of the general adaptive control problem
were given in [75, 76] on topics related to regulation, tracking,
parameter estimation and robust control mostly for linear sy-
stems. The problem of adaptive control for a wider class of
nonlinear systems was extensively studied in [77], presenting
general design principles for NAC.

A geometric approach to the adaptive control and estimation
problem was made in [78, 79] where the authors presented the
main results of the I&I-AC theory. The I&I-AC designs were
based on the task of finding a manifold on which the system
has the required properties (stability, tracking, etc.) and then
rendering it invariant by using appropriate control and adapta-
tion laws. Application of these methods on electromechanical
systems was demonstrated in [80] for robust velocity control of
a Permanent Magnet Synchronous Motor (PMSM) and in [81]
where trajectory tracking in a flexible joint manipulator with
time-varying mechanical stiffness was pursued.

Two adaptive velocity controllers, namely the NAC and the
I&I-AC, are proposed for the motor velocity loop in the ma-
chine axis. The following assumption is made in both designs
:

Assumption 4.1. (Constant unknown parameter vector)
The unknown model parameters ϑ are assumed to be constant
or at least slowly varying, i.e. their time derivatives are consi-
dered to be zero

ϑ̇ = 0 .

4.3.1. Velocity nonlinear adaptive controller
The characteristic feature of this scheme is the adaptation of

the coefficients in the friction model defined in (3.6), namely the
motor Coulomb friction TC,m, as well as the static and viscous
friction coefficients TS ,m and βm, respectively. Due to the sim-
plicity of the design, the shaft stiffness KS and damping coeffi-
cient DS can also be considered as uncertain parameters and be
included in the adaptation algorithm. Let ϑ ∈ P be the unknown
parameter vector defined as

ϑ ,
[
KS DS TC,m TS ,m βm

]T
(4.9)
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where the compact set P is defined as

P = [0,Kmax
S ] × [0,Dmax

S ] × [0,T max
C,m ] × [0,T max

S ,m ] × [0, βmax
m ]

and the superscript ”max” denotes the maximum value the as-
sociated parameter can obtain. The dynamics of the velocity
error are written as:

ėω =
1
Jm

[
u − KS

N

(
1
N
θm − θl

)
− DS

N

(
1
N
ωm − ωl

)
− TF,m

]
− ω̇r

=
1
Jm

[
u + φT (x)ϑ

]
− ω̇r (4.10)

where x =
[
ωm θm ωl θl

]T
is the drive train state vector,

and φ(x) is the regressor function defined as

φ(x) ,



− 1
N

(
1
N θm − θl

)

− 1
N

(
1
Nωm − ωl

)

−
1 − e

−
(
ωm
ωS

)2 sgn(ωm)

−e
−
(
ωm
ωS

)2

sgn(ωm)
−ωm



, (4.11)

with ωS being the identified Stribeck velocity for the drive mo-
tor.

Proposition 1. The control law

u = −φT (x)ϑ̂ − keω + Jmω̇r (4.12)

together with the adaptation laws

˙̂
ϑ = Γφ(x)eω (4.13)

where k is a positive real number and Γ a 5× 5 positive definite
real matrix, ensure that the velocity tracking error eω with dyn-
amics given in Equation (4.10) converges to the origin e∗ω = 0
as t → ∞, i.e.

lim
t→∞ eω(t) = 0 .

Moreover, the parameter estimation error ϑ̃ , ϑ − ϑ̂ remains
bounded for all future times.

Proof. Denoting an estimate of the real parameter vector with
ϑ̂, the equivalence-principle control law [77]

u = −φT (x)ϑ̂ + Jmω̇r − keω (4.14)

will give the following tracking error dynamics

ėω =
1
Jm

[
φT (x)ϑ̃ − keω

]
. (4.15)

Consider the following positive definite Lyapunov function can-
didate

V =
1
2

Jme2
ω +

1
2
ϑ̃

T
Γ−1ϑ̃ .

Noting that ϑ̇ = 0, the time derivative of V along the trajectories
of (4.15) reads:

V̇ = −ke2
ω + eωφT (x)ϑ̃ − ϑ̃T

Γ−1 ˙̂
ϑ . (4.16)

Then substituting (4.13) in (4.16) yields

V̇ = −ke2
ω ≤ 0 , (4.17)

which implies that V is non-increasing. Since V(eω(t), ϑ̃(t)) ≥
0, ∀t ≥ 0, it follows that V is bounded and, by extension,
eω(t), ϑ̃(t) are also bounded for all future times. Taking the se-
cond time-derivative of V leads to

V̈ = − 2k
Jm

[
eωφT (x)ϑ̃ − ke2

ω

]
,

Boundedness of eω, ϑ̃ implies that V̈ is also bounded and, as a
result, that V̇ is uniformly continuous. Then, since lim

t→∞V(t) =

V(∞) ≤ V(0) is finite, by applying Barbǎlat’s lemma [77,
Lemma A.6] it is shown that lim

t→∞ V̇(eω(t)) = 0. From (4.17)
it can be seen that

lim
t→∞ eω(t) = 0 ,

which completes the proof. �

It should be noted that parameter convergence to the real va-
lues is not guaranteed, unless φ(x) is persistently exciting [76],
i.e. unless there exist constants α0, α1,T0 > 0 such that

α0I ≤ 1
T0

∫ t+T0

t
φ(τ)φT (τ)dτ ≤ α1I . (4.18)

4.3.2. Velocity Immersion and Invariance adaptive controller
The dynamics for velocity tracking error eω are given by

ėω =
1
Jm

[
u + φT (x)ϑ − 1

N
Tl

]
− ω̇r (4.19)

where now the unknown parameter vector is defined as

ϑ ,
[
TC,m TS ,m βm b

]T
(4.20)

with

ϑ ∈ Q = [0,T max
C,m ] × [0,T max

S ,m ] × [0, βmax
m ] × [−bmax, bmax] .

The regressor function φ(x) is defined as

φ(x) ≡ φ(ωm) ,



−
1 − e

−
(
ωm
ωS

)2 sgn(ωm)

−e
−
(
ωm
ωS

)2

sgn(ωm)
−ωm

−1



(4.21)

and Tl is defined in Equation (3.5). Since only the varying
friction is considered unknown, the shaft parameters are not in-
cluded in the design. This considerably simplifies the complex-
ity of the control algorithm. Parameter b serves as an additional
integral term that can compensate for minor variations of the
interconnection torque Tl due to small uncertainties in the shaft
parameters.
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If ϑ̂ is an estimate of the real parameter vector, the approach
in the I&I-AC is to design a control input and an update law for
ϑ̂, which makes the manifold

M = {(x, ϑ̂) ∈ R4 × Q
∣∣∣ϑ̂ − ϑ + h(x) = 0} (4.22)

invariant, where h(x) is a known function to be defined. Once
the system is on this manifold, the unknown parameter vector ϑ
can be calculated by ϑ = ϑ̂+ h(x). Note that the design of h(x)
is also included in this process.

Theorem 4.1. The control law

u =
1
N

Tl − φT (ωm)
(
ϑ̂ + h(ωm)

)
− kIIeω + Jmω̇r (4.23)

together with the adaptation laws

˙̂
ϑ =

∂h
∂ωm

1
Jm

(kIIeω − Jmω̇r) (4.24)

with kII being a positive real number and the real function h :
R→ R4 being defined as

h(ωm) = JmΓII



−|ωm| + ωS
√
π

2 erf(ωm
ωS

)sgn(ωm)

−ωS
√
π

2 erf(ωm
ωS

)sgn(ωm)
− 1

2ω
2
m

−ωm


(4.25)

where ΓII a 4 × 4 is a positive definite real matrix and erf(·)
is the error function, ensure that the velocity tracking error eω
with dynamics given in Equation (4.19), as well as the para-
meter estimation error ϑ̃ remain bounded for all future times.
Additionally, if φ(ωm) is persistently exciting, then

lim
t→∞

[
eω(t)
ϑ̃(t)

]
= 0 .

Proof. Similarly to the case of NAC, applying the equivalence
principle control law yields the following velocity error dyna-
mics

ėω =
1
Jm

[
−kIIeω − φT (ωm)

(
ϑ̂ + h(x) − ϑ

)]
. (4.26)

The new feature when compared to NAC is the ”parameter off-
set” function h(x), which quantifies the deviation of the estima-
ted parameter vector ϑ̂ from its real value. The objective is to
find a function h(x) ≡ h(ωm) and an update law ˙̂

ϑ = w(x, ϑ̂)
such that the manifoldM is attractive invariant. To achieve this,
the off-the-manifold coordinate

z , ϑ̂ − ϑ + h(ωm) (4.27)

is defined. Its dynamics read

ż =
˙̂
ϑ +

∂h
∂ωm

ω̇m = w(x, ϑ̂) +
∂h
∂ωm

1
Jm

[
u + φT (ωm)ϑ − 1

N
Tl

]

= w(x, ϑ̂) +
∂h
∂ωm

1
Jm

[
−φT (ωm)z − kIIeω + Jmω̇r

]
(4.28)

where Assumption (4.1) and Equations (4.23), (4.27) were
used. Selecting

w(x, ϑ̂) =
∂h
∂ωm

1
Jm

(kIIeω − Jmω̇r) (4.29)

the dynamics of the z-coordinate become

ż = − 1
Jm

∂h
∂ωm

φT (ωm)z . (4.30)

Selecting h such that

∂h
∂ωm

= JmΓIIφ(ωm) (4.31)

suggests

h(ωm) = JmΓII



−|ωm| + ωS
√
π

2 erf(ωm
ωS

)sgn(ωm)

−ωS
√
π

2 erf(ωm
ωS

)sgn(ωm)
− 1

2ω
2
m

−ωm


. (4.32)

Substituting h in (4.30) yields

ż = −ΓIIφ(ωm)φT (ωm)z (4.33)

which verifies that the solutions z(t) of (4.33) are bounded since
φ(ωm)φT (ωm) is positive semidefinite. To prove that M is at-
tractive and invariant, it is sufficient to show that

lim
t→∞ z(t) = lim

t→∞ ż(t) = 0 .

Consider the real-valued positive-definite Lyapunov function
candidate V : R4 → R defined as:

V(z(t)) =
1
2

z(t)T z(t) ≥ 0 , (4.34)

for which it holds

1
4

z(t)T z(t) ≤ V(z(t)) ≤ z(t)T z(t), ∀t ≥ 0 .

Its time derivative along the trajectories of (4.33) is given by

V̇(z(t)) = −zT (t)φ(ωm)φT (ωm)z(t) ≤ 0 (4.35)

which implies that V(z(t)) is not increasing for all t ≥ 0. Con-
sequently, boundedness of V implies boundedness of z(t) and,
by extension, of ωm(t), i.e. z(t), ωm(t) ∈ L∞. Moreover, it can
also be concluded from (4.33) that ż(t) ∈ L∞. Integrating (4.35)
from both sides yields

0 ≤
∫ ∞

0
zT (t)φ(ωm(t))φT (ωm(t))z(t)dt ≤ V(z(0)) − V(z(∞)) .

This means that if φ(ωm(t)) is persistently exciting (see (4.18)),
then z(t) ∈ L2 , ∀t ≥ 0. Then applying Barbălat’s lemma [77,
Lemma A6] gives

lim
t→∞ z(t) = 0 . (4.36)
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From (4.30) it also follows that lim
t→∞ ż(t) = 0, which proves that

M is invariant. Moreover, the closed-loop velocity error dyna-
mics

ėω = − 1
Jm

[
kIIeω + φ(ωm)φT (ωm)z

]
(4.37)

can be seen as the cascaded interconnection of a convergent
system (z−dynamics) with a Uniformly Globally Exponentially
Stable (UGES) system (unperturbed velocity error dynamics):

ż = − 1
Jm
φ(ωm)φT (ωm)z (4.38)

ėω = − 1
Jm

kIIeω . (4.39)

Since eω is Input-to-State Stable (ISS) with respect to z (see Ap-
pendix A for a proof), boundedness of z(t) implies boundedness
of the velocity tracking error, while convergence of z(t) to zero
implies that lim

t→∞ eω(t) = 0. Lastly, since z(t), h(ωm) are boun-

ded, it follows from (4.27) that the parameter estimation error ϑ̃
is also bounded and it converges to zero, when z(t) vanishes, i.e.
if the regressor function is persistently exciting. This completes
the proof. �

Remark 3. It should be noted that Equations (4.5), (4.10) and
(4.19) refer to the same velocity error dynamics. Their differen-
ces relate to the specific parametrization used in each design.

Remark 4. Including the adaptation of the shaft parameters
KS ,DS would have made the design of I&I-AC, far more com-
plicated. This is due to the fact that the regressor function φ
in (4.21) - and by extension - function h, would depend on the
entire state vector x instead of just the motor angular velocity
ωm. This means that instead of the Partial Differential Equation
(PDE) in (4.31), we would have to solve a 5×5 system of PDEs,
which is not a trivial task and it may not be possible to obtain a
closed-form analytical solution.

Remark 5. In both designs, the existence of the closed-loop sy-
stem solutions requires φ(x) to be locally Lipschitz. This does
not hold since its derivative is not bounded at 0. Since, however,
the regressor function is continuously differentiable everywhere
except for a finite number of points corresponding to ωm = 0,
the solutions of closed-loop system can be understood in the
sense of Filippov [82, 83].

Remark 6. For enhancing numerical robustness against noise,
the function sgn(·) is approximated with a sigmoid function,
e.g. sgn(y) ≈ 2/π · arctan(αy) , ρ(α, y), where α is a positive
number denoting the slope of the function near 0. The mo-
tivation behind this approximation is the fact that in the case
of Coulomb friction, the sensitivity of the sgn(·) function to
noise-inflicted measurements can induce friction-compensating
torques in the wrong direction and with high frequency, le-
ading to actuator damage or even instability. For large va-
lues of the scaling factor α (e.g. α ≥ 100), ρ(α, y) approxi-
mates sgn(y) with sufficient accuracy for the applications and
lim
α→∞ ρ(α, y) = sgn(y). Similarly, the error function defined as

erf(y) = 2/
√
π ·

∫ y
0 e−τ

2
dτ can be approximated by erf(y) ≈

tanh(y) = (ey − e−y)/(ey + e−y).

Figure 4: Experimental setup: (1) 1FT7 drive PMSM, (2) 1FT7 load PMSM,
(3) shaft, (4) friction component base, (5) Siemens SINAMICS S120 converter,
(6) shaft housing, (7) friction adjustment ring.

5. Experiments and evaluation

5.1. Experimental setup
The experimental setup used in this study consisted of two

Siemens 1FT7042-5AF70 PMSMs (one acting as pure iner-
tia) connected through a steel shaft which included a Vari-tork
279.25.22 adjustable-friction clutch [84]. This clutch allows
increasing the Coulomb friction on the motor side through an
adjustable ring. Both motors were equipped with 22-bit incre-
mental position encoders, which corresponds to approximately
1.5 µrad measurement accuracy. The motors velocities were
provided by the commissioning software STARTER via nu-
merical differentiation of the position measurements, and were
inflicted with zero mean white Gaussian noise with variance
σ2

meas u 8.1 · 10−5 rad2/s2. The drive converter was integrated
in a SINAMICS S120 control unit, which handled the current
control loops. All the algorithms were implemented as custom
software updates in STARTER at sampling time 125 µs. The
entire drive train with the friction component are shown in Fi-
gure 4.

5.2. Test scenarios
Fifteen test scenarios for evaluating the performance of the

control algorithms were considered in this study. The tests in-
cluded sinusoidal motion profiles θr(t) = Θ0 sin(2π frt) at three
frequencies fr and under five different Coulomb fiction cases.
The increase in the Coulomb friction ranged from 215% to
900% of its nominal value, with the extreme cases (615% and
900% increase) being considered for testing the performance
limits of the controllers.

The motivation for choosing sinusoidal position reference
relates to the fact that the most significant positioning errors
in machine tools occur during axis motion reversal, where the
sudden change in Coulomb friction causes spikes in the posi-
tion error profile [1]. An additional reason behind this choice
pertains to evaluating the positioning accuracy when a machine
performs a circular contouring task, which is a standard test
in machine tools [85]. Finally, since the focus of this study is
on the friction-resilience of the proposed controllers, the refe-
rence frequencies were in the range 0.1−2Hz to reflect very low
speeds, where the nonlinear friction phenomena dominate, as

8



Table 2: Test scenarios. The notation Fi with i = 1, . . . , 4 denote the four
different friction cases.

No Θ0 (rad) TC,m (N m) fr (Hz) Increase in friction

1 1 0.035 0.1 0 (nominal)

2 1 0.035 0.5 0 (nominal)

3 1 0.035 2 0 (nominal)

4 1 0.11 0.1 215% (F1)

5 1 0.11 0.5 215% (F1)

6 1 0.11 2 215% (F1)

7 1 0.15 0.1 330% (F2)

8 1 0.15 0.5 330% (F2)

9 1 0.15 2 330% (F2)

10 1 0.25 0.1 615% (F3)

11 1 0.25 0.5 615% (F3)

12 1 0.25 2 615% (F3)

13 1 0.35 0.1 900% (F4)

14 1 0.35 0.5 900% (F4)
15 1 0.35 2 900% (F4)

well as frequent motion reversals. The test scenarios are sum-
marised in Table 2.

5.3. Controllers comparison criteria

Table 3: Controllers comparison criteria.

Criterion Definition/description Focus

MAE sup
t0≤t≤t0+T

|eθ(t)| Error peak

CP 1
T

∫ t0+T

t0
u2(t)dt Control usage

ECP MAE·CP Efficiency

MAPE sup
t0≤t≤t0+T

|eφ(t)| with

eφ(t) = φre f (t) − φreal(t)

φre f (t) = tan−1
(
θr

y(t)

θr
x(t)

)

φreal(t) = tan−1
(
θy(t)
θx(t)

)

θx,y(t) = θl(t)/Θ0

θr
x(t) = sin(2π frt)

θr
y(t) = cos(2π frt)

Phase lag

CI Np + Ns Design complexity

The quantitative criteria for evaluating the controllers’ per-
formance, introduced in [42], namely the Maximum Abso-
lute Error (MAE), Control Power (CP), Error-Control Power
product (ECP), Maximum Absolute Phase Error (MAPE) and
Complexity Index (CI) are summarised in Table 3, where Np,Ns

denote the number of tunable parameters and required signals

for each design, respectively. Evaluation of MAPE is very im-
portant especially in machines with more than two axes because
it is indicative of delays in positioning that may result in a dis-
torted contour [1]. Since the test rig consists of only one axis,
the experiments were repeated with the position reference being
shifted by π/2, so as to emulate a 2-axes trajectory θx − θy.

5.4. Controller tuning

The controllers’ parameters were selected according to Ta-
ble 4. To ensure a fair comparison, the controllers were tuned
in the nominal case (with the friction clutch dismounted from
the test rig), such that the maximum absolute positioning error
is below 5 · 10−3 rad at 0.5 Hz for all control schemes. This
follows the idea that in real applications the control loops are
tuned according to the state of the physical system at the time
of the commissioning since future wear cannot be quantified.
The PI gains were selected after experimental tests by gradu-
ally increasing the proportional gain kp and then decreasing the
reset time Tn. The criterion was to reduce MAE as much as
possible for the nominal case at 0.5 Hz, without compromising
the stability of the closed-loop system (kp ≥ 1.8 with MAE at
best 3.8 · 10−3 rad).

Table 4: Controller parameters values.

Symbol Description Value

Outer loop P
kpos Proportional gain 9

PI

kp Proportional gain 0.9

Tn Integral reset time 0.06

STSMC

k1 Switching gain 0.9

k2 Integral sw. gain 75

NAC

k Proportional gain 0.6

diag(Γ) Adaptation gains
[
10−5, 0.5, 0.12, 0.12, 4.5

]

ϑ̂0 Initial conditions [17, 0.003, 0, 0, 0.0008]T

I&I-AC
kII Proportional gain 0.6

diag (ΓII) Adaptation gains [0.1203, 0.012, 0.012, 0.012]

ϑ̂0 Initial conditions [0.003, 0, 0, 0.0008]T

The outer loop position P controller gain was kept the same
in all schemes, and the proportional gains of all three nonlinear
velocity controllers (k1, k, kII) were chosen to be smaller than
or equal to the PI proportional gain kp. The adaptation gains
in NAC and I&I-AC were iteratively selected by starting from
small values and increasing until parameter estimation could be
achieved as fast as possible without significant overshoots in the
estimation signals. Since, friction model mismatches affect the
tracking error eω, they also show up in the estimation signals.
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Figure 5: Positioning errors and torque commands for Test 7. No excessive
STSMC chatter is present in the command torque.

This can be immediately seen by examining the adaptation laws
in Equations (4.13) and (4.29). The larger the adaptation gains,
the more significant the effect of the model mismatches on the
estimation signals. Therefore, the selection of the final values
was made by considering the trade-off between parameter con-
vergence speed, as well as, overshoot size and amount of chat-
ter in the estimation signals. Finally, the selection of the initial
parameter estimates ϑ̂0 is also important, since a high initial
parameter error gives a substantially large initial velocity error,
which may cause the parameter estimates to overshoot and re-
ach values associated to unwanted system behaviours. This can
be alleviated to some extent by using parameter projection algo-
rithms [77] at the cost, however, of risking that already conver-
ged parameters move away from their correct value and settle
to another one.

5.5. Results
The controllers were tested for 7 minutes in each experiment

and their performance was evaluated during the last 20 s. This
was done to allow the parameters in the adaptation schemes to
settle and also to avoid including initial errors in the analysis
due to the setpoint ramping up.

Table 5 shows the MAE for all the different controllers during
all tests. Already from the first friction case (Test 4), the P-PI
scheme degrades in performance with MAE approximately four
times higher than the prescribed accuracy limit (10 mrad). The
P-STSMC performs better than all the controllers with the lo-
west MAE, and also below the accuracy limit. In the case of the
slowest motion profile, the P-STSMC achieves a MAE almost
10 times lower than the specified performance. The adaptive
controllers outperform the conventional P-PI cascade in all ca-
ses, except at low frequencies and with extreme friction (Tests
10 and 13). This is due to the fact that the friction adjustment
ring inherently has a dead zone of approximately 0.035 rad
between the shaft housing and outer cylinder. The induced
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Figure 6: Positioning errors and torque commands for Test 9. Faster frequency
facilitates better performance for NAC/I&I due to richer excitation.

backlash causes a step change in the friction parameters (from
nominal inside the dead zone to the increased value outside of
the dead zone) that is too fast the adaptation schemes, leading
to increased peak errors during motion reversal.

Table 5: MAE in mrad for all controllers in all scenarios. The notation Fi with
i = 1, . . . , 4 denote the four different friction cases.

Controller nominal F1 F2 F3 F4

MAE in mrad at 0.1 Hz

PI 12 17.9 20.3 24.4 30.3

STSMC 0.9 1.5 1.9 2.9 3.8

NAC 7.8 8.3 12.9 20.2 40.7

I&I-AC 7.8 12.5 18.5 33.3 43

MAE in mrad at 0.5 Hz

PI 4.9 15.6 17 23.7 37.2

STSMC 2 3 4.1 7.5 10.9

NAC 2.2 7.5 12.2 21.1 35

I&I-AC 4.9 7.2 13.2 20.3 34.3

MAE in mrad at 2 Hz

PI 12.3 20.1 21.8 31.6 45.7

STSMC 7 6.8 7.2 10.6 12.3

NAC 8.7 6.8 6.9 7.1 7.3

I&I-AC 5.8 6.7 6 5.7 9.2

This effect of the backlash is minimized at faster references,
where the controllers demonstrate higher accuracy as shown by
comparing Figures 5 and 6. Looking at the same figures, one
can see that the control signals of all the controllers were ap-
proximately at the same levels, which implies that the efficiency
of the P-PI was lower than that of the nonlinear solutions.

A visualization of the MAE and MAPE of the controllers can
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The dashed circles correspond to the ±10−2rad accuracy limit introduced in Problem 1. For increased readability, both the error and the accuracy limits have been
enlarged by a factor of 5. The largest deviations are observed during the axes’ motion reversal, i.e. where the nonlinear nature of friction is more dominant. Under
rich excitation (third column) the adaptive controllers adequately suppress the effect of the increased Coulomb friction.
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be provided in the form of Circular Interpolation Test (CIT) (or
ballbar test) plots [85], which illustrate the accuracy of the ma-
chine end-tool following a circle of radius 1. Deviations from
this circular path are indicative of the controllers’ accuracy with
respect to radial or lag errors. Figure 7 shows the CIT of the
compared control schemes for the third friction value (Tests 7-
9). Here the positioning errors and the accuracy limits have
been scaled up by a factor of 5 to improve readability. It can
be seen from these graphs that the P-STSMC performs consis-
tently well at all frequencies, while the adaptive controllers only
perform better at 2 Hz.

The estimation of the Coulomb friction in all tests for both
P-NAC and P-I&I-AC is shown in Figure 8. It can be seen that
in the cases that correspond to larger values of friction or faster
reference signals, the estimates are closer to the real parameter
value. This is associated to better identifiability of the Coulomb
friction and richer excitation, respectively. For P-I&I-AC, the
adaptation of parameter b, which captures small perturbations
due to shaft uncertainties, also contributes to any deviations of
the estimated Coulomb friction from the real value. The over-
all performance of the four controllers in terms of both accu-
racy and efficiency is illustrated in Figure 9, where the average

Table 6: Number of tunable parameters and signals required for each controller.

Np Total Ns Total

P-PI kpos, kp,Tn 3 θr, θ̇r, θl, ωm 4

P-STSMC kpos, k1, k2 3 θr, θ̇r, θ̈r, θl, ωm, ωl 6

P-NAC kpos, k,Γ, ϑ̂0 12 θr, θ̇r, θ̈r, x 7

P-I&I-AC kpos, kII ,ΓII, ϑ̂0 10 θr, θ̇r, θ̈r, θl, ωm, ωl 6
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Figure 10: Average MAE for all controllers including the ones presented in
[42]. The dashed line corresponds to the ±10−2rad accuracy bound and the
stripped area denotes the extreme friction cases. The results are presented in
logarithmic scale for increased readability. Although the ABSC shows the se-
cond best performance in terms of positioning accuracy, its design complexity
is significantly higher than any of the proposed cascaded controllers.

MAE, MAPE and ECP are shown for the different friction ca-
ses.

Finally, as shown in Table 6, the adaptive controllers have
considerably higher design complexity since they involve esti-
mation of unknown parameters, each of which introduces two
additional tunable parameters.

6. Discussion

Juxtaposing the results presented in this study with the fin-
dings documented in [42], reveals that nonlinear control strate-
gies can indeed provide high accuracy axis positioning, robust
to unknown and increasing friction. This can be seen in Figure
10, where the average MAE for each of the 7 considered cont-
rol methods over the three different reference profiles are plot-
ted against the increasing motor Coulomb friction. The graphs
show that four out of the six proposed nonlinear controller cle-
arly outperform the conventional P-PI cascade and maintain the
tolerances at least for the non-extreme friction cases.

However, the ranking of the proposed controllers based on
the average MAE and the CI over all the experiments, illus-
trated in Figure 11, shows that of the controllers that outper-
form the P-PI only one, namely the P-STSMC, has complexity
comparable to the conventional cascade. This is very important
since high controller complexity implies increased commissio-
ning and maintenance cost.

7. Conclusions and future work

The problem of friction-resilient high-accuracy positioning
of machine tool axes was addressed in this paper. Three nonli-
near position control schemes with cascaded architecture were
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Figure 11: Average MAE (top) and CI (bottom) over all tests for all control-
lers including the ones presented in [42]. The dashed line correspond to the
±10−2rad accuracy bound introduced in Problem 1.

designed and implemented on a real single-axis drive-train,
consisting of state-of-the-art Siemens equipment. The propo-
sed positioning algorithms were tested under nominal and in-
creasing friction at different reference frequencies and their per-
formance was evaluated based on criteria related to accuracy,
robustness and design complexity. Finally, the controllers were
compared to the P-PI cascade as well as to the direct-position
solutions of [42].

The results demonstrated that the proposed nonlinear soluti-
ons outperformed the P-PI cascade, both in nominal operation
and under unknown and increased friction. The super-twisting
sliding-mode controller exhibited the best average performance
over all of the considered cases, with the maximum peak devi-
ation being kept up to 10 times smaller than that of the other
controllers. Moreover, its design complexity is directly com-
parable to the conventional P-PI solution, since it has the same
number of tunable parameters. This is a significant advantage
over the equally-accurate adaptive backstepping controller, pre-
sented in [42].

Future work in this area will focus on the systematic tuning of
the P-STSMC scheme based on prescribed workpiece tolerance
requirements.
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Appendix A. Proof of ISS property of eω

Define the continuously differentiable function Ve(eω) = 1
2 Jme2

ω

for which the following inequality holds:

α1(|eω|) ≤ Ve ≤ α2(|eω|)

with α1(y) = 1
4 y2 and α2(y) = y2 being class K∞ functions.

Taking the time derivative of Ve along the trajectories of the
error system in (4.37) yields

V̇e = −kIIe2
ω − eωφ(ωm)φT (ωm)z ≤ −kII |eω|2

+ |eω| ·
∥∥∥φ(ωm)φT (ωm)

∥∥∥∞ |z| =
= −kII(1 − λ)|eω|2 − |eω|

(
kIIλ|eω| −

∥∥∥φ(ωm)φT (ωm)
∥∥∥∞ |z|

)

≤ −kII(1 − λ)|eω|2 , α4(|eω|),

∀|eω| ≥
∥∥∥φ(ωm)φT (ωm)

∥∥∥∞
kIIλ

|z| , α3(|z|)

where 0 < λ < 1, α4(·) is a class K∞ function and α3(·) is
positive definite in R. Moreover, the existence of the infinity
norm of φ(ωm)φT (ωm) is guaranteed by the boundedness of
φ(ωm(t)), ∀t ≥ 0. Then according to Theorem 4.19 in [86,
p. 176] the system in (4.37) is ISS with respect to the input z.
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