Lattice Cryptography:

from Linear Functions
to Fully Homomorphic Encryption

Daniele Micciancio (UC San Diego)

November 2018

Lattice cryptography

- Lattices: regular sets of vectors in n-dim space

- Many attractive features:
- Post-Quantum secure candidate
- Simple, fast and easy to parallelize
- Versatile (FHE and much more)

4
1
6
2
3
:---
1
7
3
3
:---:
2
13
5
6

Encryption

- Secure communication over insecure channel

Homomorphic encryption

- Encryption function such that

$$
E_{k}(a)+E_{k}(b)=E_{k}(a+b)
$$

- (+) can be computed without knowing k !

Lattice Cryptography:

from simple encryption to FHE

- Encryption: used to protect data at rest or in transit

- Fully Homomorphic Encryption: supports arbitrary computations on encrypted data

Talk Outline

- Linear Functions: $x \rightarrow A x$
- One-Way (hash) Functions
- Injective One-Way Functions
- Symmetric Encryption
- Public Key Encryption
- Linearly Homomorphic Encryption
- Fully Homomorphic Encryption!

Linear functions

Matrix-Vector multiplication $\quad \mathrm{m}$ •

- $A \in Z_{q}{ }^{n \times m}, x \in Z_{q}{ }^{m}, b \in Z_{q}{ }^{n}$
- $f_{A}(x)=A X$
- $f_{A}(x+y)=f_{A}(x)+f_{A}(y)$
- Easy to compute and invert

matrix-vector multiplication

Hermite Normal Form

- $\left[\mathrm{A}_{0}, \mathrm{~A}_{1}\right] \times=\mathrm{b}$

Hermite Normal Form

- $\left[\mathrm{A}_{0}, \mathrm{~A}_{1}\right] \times=\mathrm{b}$
- $\mathrm{A}_{0}{ }^{-1}\left[\mathrm{~A}_{0}, \mathrm{~A}_{1}\right] \times=\mathrm{A}_{0}{ }^{-1} \mathrm{~b}$

Hermite Normal Form

- $\left[\mathrm{A}_{0}, \mathrm{~A}_{1}\right] \times=\mathrm{b}$
- $\mathrm{A}_{0}{ }^{-1}\left[\mathrm{~A}_{0}, \mathrm{~A}_{1}\right] \times=\mathrm{A}_{0}{ }^{-1} \mathrm{~b}$

$$
f_{A}\left(x_{0}, x_{1}\right)=x_{0}+A^{\prime} x_{1}
$$

- $\left[I,\left(A_{0}{ }^{-1} A_{1}\right)\right] \times=\left(A_{0}{ }^{-1} b\right)$

$$
x_{0}=b^{\prime}-A^{\prime} x_{1}
$$

Short Integer Solution (SIS)

- Ajtai's One-Way Function:
$-f_{A}(x)=A x(\bmod q)$
$-A \in Z_{q}{ }^{n \times m}, x \in\left\{1_{a} \beta \beta\right\}^{m}, b \in Z_{q}{ }^{n}$
- Short Integer Solution Problem:
- Given [A,b] find a smalld \times such that $A x=b$

Ajtai's SIS

- Linear function restricted to short input x

$$
\text { (e.g., }\{0,1\} \mathrm{m} \text { or }\{-3, \ldots,+3\} \mathrm{m} \text {) }
$$

- $\{0,1\} \mathrm{m}$ not closed under (+)
- Non-linear restriction
- breaks Gaussian Elimination
- makes function hard to invert

- $\{0,1\} \mathrm{m}$ approximately closed under (+) and (-)
$-\{0,1\} \mathrm{m} \pm\{0,1\} \mathrm{m} \subset\{-2, \ldots,+2\} \mathrm{m}$
- Limited homomoprhic property: still very useful

One-way Hash Functions

- SIS function $f_{A}: x \rightarrow b$ where $x \in\{1 . . \beta\}^{m}, b \in Z_{q}{ }^{n}$
- [Ajtai 1998] inverting f_{A} is as hard as worst case lattice problems when
$-m(\log \beta)>n(\log q)$
- $|x|>|b|$
- Function f_{A} : compresses the input
- surjective (w.h.p.)
- not injective
- Applications: hashing, digital signatures

Hermite Normal Form

- $\left[\mathrm{A}_{0}, \mathrm{~A}_{1}\right] \times=\mathrm{b}$
- $\mathrm{A}_{0}{ }^{-1}\left[\mathrm{~A}_{0}, \mathrm{~A}_{1}\right] \times=\mathrm{A}_{0}{ }^{-1} \mathrm{~b}$
- $\left[I,\left(A_{0}{ }^{-1} A_{1}\right)\right] \times=\left(A_{0}{ }^{-1} b\right)$
$f_{A}\left(x_{0}, x_{1}\right)=x_{0}+A^{\prime} x_{1}$

Learning With Errors (LWE)

- HNF variant of f_{A} :
$-f_{\left[I, A^{\prime}\right]}\left(X_{0}, X_{1}\right)=X_{0}+A^{\prime} X_{1}$
$-f_{\left[l, A^{\prime}\right]}(e, s)=A^{\prime} s+e$
- Regev 2005:
- f_{A} is one-way, assuming quantum hardness of lattice problems
$-\sqrt{ } n<\beta \ll q=\operatorname{poly}(n), \quad m=\operatorname{poly}(n)>n$
$-|x|=|(s, e)| \approx(n+m)(\log \beta) \approx m(\log \beta)$
$-|b|=m(\log q) \gg|x|$
- injective one-way function
- applications: private key encryption and much more

Encrypting with LWE

- Idea: Use [A,b=As+e] as a one-time pad
- Private key encryption scheme:
- secret key: $s \in Z_{q}{ }^{n}$,
- message: $m \in Z^{m}$
- encryption randomness: [A,e]
$-\mathrm{E}(\mathrm{s}, \mathrm{m} ;[\mathrm{A}, \mathrm{e}])=[\mathrm{A}, \mathrm{As}+\mathrm{e}+\mathrm{m}]$
- [Blum,Furst,Kearns,Lipton 1993]

- Learning Parity with Noise (LPN): $q=2$
- If f_{A} is one-way, then $b=A s+e$ is pseudo-random
- Regev LWE: $q \rightarrow \operatorname{poly}(n)$

Noisy Decryption

- $\mathrm{E}(\mathrm{s}, \mathrm{m} ;[\mathrm{A}, \mathrm{e}])=[\mathrm{A}, \mathrm{b}]$ where $\mathrm{b}=\mathrm{As}+\mathrm{e}+\mathrm{m}$
- Decryption:
$-D(s,[A, b])=b-A s=m+e \bmod q$

- Low order bits of m are corrupted by e

Still, a linear function!

- $\left[\mathrm{A}_{1}, \mathrm{~A}_{1} \mathrm{~S}+\mathrm{e}_{1}+\mathrm{m}_{1}\right]+\left[\mathrm{A}_{2}, \mathrm{~A}_{2} \mathrm{~S}+\mathrm{e}_{2}+\mathrm{m}_{2}\right]$

$$
=\left[\left(A_{1}+A_{2}\right),\left(A_{1}+A_{2}\right) s+\left(e_{1}+e_{2}\right)+\left(m_{1}+m_{2}\right)\right]
$$

$E(m ; \beta)$: encryption of m with error $|e|<\beta$

- $E\left(m_{1} ; \beta_{1}\right)+E\left(m_{2} ; \beta_{2}\right) \subset E\left(m_{1}+m_{2} ; \beta_{1}+\beta_{2}\right)$

Decryption is also linear

- $D_{s}(A, b)=b-A s=m+e$
- Linear in the ciphertext (A, b)
- Linear in the secret key $\mathrm{s}^{\prime}=(-\mathrm{s}, 1)$
- $D_{s^{\prime}}(A, b)=[A, b] s^{\prime}=m+e$
- $D_{c s^{\prime}}(A, b)=[A, b]\left(c s^{\prime}\right)=c m+c e$
- Simplifying assumption: $A=a \in Z$
- This is just for notational simplicity

Operations on Ciphertexts

- Add: $\mathbf{E}\left(m_{1} ; \beta_{1}\right)+E\left(m_{2} ; \beta_{2}\right) \subset E\left(m_{1}+m_{2} ; \beta_{1}+\beta_{2}\right)$
- Neg: $-E(m ; \beta)=E(-m ; \beta)$
- Mul: $\quad c^{*} E(m ; \beta)=E\left(c^{*} m ; c^{*} \beta\right)$
- Const: $[0, m] \in E(m ; 0)$

Weak linear homomorphic properties

- can perform a limited number of additions and multiplications by small constants
- decryption is linear in the secret key $s^{\prime}=(-s, 1)$

Public Key Encryption

- Public Key:

$$
\left[a_{1}, b_{1}\right]=E_{s}(0), \ldots,\left[a_{n}, b_{n}\right]=E_{s}(0)
$$

- Encrypt(m): $\left(\Sigma_{i} r_{i} *\left[a_{i}, b_{i}\right]\right)+(0, m)$
$-E_{s}(0)+\ldots+E_{s}(0)+E_{s}(m ; 0)=E_{s}(m)$
- Decrypt normally using secret key
- [Regev'05] LWE Public Key Encryption
- [Rothblum'11]: any weakly linear homomorphic encryption implies public key encryption

Multiplication by any constant

- $E^{\prime}[m]=E[m], E[2 m], E[4 m], \ldots, E\left[2^{\log (q)} m\right]$
- Multiplication by $c \in Z_{q}$:
- Write $\mathrm{c}=\Sigma_{i} c_{i} 2^{i}$, where $c_{i} \in\{0,1\}$
- Compute $\Sigma_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \mathrm{E}\left[2^{\prime} \mathrm{m}\right]=\mathrm{E}\left[\Sigma_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} 2^{\prime} \mathrm{m}\right]=\mathrm{E}[\mathrm{cm}]$
- $c E^{\prime}[\mathrm{m}]=\mathrm{E}[\mathrm{cm}]$
- We can also compute E'[cm]:

$$
c^{*} E^{\prime}[m],(2 c) * E^{\prime}[m], . .,\left(2^{\log 9} \mathrm{c}\right) * E^{\prime}[m]
$$

Homomorphic Decryption

- Idea:
- Encryption $E(m)=(a, a s+e+m)$ is linearly homomorphic
- Decryption $D(a, b)=b-a s=m+e$ is linear in $s^{\prime}=(-s, 1)$
- We can decrypt homomorphically using an encryption of s'
- Details
- Given: $E(m)=(a, b)$ and $E^{\prime}\left(s^{\prime}\right)=\left(E^{\prime}(-s), E^{\prime}(1)\right)$
- Compute $E(m) * E^{\prime}\left(s^{\prime}\right)=a^{*} E^{\prime}(-s)+b^{*} E^{\prime}(1)=E(m)$
- More interesting:
- Given E(m) and E'(cs')
- Compute $\mathrm{E}(\mathrm{m}) * \mathrm{E}^{\prime}\left(\mathrm{cs}^{\prime}\right)=\mathrm{E}(\mathrm{cm})$

Homomorphic

"decrypt and multiply"

- $E^{\prime \prime}(c)=E^{\prime}\left(c s^{\prime}\right)=E^{\prime}\left(" E(m) \rightarrow C^{*} m^{\prime \prime}\right)$
- $E^{\prime \prime}(c)=\left\{E\left(\alpha_{i} c\right)\right\}_{i}$ for some $\alpha_{i}(s)$
- Homomorphic Properties:

$$
\begin{aligned}
& -E^{\prime \prime}\left(m_{1}\right)+E^{\prime \prime}\left(m_{2}\right)=E^{\prime \prime}\left(m_{1}+m_{2}\right) \\
& -E^{\prime \prime}\left(m_{1}\right) * E^{\prime \prime}\left(m_{2}\right) \\
& =\left\{E\left(\alpha_{i} m_{1}\right) E^{\prime \prime}\left(m_{2}\right)\right\}_{i} \\
& =\left\{E\left(\alpha_{i} m_{1} * m_{2}\right)\right\} \\
& =E^{\prime \prime}\left(m_{1} * m_{2}\right)
\end{aligned}
$$

GSW Encryption

- [Gentry,Sahai,Waters'13]
- FHE based on "approximate eigenvectors"
- Essentially equivalent to E "(m)
- [Alperin-Sheriff,Peikert'14]
- Use E" to implement homomoprhic decrypt.
- $E_{s}(m ; \beta) @ E_{s}{ }^{\prime \prime}(s)=E_{s}\left(m ; \beta^{\prime}\right)$
- $\beta^{\prime} \ll \beta$: Fully Homomorphic Encryption via bootstrapping [Gentry 2009]

Many other FHE variants

- [Brakerski,Gentry,Vaikuntanathan'12]
- [Brakerski'12 / Fan,Vercauteren'12]
- HELib [Halevi,Shoup'13]
- FHEW,TFHE,HEAAN,...
- All based on similar building blocks and techniques
- Complexity of bootstrapping still main efficiency bottleneck

FHEW / TFHE

- [Ducas, M. 2015] FHEW
- Multiplication via addition:
- $m_{1}, m_{2} \in\{0,1\} \subset\{0,1,2,3\}$
$-m_{1}+m_{2} \in\{0,1,2\}: \quad 2 \leftrightarrow m_{1}=m_{2}=1$
$-\left(m_{1}+m_{2}\right) / 2=m_{1}{ }^{*} m_{2}$
- Allows fast bootstrapping (<1 sec)
- [Chillotti,Gama,Georgieva,Izabachene'16]
- TFHE: improved bootstrapping (<0.1 sec)
- [M., Sorrell'18] Amortized FHEW bootstrapping

Approximate FHE

- HEAAN [Cheon,Kim,Kim,Song'16]
- HE for Arithmetic on Approximate Numbers
- Many real world applications deal with approximate (floating point) data
- $D(a, b)=m+e$ is ok
- no need to scale m, results in much better performance in many applications
- Allows to use numerical techniques

Combining different schemes

- Chimera [Boura,Gama,Georgieva'18]
- uses linearity of decryption to convert between different FHE
- allows combined use of B/FV, TFHE, HEAAN
- [Choudhury,Loftus,Orsini,Patra,Smart'13]
- similar idea used to bridge FHE and Multi Party Computation (MPC) protocols

Open Problems

- In practice, bootstrapping still slow
- active area of research and implementation
- can bootstrapping be avoided completely?
- Main theoretical problem
- $E_{s}{ }^{\prime \prime}(m)=\left\{E_{s}(\alpha(s) * m)\right\}$ is circular secure! (E_{s} can securely encrypt linear functions of s, under standard LWE assumption.)
- FHE also requires circular security of $E_{s}{ }^{\prime \prime}(s)$ to reduce error.
- Can security of $E_{s}{ }^{\prime \prime}(s)$ be proved based on standard LWE?

Thank You!

Questions?

