Lattice Cryptography:

from Linear Functions to Fully Homomorphic Encryption

Daniele Micciancio (UC San Diego)

November 2018

Lattice cryptography

• Lattices: regular sets of vectors in n-dim space

- Many attractive features:
 - Post-Quantum secure candidate
 - Simple, fast and easy to parallelize
 - Versatile (FHE and much more)

Encryption

Secure communication over insecure channel

Homomorphic encryption

- Encryption function such that $E_k(a) + E_k(b) = E_k(a+b)$
- (+) can be computed without knowing k!

Lattice Cryptography: from simple encryption to FHE

 Encryption: used to protect data at rest or in transit

 Fully Homomorphic Encryption: supports arbitrary computations on encrypted data

Talk Outline

- Linear Functions: $x \rightarrow Ax$
- One-Way (hash) Functions
- Injective One-Way Functions
- Symmetric Encryption
- Public Key Encryption
- Linearly Homomorphic Encryption
- Fully Homomorphic Encryption!

Linear functions

Matrix-Vector multiplication

- $A \in Z_q^{nxm}$, $X \in Z_q^m$, $b \in Z_q^n$
- $f_A(x) = Ax$
- $f_A(x+y) = f_A(x)+f_A(y)$

m

Easy to compute and invert

• $[A_0, A_1] \times = b$

- $[A_0, A_1] \times = b$
- $A_0^{-1}[A_0, A_1] \times = A_0^{-1}b$

$$\begin{array}{c|c} X_{0} & X_{1} \\ \hline A_{0}^{-1}A_{0} = I & A_{0}^{-1}A_{1} & = & A_{0}^{-1}b \\ \end{array}$$

- $[A_0, A_1] \times = b$
- $A_0^{-1}[A_0, A_1] \times = A_0^{-1}b$
- $[| , (A_0^{-1}A_1)] = (A_0^{-1}b)$

$$f_{A}(x_{0}, x_{1}) = x_{0} + A'x_{1}$$
$$x_{0} = b' - A'x_{1}$$

Short Integer Solution (SIS)

- Ajtai's One-Way Function:
 - $f_A(x) = Ax \pmod{q}$
 - $-A \in Z_q^{nxm}, x \in \{1, \beta\}^m, b \in Z_q^n$

- Short Integer Solution Problem:
 - Given [A,b] find a <u>small</u> x such that Ax=b

Ajtai's SIS

Linear function restricted to short input x

(e.g., {0,1}^m or {-3,...,+3}^m)

- {0,1}^m not closed under (+)
 - Non-linear restriction
 - breaks Gaussian Elimination
 - makes function hard to invert
- {0,1}^m approximately closed under (+) and (-)
 - $\{0,1\}^m \pm \{0,1\}^m \subset \{-2,...,+2\}^m$
 - Limited homomoprhic property: still very useful

One-way Hash Functions

- SIS function $f_A: x \rightarrow b$ where $x \in \{1..\beta\}^m$, $b \in Z_q^n$
- [Ajtai 1998] inverting \mathbf{f}_{A} is as hard as worst case lattice problems when
 - $m(\log \beta) > n(\log q)$
 - |x| > |b|
- Function f_A : compresses the input
 - surjective (w.h.p.)
 - not injective
- Applications: hashing, digital signatures

- $[A_0, A_1] \times = b$
- $A_0^{-1}[A_0, A_1] \times = A_0^{-1}b$
- $[I, (A_0^{-1}A_1)] = (A_0^{-1}b)$

Learning With Errors (LWE)

- HNF variant of f_A :
 - $f_{[I,A']}(\mathbf{x}_0,\mathbf{x}_1) = \mathbf{x}_0 + \mathbf{A'x}_1$
 - $f_{[I,A']}(e, s) = A's + e$
- Regev 2005:

- $-\sqrt{n} < \beta \ll q = poly(n), m = poly(n) > n$
- $|\mathbf{x}| = |(\mathsf{s},\mathsf{e})| \approx (\mathsf{n}\!+\!\mathsf{m})(\log\beta) \approx \mathsf{m}(\log\beta)$
- $|b| = m(\log q) \gg |x|$
- **injective** one-way function
- applications: private key encryption and much more

Encrypting with LWE

- Idea: Use [A,b=As+e] as a one-time pad
- Private key encryption scheme:
 - secret key: $s \in Z_q^n$,
 - message: $m \in Z^m$
 - encryption randomness: [A,e]
 - E(s, m; [A,e]) = [A,As+e+m]
- [Blum,Furst,Kearns,Lipton 1993]
 - Learning Parity with Noise (LPN): q=2
 - If f_A is one-way, then b=As+e is pseudo-random
- Regev LWE: $q \rightarrow poly(n)$

Noisy Decryption

- E(s,m;[A,e]) = [A,b] where b = As+e+m
- Decryption:
 - $D(s,[A,b]) = b As = m + e \mod q$

- Low order bits of m are corrupted by e
- Fix: scale m, and round:

Still, a linear function!

• $[A_1, A_1s + e_1 + m_1] + [A_2, A_2s + e_2 + m_2]$ = $[(A_1 + A_2), (A_1 + A_2)s + (e_1 + e_2) + (m_1 + m_2)]$

 $E(m;\beta): encryption of m with error |e| < β$ • E(m₁;β₁)+E(m₂;β₂) ⊂ E(m₁+m₂;β₁+β₂)

Decryption is also linear

- $D_{s}(A,b) = b As = m + e$
- Linear in the ciphertext (A,b)
- Linear in the secret key s'=(-s,1)
 - $D_{s'}(A,b) = [A,b]s'=m+e$
 - $D_{cs'}(A,b) = [A,b](cs')=cm+ce$
- Simplifying assumption: $A=a\in Z$
 - This is just for notational simplicity

Operations on Ciphertexts

- Add: $E(m_1;\beta_1) + E(m_2;\beta_2) \subset E(m_1+m_2;\beta_1+\beta_2)$
- Neg: $-E(m;\beta) = E(-m;\beta)$
- Mul: $c^*E(m;\beta) = E(c^*m; c^*\beta)$
- Const: $[0,m] \in E(m;0)$

Weak linear homomorphic properties

- can perform a limited number of additions and multiplications by small constants
- decryption is linear in the secret key s'=(-s,1)

Public Key Encryption

• Public Key:

 $[a_1,b_1] = E_s(0), ..., [a_n,b_n] = E_s(0)$

- Encrypt(m): $(\Sigma_i r_i * [a_i, b_i]) + (0, m)$ - $E_s(0) + ... + E_s(0) + E_s(m; 0) = E_s(m)$
- Decrypt normally using secret key
- [Regev'05] LWE Public Key Encryption
- [Rothblum'11]: any weakly linear homomorphic encryption implies public key encryption

Multiplication by any constant

- $E'[m] = E[m], E[2m], E[4m], ..., E[2^{log(q)}m]$
- Multiplication by $\mathbf{c} \in Z_q$:
 - Write $c = \Sigma_i c_i 2^i$, where $c_i \in \{0,1\}$
 - Compute $\Sigma_i c_i E[2^i m] = E[\Sigma_i c_i 2^i m] = E[cm]$
- **c**E'[m] = E[**c**m]
- We can also compute E'[cm]:
 c*E'[m],(2c)*E'[m],...,(2^{log q}c)*E'[m]

Homomorphic Decryption

- Idea:
 - Encryption E(m) = (a,as+e+m) is linearly homomorphic
 - Decryption D(a,b) = b as = m+e is linear in s'=(-s,1)
 - We can decrypt homomorphically using an encryption of s'
- Details
 - Given: E(m) = (a,b) and E'(s') = (E'(-s),E'(1))
 - Compute E(m)*E'(s') = a*E'(-s)+b*E'(1)=E(m)
- More interesting:
 - Given E(m) and E'(cs')
 - Compute E(m)*E'(cs') = E(cm)

Homomorphic "decrypt and multiply"

- $E''(c) = E'(cs') = E'("E(m) \rightarrow c*m")$
- E''(c) = $\{E(\alpha_i c)\}_i$ for some $\alpha_i(s)$
- Homomorphic Properties:
 - $E''(m_1) + E''(m_2) = E''(m_1+m_2)$
 - E''(m₁)*E''(m₂)
 - = { E($\alpha_i m_1$)*E''(m_2) }_i
 - ={E($\alpha_{i}m_{1}^{*}m_{2}$)}
 - $= E''(m_1*m_2)$

GSW Encryption

- [Gentry,Sahai,Waters'13]
 - FHE based on "approximate eigenvectors"
 - Essentially equivalent to E''(m)
- [Alperin-Sheriff,Peikert'14]
 - Use E'' to implement homomoprhic decrypt.
 - $E_{s}(m;\beta) @ E_{s}''(s) = E_{s}(m;\beta')$
 - $\beta' \ll \beta$: Fully Homomorphic Encryption via bootstrapping [Gentry 2009]

Many other FHE variants

- [Brakerski,Gentry,Vaikuntanathan'12]
- [Brakerski'12 / Fan, Vercauteren'12]
- HELib [Halevi,Shoup'13]
- FHEW, TFHE, HEAAN,...
- All based on similar building blocks and techniques
- Complexity of bootstrapping still main efficiency bottleneck

FHEW / TFHE

- [Ducas, M. 2015] FHEW
 - Multiplication via addition:
 - $m_1, m_2 \in \{0, 1\} \subset \{0, 1, 2, 3\}$
 - $m_1+m_2 \in \{0,1,2\}$: 2 ↔ $m_1=m_2=1$
 - $-(m_1+m_2)/2 = m_1*m_2$
 - Allows fast bootstrapping (<1 sec)
- [Chillotti,Gama,Georgieva,Izabachene'16]
 TFHE: improved bootstrapping (<0.1 sec)
- [M., Sorrell'18] Amortized FHEW bootstrapping

Approximate FHE

- HEAAN [Cheon,Kim,Kim,Song'16]
 - HE for Arithmetic on Approximate Numbers
 - Many real world applications deal with approximate (floating point) data
 - D(a,b)=m+e is ok
 - no need to scale m, results in much better performance in many applications
 - Allows to use numerical techniques

Combining different schemes

- Chimera [Boura,Gama,Georgieva'18]
 - uses linearity of decryption to convert between different FHE
 - allows combined use of B/FV, TFHE, HEAAN
- [Choudhury,Loftus,Orsini,Patra,Smart'13]
 - similar idea used to bridge FHE and Multi Party Computation (MPC) protocols

Open Problems

- In practice, bootstrapping still slow
 - active area of research and implementation
 - can bootstrapping be avoided completely?
- Main theoretical problem
 - $E_{s}''(m) = \{E_{s}(\alpha(s)*m)\}\$ is circular secure! $(E_{s} can securely encrypt linear functions of s, under standard LWE assumption.)$
 - FHE also requires circular security of E_s''(s) to reduce error.
 - Can security of $E_{s}''(s)$ be proved based on standard LWE?

Thank You!

Questions?