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Lattice cryptography

● Lattices: regular sets of vectors in n-dim space

● Many attractive features:
– Post-Quantum secure candidate
– Simple, fast and easy to parallelize
– Versatile (FHE and much more)
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Encryption

● Secure communication over insecure channel

”Hi”

c=Encrypt(k,”Hi”)

Decrypt(k,m)=”Hi”
Alice says “Hi”.

c = ???
Alice

Bob

Eve
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k
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Homomorphic encryption

● Encryption function such that 
Ek(a) + Ek(b) = Ek(a+b)

● (+) can be computed without knowing k!
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Lattice Cryptography:
from simple encryption to FHE

● Encryption: used to protect data at rest or 
in transit

● Fully Homomorphic Encryption: supports 
arbitrary computations on encrypted data

Enc( m )

Enc( m )

Enc( m )

Enc(  m  )

Enc(  F(m)  )



  

Talk Outline

● Linear Functions: x → Ax
● One-Way (hash) Functions
● Injective One-Way Functions
● Symmetric Encryption
● Public Key Encryption
● Linearly Homomorphic Encryption
● Fully Homomorphic Encryption!



  

Matrix-Vector multiplication

● A ∈ Zq
nxm, x∈Zq

m, b∈Zq
n

● fA(x) = Ax

● fA(x+y) = fA(x)+fA(y)

● Easy to compute and invert

A

x

b=n

m

Linear functions

A,x   A,b     

matrix-vector multiplication

Gaussian elimination



  

Hermite Normal Form

A1

x1

b=A0

x0

● [A0,A1] x = b

n

n m-n



  

Hermite Normal Form

A1

x1

b=A0
-1 A0

x0

A0
-1

● [A0,A1] x = b

● A0
-1[A0,A1] x = A0

-1b



  

Hermite Normal Form

A0
-1A1

x1

A0
-1b=A0

-1A0= I

x0

● [A0,A1] x = b

● A0
-1[A0,A1] x = A0

-1b

● [ I , (A0
-1A1)]x = (A0

-1b)

fA(x0,x1)=x0 + A’x1 

x0 = b’ - A’x1  

fA(x0,x1)=x0 + A’x1 

x0 = b’ - A’x1  



  

● Ajtai’s One-Way Function:
– fA(x) = Ax (mod q)

– A ∈ Zq
nxm, x∈{1..β}{1..β}m, b∈Zq

n

● Short Integer Solution Problem:
– Given [A,b] find a smallsmall x such that Ax=b

A

x

b=n

m

Short Integer Solution (SIS)

A,x   A,b     

f



  

Ajtai’s SIS

● Linear function restricted to short input x 
(e.g., {0,1}m or {-3,…,+3}m)

● {0,1}m not closed under (+)
– Non-linear restriction
– breaks Gaussian Elimination
– makes function hard to invert

● {0,1}m approximately closed under (+) and (-)
– {0,1}m ± {0,1}m ⊂{-2,...,+2}m

– Limited homomoprhic property: still very useful



  

One-way Hash Functions

● SIS function fA: x → b where x∈{1..β}m , b∈Zq
n

● [Ajtai 1998] inverting fA is as hard as worst case 
lattice problems when 
– m(log β) > n(log q)
– |x| > |b|

● Function fA: compresses the input
– surjective (w.h.p.)
– not injective

● Applications: hashing, digital signatures



  

Hermite Normal Form

A’

x1

b’=I

x0

● [A0,A1] x = b

● A0
-1[A0,A1] x = A0

-1b

● [ I , (A0
-1A1)]x = (A0

-1b)
fA(x0,x1)=x0+A’x1 fA(x0,x1)=x0+A’x1 



  

Learning With Errors (LWE)

● HNF variant of fA:

– f[I,A’](x0,x1)=x0 + A’x1

– f[I,A’] ( e, s)= A’s + e

● Regev 2005: 
– fA is one-way, assuming quantum hardness of lattice problems

– √n < β ≪ q = poly(n),    m=poly(n) > n
– |x| = |(s,e)| ≈ (n+m)(log β) ≈ m(log β)
– |b| = m(log q) ≫ |x|
– injectiveinjective one-way function
– applications: private key encryption and much more

A’

s

e b=+m

n



  

Encrypting with LWE

● Idea: Use [A,b=As+e] as a one-time pad
● Private key encryption scheme:

– secret key: s ∈ Zq
n, 

– message: m ∈ Zm

– encryption randomness: [A,e]
– E(s, m; [A,e]) = [A,As+e+m]

● [Blum,Furst,Kearns,Lipton 1993]
– Learning Parity with Noise (LPN): q=2

– If fA is one-way, then b=As+e is pseudo-random

● Regev LWE: q → poly(n)

A’

s

e b=+m

n



  

Noisy Decryption

● E(s,m;[A,e]) = [A,b] where b = As+e+m
● Decryption:

– D(s,[A,b]) = b - As = m+e mod q

– Low order bits of m are corrupted by e

● Fix: scale m, and round: 

0                           q     +e

0      q/4    q/2   3q/4

q/4
q/8



  

Still, a linear function!

● [A1,A1s+e1+m1]  + [A2,A2s+e2+m2]

= [(A1+A2),(A1+A2)s+(e1+e2)+ (m1+m2)]

E(m;β): encryption of m with error |e| < β

● E(m₁;β₁)+E(m₂;β₂) ⊂ E(m₁+m₂;β₁+β₂)



  

Decryption is also linear

● Ds(A,b) =b – As = m+e

● Linear in the ciphertext (A,b)
● Linear in the secret key s’=(-s,1)

– Ds’(A,b) = [A,b]s’=m+e

– Dcs’(A,b) = [A,b](cs’)=cm+ce

● Simplifying assumption: A=a∈Z
– This is just for notational simplicity



  

Operations on Ciphertexts

● Add: E(m₁;β₁)+E(m₂;β₂)⊂E(m₁+m₂;β₁+β₂)
● Neg:     E(m;β) = E(-m;β)
● Mul:    c*E(m;β) = E(c*m; c*β)
● Const:   [O,m] ∈ E(m;0)

Weak linear homomorphic properties
– can perform a limited number of additions and 

multiplications by small constants
– decryption is linear in the secret key s’=(-s,1)



  

Public Key Encryption

● Public Key: 
[a1,b1] = Es(0), …, [an,bn]=Es(0)

● Encrypt(m): (Σi ri * [ai,bi]) + (0,m)
– Es(0)+...+Es(0)+Es(m;0) = Es(m)

● Decrypt normally using secret key
● [Regev’05] LWE Public Key Encryption
● [Rothblum’11]: any weakly linear homomorphic 

encryption implies public key encryption 



  

Multiplication by any constant

● E’[m] = E[m],E[2m],E[4m],…,E[2log(q)m]
● Multiplication by c ∈ Zq:

– Write c = Σi ci 2
i, where ci ∈ {0,1}

– Compute Σi ci E[2i m] = E[Σi ci 2
i m] = E[cm]

● cE’[m] = E[cm]
● We can also compute E’[cm]:

c*E’[m],(2c)*E’[m],..,(2log qc)*E’[m]



  

Homomorphic Decryption

● Idea:
– Encryption E(m) = (a,as+e+m) is linearly homomorphic
– Decryption D(a,b) = b – as = m+e is linear in s’=(-s,1)
– We can decrypt homomorphically using an encryption of s’ 

● Details
– Given: E(m)=(a,b) and E’(s’)=(E’(-s),E’(1))
– Compute E(m)*E’(s’) = a*E’(-s)+b*E’(1)=E(m)

● More interesting: 
– Given E(m) and E’(cs’)
– Compute E(m)*E’(cs’) = E(cm)



  

Homomorphic 
“decrypt and multiply”

● E’’(c) = E’(cs’) = E’(“E(m)→c*m”) 
● E’’(c) = {E(αic)}i for some αi(s)

● Homomorphic Properties:
– E’’(m1) + E’’(m2) = E’’(m1+m2)

– E’’(m1)*E’’(m2) 

={E(αim1)*E’’(m2)}i

={E(αim1*m2)}

= E’’(m1*m2)



  

GSW Encryption

● [Gentry,Sahai,Waters’13]
– FHE based on “approximate eigenvectors” 
– Essentially equivalent to E’’(m)

● [Alperin-Sheriff,Peikert’14]
– Use E’’ to implement homomoprhic decrypt.
– Es(m;β) @ Es’’(s) = Es(m;β’)

– β’ ≪ β : Fully Homomorphic Encryption via 
bootstrapping [Gentry 2009]



  

Many other FHE variants

● [Brakerski,Gentry,Vaikuntanathan’12]
● [Brakerski’12 / Fan,Vercauteren’12]
● HELib [Halevi,Shoup’13]
● FHEW,TFHE,HEAAN,…
● All based on similar building blocks and 

techniques
● Complexity of bootstrapping still main 

efficiency bottleneck



  

FHEW / TFHE

● [Ducas, M. 2015] FHEW
– Multiplication via addition:

– m1,m2∈{0,1}⊂{0,1,2,3}

– m1+m2∈{0,1,2}:    2 ↔ m1=m2=1

– (m1+m2)/2 = m1*m2

– Allows fast bootstrapping (<1 sec)

● [Chillotti,Gama,Georgieva,Izabachene’16]
– TFHE: improved bootstrapping (<0.1 sec)

● [M., Sorrell’18] Amortized FHEW bootstrapping



  

Approximate FHE

● HEAAN [Cheon,Kim,Kim,Song’16]
– HE for Arithmetic on Approximate Numbers
– Many real world applications deal with 

approximate (floating point) data
– D(a,b)=m+e is ok
– no need to scale m, results in much better 

performance in many applications
– Allows to use numerical techniques   



  

Combining different schemes

● Chimera [Boura,Gama,Georgieva’18]
– uses linearity of decryption to convert 

between different FHE
– allows combined use of B/FV, TFHE, HEAAN

● [Choudhury,Loftus,Orsini,Patra,Smart’13]
– similar idea used to bridge FHE and Multi 

Party Computation (MPC) protocols



  

Open Problems

● In practice, bootstrapping still slow
– active area of research and implementation
– can bootstrapping be avoided completely?

● Main theoretical problem
– Es’’(m) = {Es(α(s)*m)} is circular secure! (Es can 

securely encrypt linear functions of s, under standard 
LWE assumption.)

– FHE also requires circular security of Es’’(s) to reduce 
error.

– Can security of Es’’(s) be proved based on standard LWE?



  

Thank You!

Questions?
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