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Abstract

Bayesian Optimization (BO) is a powerful machine learning solution for uncon-
strained optimization when the objective function requires expensive black box
evaluation. BO provides a smart sampling procedure that can dramatically reduce
the number of required evaluations. Adapting BO to constrained optimization
problems where the constraint function is also an expensive black box is attractive,
but not a straightforward extension of existing methods. We present a novel ap-
proach that leverages natural advantages from a numerical optimization method, the
Alternating Direction Method of Multipliers (ADMM). We compare our approach,
which we call ADMMBO, against several existing constrained BO methods on
two benchmark problems. We reach optimal feasible solutions more rapidly than
existing methods and are more robust to starting points.

1 INTRODUCTION

In this paper, we present an approach to solve constrained optimization problems for which the
objective function and the constraints are unknown black-box functions that are expensive to evaluate.
Our method is set in the context of Bayesian Optimization (BO), which is a class of methods
solving unconstrained optimization problems while minimizing the number of evaluations (1; 2).
BO appropriately selects a sequence of samples to evaluate with an acquisition function (AF) that
estimates the benefit that would be obtained by sampling at each point in the search space. At every
iteration, the “recommended” new point is the maximizer of the acquisition function, which is known
and can be optimized with standard optimization techniques. Despite being a relatively new field,
several acquisition functions have been proposed. One example is Expected Improvement (EI) (3),
which calculates the expectation of improving the best observed objective value so far when sampling
any new point. Another, Predictive Entropy Search (PES) (4), computes the expected reduction in the
differential entropy of the predictive distribution given a function evaluation at a new point.

Most work in Bayesian Optimization has focused on unconstrained optimization problems. Extending
Bayesian Optimization to solve problems with unknown (black box) constraints as well has seen
recent interest, although it remains largely unresolved due to its many challenges. For one, there in
general is no prior knowledge about the feasible region nor whether the optimal solution, x∗, is likely
to be located on its boundary or in the interior. In addition, there are no guarantees that any initial
guess is feasible, and in cases where the feasible set is small a considerable number of samples may
be evaluated even before starting the full algorithm’s first feasible iteration.

Related Work. Constrained Bayesian Optimization approaches can be divided into two main groups:
methods that modify the acquisition function and methods based on classical numerical optimization.
The first group modifies an unconstrained BO acquisition function so that it simultaneously takes
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into account the feasibility of a proposed solution along with the objective value. Within this group,
Gardner et.al. proposed Expected Improvement with Constraints (EIC), which modifies the EI
AF by weighting it with the probability of feasibility (5; 6). This method has the advantage of a
closed-form expressions for GP models, but high probability of feasibility tends to favor solutions in
the interior of the feasible region. This limitation can be problematic when the global optimum is
at/near the boundary of the feasible set. A different approach (7) extends PES to formulate a new AF
called Predictive Entropy Search with Constraints (PESC) (7; 8). This AF is an expectation, with
respect to the posterior distribution of the objective function and constraints evaluated at a candidate
point, of the reduction in the differential entropy of the posterior at that point. The advantage of
PESC is that it decouples the objective function and constraint terms, allowing them to be optimized
separately. Moreover, due to this decoupling, PESC can start from an infeasible point. However,
PESC lacks a closed-form solution and thus it requires Expectation Propagation approximation (9),
which is relatively hard to implement and might lead to numerical instabilities (7). The second
class of methods take advantage of classical optimization techniques based on an unconstrained
transformation of the original problem that they can be solved with regular BO methods. To the best
of our knowledge, the only existing method following this direction is Augmented Lagrangian BO
(ALBO) (10). It solves the Augmented Lagrangian form of the problem, which is unconstrained, and
sequentially minimizes this function over x and evaluates the resulting constraint residual to update
the Lagrange multipliers. Here, the minimization step is done using Expected Improvement, which
yields closed-form solutions after properly reformulating the problem with slack variables (11).

Contributions. Our contribution resides in the second group. We leverage a numerical optimization
framework called Alternating Direction Method of Multipliers (ADMM) (12) to formulate a new
method, called ADMMBO. In ADMM, we reformulate the problem to include the constraint as an
additive term in the objective function that penalizes the objective with +∞ when the solution is
infeasible and remains zero otherwise. To solve this now unapproachable optimization problem,
ADMM uses variable splitting to decouple the problem into two solvable problems: one that mini-
mizes the objective over the primary variable and a second that minimizes feasibility penalization over
an auxiliary variable. The indicator function in the ADMMBO evaluates any feasible point equally,
whether located on constraint boundaries or in the interior. Furthermore, ADMMBO sub-problems
can flexibly adopt any Bayesian Optimization method of choice. Here we used EI and leveraged
closed-form solutions. An additional attractive property of ADMMBO is that we can utilize ADMM
optimality conditions as a stopping criterion. ADMMBO shares this property with ALBO, but in the
original paper and in our own experiments ALBO usually requires prohibitive iterative computation,
hitting a pre-set computational upper limit (budget) before it reaches convergence.

2 ADMMBO Formulation
We are interested in solving the following constrained optimization problem:

min
x∈B

f(x)

s.t. c(x) ≤ 0,
(1)

where f : Rd → R and c : Rd → R are unknown Lipschitz continuous functions, and B ⊂ Rd is
a known hyperrectangle. We further assume that we have observed a limited number of function
values F = {f(x1), . . . , f(xt)} and C = {c(x1), . . . , c(xm)}. Thus, our goal is to determine a
sampling procedure of f(·) and c(·) that sequentially approaches the solution of (1) with the minimum
amount of queries possible. To solve problem (1), we reformulate it as an unconstrained optimization
min
x∈B

f(x) + 1∞{c(x) > 0} where 1∞{A} is an indicator function that is∞ when A is true and zero

otherwise. Thus, the constraint c(·) is enforced through a penalty term. Since having the infinity
penalty is not computationally tractable, we approximate the objective with a large positive penalty
M <∞ and replace 1∞{c(x) > 0} by M1{c(x) > 0}, where 1{A} is a binary indicator function
that is one when A is true and zero otherwise. The advantage of using this formulation is that we can
now solve the problem using ADMM’s steps (review of ADMM in the Supplementary Material):

xk+1 = argmin
x∈B

f(x) +
ρ

2
‖x− zk +

yk

ρ
‖22,

zk+1 = argmin
z∈B

M1{c(z) > 0}+
ρ

2
‖xk+1 − z +

yk

ρ
‖22

yk+1 = yk + ρ(xk+1 − zk+1).

(2)
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Here, the x update —the Optimality step— minimizes the unconstrained objective function with
a penalty term that enforces solutions to be close to the feasible region. On the other hand, the
z update —the Feasibility step— looks for the point in the feasible region that is closest to the
unconstrained optimum found in the Optimality step. Since both of the Optimality and Feasibility
sub-problems include unknown terms (i.e. f -related and c-related terms) we solve them using any
unconstrained Bayesian Optimization technique. In the following we will describe an implementation
of the ADMMBO framework using Gaussian Processes to model the unknown functions and Expected
Improvement yielding to closed-form solutions for both sub-problems. However, the ADMMBO
framework can be applied with any combination of probabilistic models and acquisition functions.

2.1 Expected Improvement for the Optimality Step

We call the objective function in the first optimization of (2) as l(x). We model f(x) as a GP,
f̃(·) ∼ GP (0,K(·, ·)). Moreover, since the quadratic term in l(x) is deterministic, the probability
distribution of the objective is also a GP, l̃(·), with mean µ(x) = ρ

2‖x−z
k+ yk

ρ ‖
2
2 and the same kernel

function as f̃(·). Thus, the posterior probability of a new function evaluation l(xt+1) is a Gaussian
distribution with mean ml(xt+1) and variance σl(xt+1), which are determined from the observed
samples L = {l(x1), . . . , l(xt)} with the standard formulation of GP (13). With this formulation, the
expected improvement results in the following closed-form expression:

EI(x) = El̃|L
[
max(0, l+ − l̃(x))

]
= σl(x)

(
ZΦ(Z) + φ(Z)

)
, (3)

where Φ(·) denotes the standard normal cumulative distribution function, φ(·) is the standard normal
probability density function, l+ denotes the best observed value and Z = ml(x)−l+

σl(x)
.

2.2 Expected Improvement for the Feasibility Step

We are interested to minimize the objective function in the second optimization of (2) which we
call it h(z), given a current set of data, H = {h(z1), . . . , h(zm)}. To define a probabilistic model
for h̃(z), we assume that c̃(·) is drawn from a Gaussian Process and model the I(c̃(z) > 0) as a
Bernoulli random variable. The parameter of this variable is then p[c̃(z) > 0], which is one minus the
cumulative distribution function (CDF) of a Gaussian distribution. The quadratic term is a constant
value for any z. Thus, h̃(z) has a shifted Bernoulli distribution described as

h̃(z) =

{
ρ

2M ‖x
k+1 − z + yk

ρ ‖
2
2 + 1, with p

[
c̃(z) > 0

]
ρ

2M ‖x
k+1 − z + yk

ρ ‖
2
2, with p

[
c̃(z) ≤ 0

] (4)

We can now calculate the Expected Improvement for this probabilistic model. Let the minimum best
value observed so far be h+, then EI can be calculated as the expected value of the improvement
function (i.e. I(z) = max(0, h+ − h̃(z))) with respect to the shifted Bernoulli distribution:

EI(z) =


0, if Q(z) ≤ 0

If (z)p
[
c̃(z) ≤ 0

]
, if 0 < Q(z) ≤ 1

If (z)p
[
c̃(z) ≤ 0

]
+ Iinf (z)p

[
c̃(z) > 0

]
, else

(5)

whereQ(z) = h+− ρ
2M ‖x

k+1−z+ yk

ρ ‖
2
2, If (z) = max

(
0, Q(z)

)
and Iinf (z) = max

(
0, Q(z)−1

)
.

Using the Gaussian CDF of c̃(.), we can exactly and easily compute the Expected Improvement of
each point in the feasibility step (see the Supplementary Material for the derivation).

3 EXPERIMENTS & RESULTS
In this section, we highlight four different aspects of the performance of ADMMBO compared to
existing methods. First, we are interested in the best feasible objective value obtained for a given
budget of black-box (BB) evaluations. Second, we evaluate how rapidly the algorithms approach the
optimum as a function of black-box evaluations. Third, we want to report on the number of function
evaluations needed to observe the first feasible point, and finally, we are interested in exploring
the sensitivity of the algorithms to the (random) initial observations. To report these results, our
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figures display curves (in solid lines) of the best objective value f(x) obtained as a function of
number of black-box (BB) evaluations. We run our algorithm for 100 random initializations and
report the median of the best feasible solution obtained (solid lines on the plots) and also show the
25th and 75th percentiles (to capture variability). Since only feasible solutions are acceptable, we
start a curve when the first feasible point is observed. Note that different random initialization runs
might need different number of BB evaluations. We show the largest number of BB evaluations
(worst case) needed to obtained the first feasible point among all runs, and display this with a vertical
dashed line. Hence, the earlier this dashed vertical line occurs on the horizontal axis means better in
terms of efficiency in finding a feasible solution. Before starting the median curve, we also report
the median and percentiles among all the available runs (the ones that already observed a feasible
point) using scattered points to showcase variability of the runs. As we mentioned earlier, we set a
maximum over the number of black-box evaluations and run the algorithms until the budget will be
exhausted or the optimality conditions, if it has been defined for the algorithm of interest, has been
satisfied. We compare ADMMBO against EIC, basic ALBO requiring approximation which we call
ALBO-NoSlack, modified ALBO with closed-form solutions which we call ALBO-Slack, and PESC.
We chose two benchmark test problems from the Bayesian Optimization literature. Problem 1 deals
with sinusoidal highly non-linear functions as its objective function and constraint resulting in a small
feasible region (5). Problem 2 is a multiple constraint problem optimizing a linear function over a
non-linear feasible region based on a quadratic function and a sinusoidal function (11; 10; 7) (details
in the supplementary material). Blue solid lines demonstrate the constraint boundaries. Given a fixed
budget, magenta crosses denotes the ADMMBO’s optima, black crosses show the EIC’s optima, and
cyan crosses denote ALBO-Slack’s, all among 100 runs with random initializations. The yellow star
is the real global optimum and the red stars are the real local optima.

Results. Figure 1 shows that among all experiments, ADMMBO is consistently the only method
that not only rapidly approaches to the real optimum, it has the capability to stop before exhausting
the function evaluation budget. We believe that the reason behind this rapid convergence is because
ADMMBO first seeks the unconstrained optimum of the problem, and then looks for the closest
point to that optimum which belongs to the feasible set, which turns out to be an effective search
strategy. Moreover, ADMMBO also has the least variability. One potential drawback of ADMMBO
is initializing the ADMM penalty parameter ρ, the infeasibility penalty coefficient M , the initial
Lagrange multiplier y0, and the initial auxiliary variable z0. Good initial values will clearly speed
up the optimization time. In our examples here we followed the default initialization suggested in
(12) and were able to obtain favorable results. However, for more complicated problems, an adaptive
initialization policy similar to what ADMM suggests for ρ can make the algorithm less sensitive to
the possibility of a poor initialization (12).
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Supplementary Material

ADMM REVIEW

ADMM solves problems in the form

min
x∈B

f(x) + g(x), (6)

where x ∈ Rd, f, g : Rd → R and, without loss of generality, B ⊂ Rd is a known bounded
hyperrectangle. In order to solve this optimization problem, ADMM introduces an auxiliary variable
z ∈ Rd and reformulates the problem as:

min
x,z∈B

f(x) + g(z)

s.t. x = z.
(7)

Since the equality constraint enforces x and z to be the same, the problem (7) remains equivalent to
the problem (6). The Augmented Lagrangian function for problem (7) is:

Lρ(x, z, y) = f(x) + g(z) + yT (x− z) +
ρ

2
‖x− z‖22. (8)

The advantage of this new formulation is that (8) is separable with respect to f(.) and g(.) and can be
solved by alternatively optimizing over the following sub-problems:

xk+1 = argmin
x

Lρ(x, z
k, yk),

zk+1 = argmin
z

Lρ(x
k+1, z, yk),

yk+1 = yk + ρ(xk+1 − zk+1),

(9)

where ρ is a positive real parameter. For a detailed review see (12).

We want to emphasize an important distinction between this formulation and ALBO. Both use an
Augmented Lagrangian function. However ALBO computes the Augmented Lagrangian function
over the base problem with the unknown constraints included resulting in a prohibitive penalty term,
max(0, c(x)2), in the Augmented Lagrangian function. However, as can be seen above, ADMMBO
forms the Augmented Lagrangian function over an equivalent problem with a deterministic constraint
over the primary and auxiliary variables, resulting in a deterministic penalty term, ρ2‖x− z‖

2
2, in the

Augmented Lagrangian function. Thus , in the context of BO with unknown objective and constraint,
this means that ALBO needs to treat the constraint as a stochastic problem while ADMMBO treats
the constraint as deterministic with a simple quadratic penalty.

Optimality Conditions

Primal feasibility and dual feasibility are the necessary and sufficient conditions for an optimal
ADMM solution. To evaluate these feasibility conditions ADMM defines the primal and dual
residuals

rk+1 = xk+1 − zk+1,

sk+1 = ρ(zk+1 − zk),
(10)

respectively. The algorithm is considered to have converged when the residuals are sufficiently small:

‖rk+1‖2 ≤ εprimal,
‖sk+1‖2 ≤ εdual,

(11)

where εprimal and εdual are pre-defined optimality tolerances. Here we choose them following a
heuristic suggested in (12). ADMM iterates through the sub-problems in (9) until it either satisfies
both stopping criteria in (11) or reaches a preset maximum number of iterations. In practice there are
heuristic approaches to update the penalty parameter ρ across iterations (12).
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Deriving the Expected Improvement for the Feasibility Step

EI(z) = E
h̃|H

(max(0, h+ − h̃(z))) =

max

(
0, h+ − ρ

2M
‖xk+1 − z +

yk

ρ
‖22 − 1

)
p
[
c̃(z) > 0

]
+max

(
0, h+ − ρ

2M
‖xk+1 − z +

yk

ρ
‖22
)
p
[
c̃(z) ≤ 0

]
.

(12)

The value of this equation depends on the range of the distance between the best value observed so
far and the scaled shifted distance between z and the optimum found by the optimality step xk+1 (i.e.
h+ − ρ

2M ‖x
k+1 − z + yk

ρ ‖
2
2) which we denote as Q(z). If the mentioned term is non-positive, both

improvements and their corresponding expectations are zero. If the Q(z) lies between zero and one,
the first improvement is zero while the second one has a positive value. Otherwise when this term is
larger than one, both improvements are positive. Thus, we can simplify equation (12) as (5).

Mathematical Definition of Test Problems

In the following we will mathematically explain the benchmark problems we tested in this paper.
Totally there are two objective functions, one linear and one non-linear, with four constraint functions.

f1(x) =

d∑
i=1

sin(x1) + x2 (13)

f2(x) =

d∑
i=1

xi (14)

c1(x) = sin(x1)sin(x2) + 0.95 (15)

c2(x) = −x21 − x22 + 1.5 (16)

c3(x) =
1

2
sin(2π(x21 − 2x2)) + x1 + 2x2 + 1.5 (17)

Problem 1 optimizes the f1(x) over c1(x) where xi ∈ [0 6], i = 1, . . . , d. Problem 2 optimizes
the f2(x) over two constraints, i.e. c2(x) and c3(x). xi ∈ [0 1], i = 1, . . . , d. We used a squared
exponential GP kernel, i.e. K(·, ·) for our test problems and set the hyperparameters as suggested
by the paper which visited that problem first. For example for Problem 2, we used δ1 = δ2 = 0.025
following (7). Among all experiments, we started from two initial points for both the objective
function and constraints.
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