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1 THE PROBLEM OF THE STRUCTURE
OF MATTER

The microscopic description of the physical and chemical
properties of matter is a complex problem. In general, we
deal with a collection of interacting atoms, which may also
be affected by some external field. This ensemble of par-
ticles may be in the gas phase (molecules and clusters) or
in a condensed phase (solids, surfaces, wires), they could
be solids, liquids or amorphous, homogeneous or hetero-
geneous (molecules in solution, interfaces, adsorbates on
surfaces). However, in all cases we can unambiguously
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describe the system by a number of nuclei and electrons
interacting through coulombic (electrostatic) forces. For-
mally, we can write the Hamiltonian of such a system in
the following general form:

P h2 N 2
g=_S"" yv2_ o
Zz . sz i
I=1 i=1
2 P P 2 N N
e YAYA e 1
D) WLPES
243 oy IR, —R,| ~ 243 i Ir =1l
P N 7
2 I
- ZZ|RI—r M

where R={R;}, I =1,..., P, is a set of P nuclear
coordinates and r = {r;},i =1,..., N, is a set of N elec-
tronic coordinates. Z; and M; are the P nuclear charges
and masses, respectively. Electrons are fermions, so that
the total electronic wave function must be antisymmetric
with respect to exchange of two electrons. Nuclei can be
fermions, bosons or distinguishable particles, according to
the particular problem under examination. All the ingredi-
ents are perfectly known and, in principle, all the properties
can be derived by solving the many-body Schrodinger
equation:

HY.(r,R) = E,¥,(r,R) 2)

In practice, this problem is almost impossible to treat in a
full quantum-mechanical framework. Only in a few cases a
complete analytic solution is available, and numerical solu-
tions are also limited to a very small number of particles.



2 Electronic structure of large molecules

There are several features that contribute to this difficulty.
First, this is a multicomponent many-body system, where
each component (each nuclear species and the electrons)
obeys a particular statistics. Second, the complete wave
function cannot be easily factorized because of coulombic
correlations. In other words, the full Schrodinger equation
cannot be easily decoupled into a set of independent equa-
tions so that, in general, we have to deal with (3P + 3N)
coupled degrees of freedom. The dynamics is an even more
difficult problem, and very few and limited numerical tech-
niques have been devised to solve it. The usual choice is to
resort to some sensible approximations. The large majority
of the calculations presented in the literature are based on
(i) the adiabatic separation of nuclear and electronic degrees
of freedom (adiabatic approximation) and (ii) the classical
treatment of the nuclei.

1.1 Adiabatic approximation
(Born-Oppenheimer)

The first observation is that the timescale associated to
the motion of the nuclei is usually much slower than
that associated to electrons. In fact, the small mass of
the electrons as compared to that of the protons (the
most unfavourable case) is about 1 in 1836, meaning
that their velocity is much larger. In this spirit, it was
proposed in the early times of quantum mechanics that
the electrons can be adequately described as following
instantaneously the motion of the nuclei, staying always in
the same stationary state of the electronic Hamiltonian.)
This stationary state will vary in time because of the
coulombic coupling of the two sets of degrees of freedom
but if the electrons were, for example, in the ground state,
they will remain there forever. This means that as the
nuclei follow their dynamics, the electrons instantaneously
adjust their wave function according to the nuclear wave
function.

This approximation ignores the possibility of having
non-radiative transitions between different electronic eigen-
states. Transitions can only arise through coupling with an
external electromagnetic field and involve the solution of
the time-dependent Schrodinger equation. This has been
achieved, especially in the linear response regime, but also
in a non-perturbative framework in the case of molecules
in strong laser fields. However, this is not the scope of this
section, and electronic transitions will not be addressed in
the following.

Under the above conditions, the full wave function fac-
torizes in the following way:

YR, r,1)=0,R NP, R, 1) 3)

where the electronic wave function ®,, (R, r) [®,, (R, 1) is
normalized for every R] is the mth stationary state of the
electronic Hamiltonian

=H-T,-U, 4)

T; and ﬁ,m are the kinetic and potential nuclear oper-
ators, i and ﬁee the same for electrons, and \7"6 the
electron—nuclear interaction. The corresponding eigenvalue
is noted ¢,,(R). In the electronic (stationary) Schrodinger
equation, the nuclear coordinates R enter as parameters,
while the nuclear wave function ©,, (R, 7) obeys the time-
dependent Schrodinger equation
00, (R, 1)

lhT —_ [Tn + ﬁnn + 8m(l{)] ®m(R’ t) (5)

or the stationary version
[T, + U, +£,(R)] O, R) = E,0,R) ()

In principle, m can be any electronic eigenstate. In practice,
however, most of the applications in the literature are
focused on the ground state (m = 0).

1.2 Classical nuclei approximation

Solving any of the two last equations (5) or (6) is a
formidable task for two reasons: First, it is a many-body
equation in the 3P nuclear coordinates, the interaction
potential being given in an implicit form. Second, the deter-
mination of the potential energy surface ¢,(R) for every
possible nuclear configuration R involves solving M3”
times the electronic equation, where M is, for example, a
typical number of grid points. The largest size achieved up
to date using non-stochastic methods is six nuclear degrees
of freedom.

In a large variety of cases of interest, however, the solu-
tion of the quantum nuclear equation is not necessary. This
is based on two observations: (i) The thermal wavelength
for a particle of mass M is®; = h//Mk,T, so that regions
of space separated by more than \; do not exhibit quan-
tum phase coherence. The least favourable case is that of
hydrogen, and even so, at room temperature %, ~ 0.4 A,
while inter-atomic distances are normally of the order of
1 A. (i) Potential energy surfaces in typical bonding envi-
ronments are normally stiff enough to localize the nuclear
wave functions to a large extent. For instance, a proton in
a hydroxyl group has a width of about 0.25 A.

This does not mean that quantum nuclear effects can be
neglected altogether. In fact, there is a variety of questions
in condensed matter and molecular physics that require a
quantum-mechanical treatment of the nuclei. Well-known
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examples are the solid phases of hydrogen, hydrogen-
bonded systems such as water and ice, fluxional molecules
and even active sites of enzymes. There is, however, an
enormous number of systems where the nuclear wave pack-
ets are sufficiently localized to be replaced by Dirac’s
d-functions. The centres of these d-functions are, by def-
inition, the classical positions R.

The connection between quantum and classical mechan-
ics is achieved through Ehrenfest’s theorem for the mean
values of the position and momentum operators.’”) The
quantum-mechanical analog of Newton’s equations is

*(R))

gt = (Ve 5 (R) )

where the brackets indicate quantum expectation values.
The classical nuclei approximation consists of identifying
(R;) with R?l . In this case, the nuclear wave function is
represented by a product of §-functions, then (Ve, (R)) =
Ve, (R,). The latter is strictly valid only for 3-functions
or for harmonic potentials. In the general case, the leading
error of this approximation is proportional to the anhar-
monicity of the potential and to the spatial extension of the
wave function.

Assuming these two approximations, we are then left
with the problem of solving the many-body electronic
Schrodinger equation for a set of fixed nuclear positions.
This is a major issue in quantum mechanics, and we shall
devote the remainder of this chapter to it.

2 THE ELECTRONIC PROBLEM

The key problem in the structure of matter is to solve
the Schrodinger equation for a system of N interacting
electrons in the external coulombic field created by a
collection of atomic nuclei (and may be some other external
field). It is a very difficult problem in many-body theory
and, in fact, the exact solution is known only in the case
of the uniform electron gas, for atoms with a small number
of electrons and for a few small molecules. These exact
solutions are always numerical. At the analytic level, one
always has to resort to approximations.

However, the effort of devising schemes to solve this
problem is really worthwhile because the knowledge of
the electronic ground state of a system gives access to
many of its properties, for example, relative stability
of different structures/isomers, equilibrium structural
information, mechanical stability and elastic properties,
pressure—temperature (P-T) phase diagrams, dielectric
properties, dynamical (molecular or lattice) properties
such as vibrational frequencies and spectral functions,
(non-electronic) transport properties such as diffusivity,

viscosity, ionic conductivity and so forth. Excited electronic
states (or the explicit time dependence) also give access to
another wealth of measurable phenomena such as electronic
transport and optical properties.

2.1 Quantum many-body theory: chemical
approaches

The first approximation may be considered the one pro-
posed by Hartree (as early as in 1928, in the very beginning
of the age of quantum mechanics).®¥ It consists of postu-
lating that the many-electron wave function can be written
as a simple product of one-electron wave functions. Each
of these verifies a one-particle Schrodinger equation in an
effective potential that takes into account the interaction
with the other electrons in a mean-field way (we omit the
dependence of the orbitals on R):

O(R, 1) = 1,9, () 3
h? ;
(‘%Vz + Ve(t{f) (R, 1')) ¢; (r) = &¢;(r) ©)
with
N
D o)
VERD =R+ [T e o)
v —r
where
p; () = lg; ) an

is the electronic density associated with particle j. The
second term in the right-hand side (rhs) of equation (10) is
the classical electrostatic potential generated by the charge
distribution ZJN i P; (D). Notice that this charge density does
not include the charge associated with particle i, so that the
Hartree approximation is (correctly) self-interaction-free. In
this approximation, the energy of the many-body system is
not just the sum of the eigenvalues of equation (9) because
the formulation in terms of an effective potential makes
the electron—electron interaction to be counted twice. The
correct expression for the energy is

E, = Z// P (r )pf /) drdr’ (12)

i#]

The set of N coupled partial differential equations (9)
can be solved by minimizing the energy with respect to
a set of variational parameters in a trial wave function
or, alternatively, by recalculating the electronic densities
in equation (11) using the solutions of equation (9), then
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casting them back into the expression for the effective
potential (equation 10), and solving again the Schrodinger
equation. This procedure can be repeated several times,
until self-consistency in the input and output wave function
or potential is achieved. This procedure is called self-
consistent Hartree approximation.

The Hartree approximation treats the electrons as dis-
tinguishable particles. A step forward is to introduce
Pauli exclusion principle (Fermi statistics for electrons) by
proposing an antisymmetrized many-electron wave function
in the form of a Slater determinant:

®(R, 1)
@ (r,0) @ (ry,0,) @ (ry,on)
1 9 (r1,01)  @y(ry,0,) @, (ry, o)
VN! : : :
ey, 00 9;(rs, 07) enTy, oN)
(13)

This wave function introduces particle exchange in an exact
manner.+> The approximation is called Hartree—Fock
(HF) or self-consistent field (SCF) approximation and has
been for a long time the way of choice of chemists for
calculating the electronic structure of molecules. In fact,
it provides a very reasonable picture for atomic systems
and, although many-body correlations (arising from the
fact that, owing to the two-body Coulomb interactions, the
total wave function cannot necessarily be written as an
antisymmetrized product of single-particle wave functions)
are completely absent, it also provides a reasonably good
description of inter-atomic bonding. HF equations look the
same as Hartree equations, except for the fact that the
exchange integrals introduce additional coupling terms in
the differential equations:

N
> 0.0)
—h—V2+V(R r)+/:7dr’ @;(r, o)
2m Ir —r'|
N
', o) (', 0)
3 (T T
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Notice that also in HF the self-interaction cancels exactly.
Nowadays, the HF approximation is routinely used as
a starting point for more elaborated calculations like

Mgller—Plesset perturbation theory of second (MP2) or
fourth (MP4) order,® or by configuration interaction (CI)
methods using a many-body wave function made of a linear
combination of Slater determinants, as a means for intro-
ducing electronic correlations. Several CI schemes have
been devised during the past 40 years, and this is still an
active area of research. Coupled clusters (CC) and complete
active space (CAS) methods are currently two of the most
popular ones.7®

Parallel to the development of this line in electronic
structure theory, Thomas and Fermi proposed, at about the
same time as Hartree (1927-1928), that the full electronic
density was the fundamental variable of the many-body
problem and derived a differential equation for the den-
sity without resorting to one-electron orbitals.-!9 The
Thomas—Fermi (TF) approximation was actually too crude
because it did not include exchange and correlation effects
and was also unable to sustain bound states because of the
approximation used for the kinetic energy of the electrons.
However, it set up the basis for the later development of
density functional theory (DFT), which has been the way
of choice in electronic structure calculations in condensed
matter physics during the past 20 years and recently, it
also became accepted by the quantum chemistry commu-
nity because of its computational advantages compared to
HF-based methods [1].

3 DENSITY FUNCTIONAL THEORY

The total ground state energy of an inhomogeneous system
composed by N interacting electrons is given by

E=(®IT+V+0U,|d)

= (DT |D) + (P|V|P) + (P|U,,|P)

where |®) is the N-electron ground state wave function,
which has neither the form given by the Hartree approxi-
mation (8) nor the HF form (13). In fact, this wave func-
tion has to include correlations amongst electrons, and its
general form is unknown. T is the kinetic energy, V' is
the interaction with external fields, and Uee is the elec-
tron—electron interaction. We are going to concentrate now
on the latter, which is the one that introduces many-body
effects.

Q)
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with

/ 1 / /
pp(r. 1) = = D ARV (W] ()W, ()W, (1) D) (16)
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the two-body density matrix expressed in real space,
being W and W' the creation and annihilation operators
for electrons, which obey the anti-commutation relations
{W,(r), \IJ;/(r’)} =3, 3(r — ). We define now the two-
body direct correlation function g(r,r’) in the following
way:

po(r, 1) = Lp(r, Dp(r', ) g(r, 1) (17)

where o(r,r’) is the one-body density matrix (in real
space), whose diagonal elements p(r) = p(r, r) correspond
to the electronic density. The one-body density matrix is
defined as

p(r,r) = p,(r.r) (18)
P, (r, ') = (®|W] (r) ¥, (r)| D) (19)

With this definition, the electron—electron interaction is
written as

= [ 200
“ 2 [r—1r|
+1/M[g(r,r’)—1]drdr’ (20)
2 [r—1/|

The first term is the classical electrostatic interaction energy
corresponding to a charge distribution p(r). The second
term includes correlation effects of both classical and quan-
tum origin. Basically, g(r,r’) takes into account the fact
that the presence of an electron at r discourages a second
electron to be located at a position r’ very close to r because
of the Coulomb repulsion. In other words, it says that
the probability of finding two electrons (two particles with
charges of the same sign, in the general case) is reduced
with respect to the probability of finding them at infinite
distance. This is true already at the classical level and it
is further modified at the quantum level. Exchange further
diminishes this probability in the case of electrons having
the same spin projection, owing to the Pauli exclusion.

To understand the effect of exchange, let us imagine
that we stand on an electron with spin 1 and we look at
the density of the other (N — 1) electrons. Pauli principle
forbids the presence of electrons with spin 1 at the origin,
but it says nothing about electrons with spin |, which can
perfectly be located at the origin. Therefore,

1

gx@,r) — 5 for T——17 (21

In HF theory (equation 13) we can rewrite the elec-
tron—electron interaction as

1 HF HF (.
Ug]:]: _ _/ p(r)p (') drdr’
2 r—1r/|
> 1o )
[0

— drdr’
i)y |

n 1 / ()" (r)
2 r — 1|
(22)
meaning that the exact expression for the exchange deple-
tion (also called exchange hole) is

> 1o, )
[0

pHF () pHF (r) @9

gx(rr)=1-

The density and density matrix are calculated from the HF
ground state Slater determinant.

The calculation of the correlation hole — g (r,r’) —is a
major problem in many-body theory and, up to the present,
it is an open problem in the general case of an inhomoge-
neous electron gas. The exact solution for the homogeneous
electron gas is known numerically'’:!? and also in a num-
ber of different analytic approximations (see below). There
are several approximations that go beyond the homoge-
neous limit by including slowly varying densities through
its spatial gradients (gradient corrections) and also expres-
sions for the exchange-correlation energy that aim at taking
into account very weak, non-local interactions of the van
der Waals type (dispersion interactions).!?

The energy of the many-body electronic system can, then,
be written in the following way:

_ L [ p(r)p(r) ,
E_T+V+§/Wdrdr+Exc (24)
where
P N P
V= (<I>|Zv(ri —R)|®) = Z/p(r)v(r—R,)dr
= 1 I=1

I=1 i=

(25)
n Y h>
T = (®| — o Z V2| ®) = 5 / [Vip(r,r)]._, dr
i=1

(26)
and Ey is the exchange and correlation energy

L pme) ,
Eyc= 2/ ] [g(r,r) — 1]drdr 227
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3.1 Thomas-Fermi theory

Thomas and Fermi (1927) gave a prescription for con-
structing the total energy in terms only of the elec-
tronic density.!” They used the expression for the kinetic,
exchange and correlation energies of the homogeneous
electron gas to construct the same quantities for the inhomo-
geneous system in the following way: E, = [¢,[p(r)]dr,
where ¢,[p(r)] is the energy density (corresponding to the
piece a), calculated locally for the value of the density at
that point in space. This was the first time that the local
density approximation, or LDA, was used. For the homo-
geneous electron gas, the density is related to the Fermi

energy () by

1 2m\/?
s e

The kinetic energy of the homogeneous gas is T = 3pe/5,
so that the kinetic energy density is

30’ 242/3 .5/3
tlp] = g%(%’f )7 p (29)

Then, the kinetic energy is written as T = C, [ p(r)>/ dr,
with C, =3(3n*)*3/10 = 2.871 atomic units. The inho-
mogeneous system is thought of as locally homogeneous.
At variance with the usual approaches in modern DFT, here
the LDA is applied also to the kinetic energy. Neglecting
exchange and correlation in expression (24), we arrive at
TF theory:

Ewm]=6¢/puf“dr+/vumuﬂh

l// Mdrdr’ (30)
2 r—1r/|

It can be seen that Ep; depends only on the electronic den-
sity; it is a functional of the density. Assuming intuitively
some variational principle, one can search for the density
p(r), which minimizes Epg[p], subjected to the constraint
that the total integrated charge be equal to the number of

electrons: [ p(r)dr = N. This can be put in terms of func-
tional derivatives:

S
$@<&ﬂm—u/Mﬂﬁ)=0 31)

that is,

p(r ’)
|r

— _ckp(r)z/3 +u(r) + / dr (32)

with p the chemical potential. This equation can be inverted
to obtain the density as a unique function of the external
potential. This integral form in real space is inconvenient,
but it can be easily inverted by Fourier transforming the
equation to obtain p(g).

Exchange can be straightforwardly added to the expres-
sion above by considering Slater’s expression for the
homogeneous electron gas: ey [p] = —Cy [ p*3(r) dr, with
Cy = 3(3/m)'/3/4. Expression (32) is modified by the
addition of the term —(4/3)Cy p(r)!/3. This level of approx-
imation is called Thomas—Fermi—Dirac (TFD) theory.

Correlation can also be easily added by using any approx-
imation to the homogeneous electron gas, for instance, the
one proposed by Wigner: e.[p] = —0.056 p*/3/[0.079 +
pl /3]'

This is the best that can be done at the local level. Addi-
tional corrections to the kinetic, exchange and correlation
energies due to non-locality have been postulated in the
form of gradient corrections, for example, as given by the
von Weiszicker functional:(1>

VZ
Ipld

(33)

Also, terms that correct the linear response properties of
the functional have been proposed,'®~'® and even the
second-order response functions have been incorporated
into this approach.!” These have been developed in the
hopes that an explicit expression for the energy in terms of
the electronic density does really exist because an explicit-
density scheme requiring only the solution of the inverse
problem is computationally much more efficient. But how
do we know that the energy can be written as a functional
purely dependent on the density?

3.2 Hohenberg—Kohn theorem

In 1964, Hohenberg and Kohn®? formulated and proved a
theorem that put on solid mathematical grounds the former
ideas, which were first proposed by Thomas and Fermi. The
theorem is divided into two parts:

THEOREM: The external potential is univocally
determined by the electronic density, except for a trivial
additive constant.

PROOF: We will suppose the opposite to hold, that
the potential is not univocally determined by the density.
Then one would be able to find two potentials v, v’ such
that their ground state density p is the same. Let W and
E,= (\If|H |W) be the ground state and ground state energy
of H=T+U+V, and V' and E! = (¥ |H/|\If) the
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ground state and ground state energy of H=T+U+V.
Owing to the variational principle, we have

E, < (W|H|V') = (W|H'|V') + (V'|H — H'|¥')
- E6+fp(r)(v(r) —v/(r))dr

where we have also used the fact that different Hamiltoni-
ans have necessarily different ground states W # W’. This is
straightforward to show since the potential is a multiplica-
tive operator. Now we can simply reverse the situation of
W and V' (H and H') and readily obtain

E) < (V|H'|W) = (V|H|V) + (V|H — H|V)

_E, - / o®[v(r) — v(0)]dr

Adding these two inequalities, it turns out that E, + Ej <
E(’) + E,, which is absurd. Therefore, there are no v(r)
# v'(r) that correspond to the same electronic density for
the ground state.

COROLLARY: Since p(r) univocally determines
v(r), it also determines the ground state wave function W.

THEOREM: Let p(r) be a non-negative density
normalized to N. Then E, < E [p], for
E 51 = FIp)+ [ eyt dr (34)
with
F[p] = (W[pIT + UW[p]) (395)

where W[p] is the ground state of a potential that has p as
its ground state density.

PROOF: We have

(WA WG] = FI5]+ / 5(0)v(r) dr
= E,[p] > E,[p] = E;, = (V|H|V)

The inequality follows from Rayleigh—Ritz’s variational
principle for the wave function, but applied to the electronic
density. Therefore, the variational principle says

B{Ev[p]—u</p(r)dr—N)}=0

and a generalized TF equation is obtained:

SE
L BB BFI
3p dp

The knowledge of F[p] implies that one has solved the full
many-body Schrodinger equation. It has to be remarked
that F[p] is a universal functional that does not depend
explicitly on the external potential. It depends only on the
electronic density. In the Hohenberg—Kohn formulation,
Flp] = (lIJ|f+ 17|\JJ), where W is the ground state wave
function. These two theorems form the basis of DFT.

In Hohenberg—Kohn theorem the electronic density de-
termines the external potential, but it is also needed that
the density corresponds to some ground state antisymmetric
wave function, and this is not always the case. However,
DFT can be reformulated in such a way that this is
not necessary, by appealing to the constrained search
method.?" By defining

Flp]l = L“i‘;{“"ﬂ U|w)}

for non-negative densities such that f p(r)dr =N and
[1Vp!/2(r)|? dr < oo, which arise from an antisymmetric
wave function, the search is constrained to the subspace
of all the antisymmetric W that give rise to the same
density p.

Using DFT, one can determine the electronic ground state
density and energy exactly, provided that F[p] is known.
A common misleading statement is that DFT is a ground
state theory and that the question of excited states can-
not be addressed within it. This is actually an incorrect
statement because the density determines univocally the
potential, and this in turn determines univocally the many-
body wave functions, ground and excited states, provided
that the full many-body Schrodinger equation is solved.
For the ground state, such a scheme was devised by Kohn
and Sham and will be discussed in the next subsection. For
excited states there are a few extensions and generalizations
of Kohn—Sham (KS) theory, but only very recently these
are beginning to be used with some degree of success. One
such scheme, the ensemble DFT, proposed by Theophilou
in 1979 and further developed by other authors,*>=2% is
based on a generalization of Rayleigh—Ritz’s variational
principle applied to an ensemble of low-lying orthogo-
nal states. Another approach relies on an extension of
DFT to the time-dependent domain (time-dependent DFT,
or (TDDFT)).?%-?® Finally, a KS-like theory based on
the adiabatic connection between the eigenstates (not the
ground state, but any eigenstate) of a non-interacting sys-
tem with the same density as the fully interacting one was
recently proposed by Gorling.?%:39

3.3 Kohn-Sham equations

We have already briefly discussed the electron—electron
interaction potential U and we have seen that a reasonably
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good description can be obtained by separating the electro-
static (classical Coulomb energy), exchange and correlation
contributions. The biggest difficulty is to deal with corre-
lation. This is, in fact, an active field of research that has
produced significant improvements in the past decade. We
shall discuss this later on but for the moment let us men-
tion that this issue is quite under control for most systems
of interest. On the contrary, there is a problem with the
expression of the kinetic energy (\If|f|\ll) in terms of the
electronic density. The only expression we have mentioned
up to now was the one proposed by Thomas and Fermi,
which is local in the density. This is a severe shortcoming
because this model does not hold bound states, and also the
electronic shell structure is absent. The main problem with
it is that the kinetic operator is inherently non-local, though
short-ranged.

In 1965, Kohn and Sham®!) proposed the idea of
replacing the kinetic energy of the interacting electrons with
that of an equivalent non-interacting system, because this
latter can be easily calculated. The density matrix p(r, r’)
that derives from the (interacting) ground state is the sum
of the spin-up and spin-down density matrices, p(r,r’) =
Y 0,(r, ')(s = 1,2). The latter can be written as

P (r.T) =Y "1, @ (0)¢] () (36)

i=1

where {¢; ((r)} are the natural spin orbitals and {n; ;} are
the occupation numbers of these orbitals. The kinetic energy
can be written exactly as

r= Z Z”i,x<%,s| - 7|<P,~,X) (37)

s=1 i=

—_

In the following we shall assume that the equivalent non-
interacting system, that is, a system of non-interacting
fermions whose ground state density coincides with that
of the interacting system, does exist. We shall call this the
non-interacting reference system of density p(r), which is
described by the Hamiltonian

_ N V2
Hy=Y" (—7 + vR(ri)> (38)

i=1

where ﬂl? potential v (r) is such that the ground state den-
sity of Hy equals p(r) and the ground state energy equals
the energy of the interacting system. This Hamiltonian has
no electron—electron interactions and, thus, its eigenstates
can be expressed in the form of Slater determinants

1
W (r) = ﬁSD[(PM (rl)(Pz_X (ry)--- (PNS,X(I'NX)]

where we have chosen the occupation numbers to be 1 for
i <N/(s=1,2) and O for i > N,. This means that the
density is written as

2 N
o) =Y g (@ (39)

s=1 i=1
while the kinetic term is

2 N,

Trlel = Z Z(@,‘,s|

s=1 i=1

VZ
— g, 40
1., (40)

The single-particle orbitals {¢; ((r)} are the N lowest
eigenfunctions of sz =—(V?/2) + Ve (r), that is,

VZ
{_7 + “R(r)} ¢, (X) = & @, () 1)

Using Tx[p], the universal density functional can be rewrit-
ten in the following form:

] /
Flo) = Telpl + 5 [ f %drdr/ b Eyelol (42)

where this equation defines the exchange and correlation
energy as a functional of the density.

The fact that Ty[p] is the kinetic energy of the non-
interacting reference system implies that the correlation
piece of the true kinetic energy has been ignored and has
to be taken into account somewhere else. In practice, this
is done by redefining the correlation energy functional in
such a way as to include kinetic correlations.

Upon substitution of this expression for F in the total
energy functional E [p] = F[p]+ [ p(r)v(r)dr, the latter
is usually renamed the KS functional:

Egslpol = TR[D]-i-/p(r)v(r) dr
1 p(r)p(r’) ,
+ 5// Wdrdr + Excle]l  (43)

In this way we have expressed the density functional in
terms of the N = Ny, + N, orbitals (KS orbitals), which
minimize the kinetic energy under the fixed density con-
straint. In principle, these orbitals are a mathematical object
constructed in order to render the problem more tractable
and do not have a sense by themselves, but only in terms
of the density. In practice, however, it is customary to
consider them as single-particle physical eigenstates. It is
usual to hear that the KS orbitals are meaningless and can-
not be identified as single-particle eigenstates, especially in
the context of electronic excitations. A rigorous treatment,
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however, shows that KS eigenvalues differences are a well-
defined approximation to excitation energies. 30

The KS orbitals satisfy equation (41) while the problem
is to determine the effective potential v, or v as it is also
known. This can be done by minimizing the KS functional
over all densities that integrate to N particles. For the
minimizing (i.e., correct) density p, we have

3Tglp]
o) +u(r )—%u/

p(’) "

Ir rﬂ

8Exc[p] _
spr) "R

(44)

The functional derivative 3T[p]/dp(r) can be quickly
found by considering the non-interacting Hamiltonian H R
(equation 38). Its ground state energy is E,. We can
construct the functional

E, 0= Tolf + [ b0 umdr @)

Then, clearly EUR[f)] > E,, and only for the correct den-
sity p we will have E, [p] = E,. Hence, the functional
derivative of EUR[()] must vanish for the correct density
leading to

3TR[p]
dp(r)

where pj is the chemical potential for the non-interacting
system.

To summarize, the KS orbitals satisfy the well-known
self-consistent KS equations

+ vp(r) = pyg (46)

V2
{_7 + Ueff(l')} (pi,s(r) = E':i,s(pi,s(r) (47)

where, by comparison of expressions 44 and 46, the
effective potential v, or v is given by

p(r’)
[r —r|

and the electronic density is constructed with KS orbitals

Ny 2
o) =D |, @) (49)

i=1 s=1

v (F) = 0(E) + / dr' + ol (48)

The exchange-correlation potential Wy-[p](r) defined
above is simply the functional derivative of the exchange-
correlation energy 3Ey.~[p]/dp. Notice the similitude
between the KS and Hartree equations (equation 9).

The solution of the KS equations has to be obtained by
an iterative procedure, in the same way as Hartree and HF
equations. As in these methods, the total energy cannot be
written simply as the sum of the eigenvalues ¢; ., but double

lY’

counting terms have to be subtracted:

AR pp(r)
2D ks /[ r—r] o

i=1 s=1

4 {Exc[p] - / oM Lpl(T) dr} (50)

Egglo]l =

3.3.1 Interpretation

By introducing the non-interacting reference system, we
were able to take into account the most important part of
the kinetic energy. The missing part (correlations) is due
to the fact that the full many-body wave function is not a
single Slater determinant, otherwise HF theory would be
exact. If we think of a true non-interacting system, then
the KS scheme is exact, while TF theory is quite a poor
approximation that becomes reasonably good only when the
electronic density is very smooth, as in alkali metals.

The price we have to pay for having a good description
of the kinetic energy is that, instead of solving a single
equation for the density in terms of the potential, we have
to solve a system of N Euler equations. The main difference
between the KS and Hartree equations is that the effective
potential now includes exchange and correlation. Therefore,
the computational cost is of the same order as Hartree,
but much less than HF, which includes the exact non-local
exchange. Now let us make some observations:

1. The true wave function is not the Slater determinant of
KS orbitals, although it is determined by the density,
and thus by the KS orbitals used to construct the
density.

2. The correlation functional has to be modified to account
for the missing part in the kinetic energy Tx[p], which
corresponds to a non-interacting system. The exchange
functional remains unchanged.

3. Nothing ensures that the non-interacting reference sys-
tem will always exist. In fact, there are examples like
the carbon dimer C,, which do not satisfy this require-
ment. In that case, a linear combination of Slater deter-
minants that include single-particle eigenstates ¢; (r)
with i > N, can be considered. This is equivalent to
extending the domain of definition of the occupation
numbers n; ; from the integer values 0 and 1 to a
continuum between 0 and 1. In such a way we are
including excited single-particle states in the density.
At this point, some authors proposed to carry out the
minimization of the energy functional not only with
respect to KS orbitals but also with respect to the occu-
pation numbers.®? Although there is nothing wrong,
in principle, with minimizing the functional constructed
with fractional occupation numbers, the minimization
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with respect to them is not justified.*® The introduc-
tion of excited single-particle states does not mean that
the system is in a true excited state. This is only an
artefact of the representation. The true wave function
is the correlated ground state.

4. Janak’s theorem is valid.®** The ionization energy is
given by I = —u = —e_,, (if the effective potential
vanishes at long distances), while the eigenvalues are
defined as the derivatives of the total energy with
respect to the occupation numbers: ¢; = dE/dn, .

5. In DFT there is no Koopman’s theorem that would
allows us to calculate electron removal energies as
the difference between the ground state energy of an
(N 4+ 1)-electron system and that of an N-electron sys-
tem. Excitations in DFT are still an open issue because,
even if the density determines the whole spectrum
via the many-body wave function, standard approxi-
mations focus only on the ground state. Nevertheless,
extensions have been devised that made it possible to
address the question of excited states within a DFT-like
framework, in addition to the traditional many-body
scenarios.?2=3%

3.3.2 Summary

We have described a theory that is able to solve the
complicated many-body electronic ground state problem by
mapping exactly the many-body Schrodinger equation into
a set of N coupled single-particle equations. Therefore,
given an external potential, we are in a position to find
the electronic density, the energy and any desired ground
state property (e.g., stress, phonons, etc.). The density
of the non-interacting reference system is equal to that
of the true interacting system. Up to now the theory is
exact. We have not introduced any approximation into the
electronic problem. All the ignorance about the many-
fermion problem has been displaced to the Ey[p] term,
while the remaining terms in the energy are well known.

In the next section we are going to discuss the exchange
and correlation functionals. But now, we would like to
know how far is T,[p] from T'[p]. Both are the expectation
values of the kinetic operator, but in different states. The
non-interacting one corresponds to the expectation value
in the ground state of the kinetic operator, while the
interacting one corresponds to the ground state of the full
Hamiltonian. This means that T[p] < T[p], implying that
Ec[p] contains a positive contribution arising from the
kinetic correlations.

4 EXCHANGE AND CORRELATION

If the exact expression for the kinetic energy including
correlation effects, T'[p] = (V[p]|T|V[p]) (with ¥[p] being

the interacting ground state of the external potential that
has p as the ground state density), were known, then we
could use the original definition of the exchange-correlation
energy that does not contain kinetic contributions:

1 J
E9 lp] = 5// %[g(r, ) 1]drde’ (51)

Since we are using the non-interacting expression for the
kinetic energy T [p], we have to redefine it in the following
way:

Eyclpl = EYclpl + Tlpl — Tglp]

It can be shown that the kinetic contribution to the
correlation energy (the kinetic contribution to exchange is
just Pauli’s principle, which is already contained in Ty[p]
and in the density when adding up the contributions of
the N lowest eigenstates) can be taken into account by
averaging the pair correlation function g(r,r’) over the
strength of the electron—electron interaction, that is,

[/ p(l‘)p( ’)

1
a(r, H):/O g, (r,r')dx (53)

Eyclol = r)—1]drdr’  (52)

where

and g, (r, ') is the pair correlation function corresponding
to the Hamiltonian H = T + V + 20U,,.®% If we separate
the exchange and correlation contrlbutlons, we have

> o, 1)

———— + g (r, ¥ 54
ooy FEenr) 68

gr,r)=1-

with p_(r, r') the spin-up and spin-down components of the
one-body density matrix, which in general is a non-diagonal
operator. For the homogeneous electron gas, the expression
for the density matrix is well known, so that the exchange
contribution to g(r, r’) assumes an analytic closed form

k _
gx (. t) =gy — =1 2(M) 55)

kglr—1'|
where j,(x) = [sin(x) — x cos(x)] /x> is the first-order
spherical Bessel function.

In Figure 1, we reproduce from Perdew and Wang®®
the shape of the non-oscillatory part of the pair-distribution
function, g(r), and its coupling constant average, g(r), for
the unpolarized uniform electron gas of density parameter
r, = 2. The same function within the Hartree approximation
is the constant function 1, because the approximation
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Figure 1. Pair correlation function (solid line) and its coupling
constant average (dashed line) for the uniform electron gas
[Reproduced by permission of APS Journals from J.P. Perdew
and Y. Wang (1992) Phys. Rev. B, 46, 12947.]159

completely neglects both, exchange and correlation, so that
one electron is insensitive to the location of the other
electron. Within the HF approximation, the exchange is
treated exactly, but the correlation is ignored. Therefore, the
HF pair distribution only reveals the fact that the electrons
with like spins do not like to be at the same place, and hence
the HF pair correlation function is given by formula (55),
tending to the limit 1/2 for r — 0.

We are now going to define the exchange-correlation hole
Pxc(r, ') in the following form:

Exclpl = 5 [[ 20000

or pyc(r,r') = p(r)[g(r,r) —1].

Then, Ey[p] can be written as the interaction between
the electronic charge distribution and the charge distribution
that has been displaced by exchange and correlation effects,
that is, by the fact that the presence of an electron at
r reduces the probability for a second electron to be
at r’, in the vicinity of r. Actually, pyo(r,r’) is the
exchange-correlation hole averaged over the strength of the
interaction, which takes into account kinetic correlations.
The properties of g(r, r’) and py . (r, I') are very interesting
and instructive:

p(O)pxc(r, ) r)

F— drdr’ (56)

1. g(r,r)=_g(,r) (symmetry)

2. [&x,)p@)dr = [gr r)p@)dr=N—1
(normalization)

3. f E)Xc(r’ r)dr’ = f 5xc(r7 r)dr = —

This means that the exchange-correlation hole contains
exactly one displaced electron. This sum rule is very
important and it has to be verified by any approximation

used for py-(r,r’). If we separate the exchange and
correlation contributions, it is easy to see that the displaced
electron comes exclusively from the exchange part, and it is
a consequence of the form in which the electron—electron
interaction has been separated. In the Hartree term we
have included the interaction of the electron with itself.
This unphysical contribution is exactly cancelled by the
exchange interaction of the full charge density with the
displaced density. However, exchange is more than that.
It is a non-local operator whose local component is less
the self-interaction. On the other hand, the correlation hole
integrates to zero, [ po(r, r') dr’ = 0, so that the correlation
energy corresponds to the interaction of the charge density
with a neutral charge distribution.

A general discussion on DFT and applications can be
found in Reference 37.

4.1 The local density approximation

The LDA has been for a long time the most widely
used approximation to the exchange-correlation energy. It
has been proposed in the seminal paper by Kohn and
Sham, but the philosophy was already present in TF
theory. The main idea is to consider general inhomogeneous
electronic systems as locally homogeneous, and then to
use the exchange-correlation hole corresponding to the
homogeneous electron gas for which there are very good
approximations and also exact numerical (quantum Monte
Carlo) results. This means that

pre () = pm @It =, pm] = 1) (57)

with g"[|r — 1’|, p(r)] the pair correlation function of the
homogeneous gas, which depends only on the distance
between r and r’, evaluated at the density p”, which locally
equals p(r). Within this approximation, the exchange-
correlation energy density is defined as

1 ~LDA , /
e ol = / B r /T) ar’ (58)
r-r

and the exchange-correlation energy becomes

ESMpl = / p(0)e2 [pldr (59)

In general, the exchange-correlation energy density is not a
local functional of p. From its very definition it is clear that
it has to be a non-local object, because it reflects the fact
that the probability of finding an electron at r depends on
the presence of other electrons in the surroundings, through
the exchange-correlation hole.
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Looking at expression (57), it may seem that there is an
inconsistency in the definition. The exact expression would
indicate to take p(r’) instead of p(r). However, this would
render ELPA[p] a non-local object that would depend on
the densities at r and r’, and we want to parametrize it with
the homogeneous gas, which is characterized by only one
density, and not two. This is the essence of the LDA, and

it is equivalent to postulate

- - p(r)
g, r) =~ g"|r -, p(r)] ( - ) (60)
p(r’)
Therefore, there are in fact two approximations embodied
in the LDA:

1. The LDA exchange-correlation hole is centred at r and
interacts with the electronic density at r. The true XC
hole is actually centred at r’ instead of r.

2. The pair correlation function (g) is approximated by
that of the homogeneous electron gas of density p(r)
corrected by the density ratio p(r)/p(r’) to compensate
the fact that the LDA X C hole is centred at r instead
of r'.

4.2 The local spin density approximation

In magnetic systems or, in general, in systems where
open electronic shells are involved, better approximations
to the exchange-correlation functional can be obtained by
introducing the two spin densities, Py (1) and p (@), such
that p(r) = p, (1) + p, (), and §(r) = (p, (¥) — p, (1))/p(r)
is the magnetization density. The non-interacting kinetic
energy (equation 40) splits trivially into spin-up and spin-
down contributions, and the external and Hartree potential
depend on the full density p(r), but the approximate XC
functional — even if the exact functional should depend only
on p(r) — will depend on both spin densities independently,
Eyc = Excloy r),p ’ (r)]. KS equations then read exactly
as in equation (47), but the effective potential v (r) now
acquires a spin index:

p(r’)
r—r|

dr’

@gnzmm+[

8E}(c[pT (r), Py (r)]

61
BDT(I') oD

5EXC[PT(1'), Py (r)]
dp, (r)

Uif‘t'(r) = v(r) +/ p(r l)./l dr’

r —

The density given by expression (49) contains a double
summation, over the spin states and over the number of
electrons in each spin state, N,. The latter have to be
determined according to the single-particle eigenvalues, by

asking for the lowest N = N, + N, to be occupied. This
defines a Fermi energy € such that the occupied eigenstates
have g; ; < ¢ep.

In the case of non-magnetic systems, pT(r) =p l(r), and
everything reduces to the simple case of double occupancy
of the single-particle orbitals.

The equivalent of the LDA in spin-polarized systems
is the local spin density approximation (LSDA), which
basically consists of replacing the XC energy density with
a spin-polarized expression:

EXPMp,(r), p, (0)]
= f [py(®) + p, (O)]e§clpy (), oy, (O]dr  (62)

obtained, for instance, by interpolating between the fully
polarized and fully unpolarized X C energy densities using
an appropriate expression that depends on ¢(r). The stan-
dard practice is to use von Barth and Hedin’s interpolation
formula: )

exclop 1= F©Qeplpl +[1 — F(©]eylpl

(1+0*3+ (1 -0 -2
243 2

f@ = (63)
or a more realistic formula based on the random
phase approximation (RPA), given by Vosko, Wilk and
Nussair.®?

A thorough discussion of the LDA and the LSDA can be
found in Reference 40. In the following we reproduce the
main aspects related to these approximations.

4.2.1 Why does the LDA work so well in many
cases?

1. It satisfies the sum rule that the XC hole contains
exactly one displaced electron:

[ By ar = [ ot - pena = -1
(64)
because for each r, g"[|r —r'|, p(r)] is the pair cor-
relation function of an existing system, that is, the
homogeneous gas at density p(r). Therefore, the mid-
dle expression is just the integral of the X C hole of the
homogeneous gas. For the latter, both approximations
and numerical results carefully take into account that
the integral has to be —1.
2. Even if the exact py. has no spherical symmetry, in
the expression for the XC energy what really matters
is the spherical average of the hole:

1 1
Eyc[p]l = —5 / p(r) (%) dr
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with

1 [ Pyc(r, 1)

= dr’' = 47[[ spYA(r, s)ds
R(r) Ir—r| o €

and

) 1o
e = - /Q 5ye(r, r)dQ

The spherical average f)f{é (r, s) is reproduced to a good
extent by the LDA, whose py,. is already spherical.

4.2.2 Trends within the LDA

There are a number of features of the LDA that are
rather general and well established by now. These are the
following:

It favours more homogeneous systems.

It overbinds molecules and solids.

Chemical trends are usually correct.

For ‘good’ systems (covalent, ionic and metallic

bonds), geometries are good, bond lengths, bond angles

and phonon frequencies are within a few percent, while

dielectric properties are overestimated by about 10%.

5. For ‘bad’ systems (weakly bound), bond lengths are
too short (overbinding).

6. In finite systems, the XC potential does not decay

as —e?/r in the vacuum region, thus affecting the

dissociation limit and ionization energies. This is a

consequence of the fact that both the LDA and the

LSDA fail at cancelling the self-interaction included in

the Hartree term of the energy. This is one of the most

severe limitations of these approximations.

-

4.2.3 What parametrization of Exc is normally used
within the LDA?

For the exchange energy density, the form deduced by Dirac
is adopted: *!

3 (3\!/?
exlp]l = 7 (;) p'/? = —

4
_ 048 (65)

rS

where p~! = 4nr?/3 and r, is the radius of the sphere that,

on average, contains one electron.

For the correlation, a widely used approximation is
Perdew and Zunger’s parametrization®? of Ceperley and
Alder quantum Monte Carlo results, which are essentially
exact,(11:12)

Alnri+ B+ Crilnr,+ Dr,, r, <1

eclpl = {y/(l By ST+ Bor). -1 ©

For r; < 1, the expression arises from the RPA — calculated
by Gell-Mann and Briickner® — which is valid in the
limit of very dense electronic systems. For low densities,
Perdew and Zunger have fitted a Padé approximant to the
Monte Carlo results. Interestingly, the second derivative
of the above ¢.[p] is discontinuous at r; = 1. Another
popular parametrization is that proposed by Vosko, Wilk
and Nussair.?

4.2.4 When does the LDA fail?

The LDA is very successful an approximation for many
systems of interest, especially those where the electronic
density is quite uniform such as bulk metals, but also for
less uniform systems as semiconductors and ionic crystals.
There are, however, a number of known features that the
LDA fails to reproduce:

1. In atomic systems, where the density has large varia-
tions, and also the self-interaction is important.

2. In weak molecular bonds, for example, hydrogen
bonds, because in the bonding region the density is very
small and the binding is dominated by inhomogeneities.

3. In van der Waals (closed-shell) systems, because there
the binding is due to dynamical charge—charge corre-
lations between two separated fragments, and this is an
inherently non-local interaction.

4. In metallic surfaces, because the XC potential decays
exponentially, while it should follow a power law
(image potential).

5. In negatively charged ions, because the LDA fails
to cancel exactly the electronic self-interaction,
owing to the approximative character of the ex-
change. Self-interaction-corrected functionals have
been proposed,? although they are not satisfactory
from the theoretical point of view because the potential
depends on the electronic state, while it should be the
same for all states. The solution to this problem is the
exact treatment of exchange (see Section 5).

6. The energy band gap in semiconductors turns out to
be very small. The reason is that when one electron
is removed from the ground state, the exchange hole
becomes screened, and this is absent in the LDA. On
the other hand, HF also has the same limitation, but
the band gap turns out to be too large.

4.2.5 How can the LDA be improved?

Once the extent of the approximations involved in the
LDA has been understood, one can start constructing better
approximations. The amount of work done in that direction
is really overwhelming, and there are new developments in
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many different directions because there is not a unique and
obvious way of improving the LDA.

One of the key observations is that the frue pair correla-
tion function, g(r, r’), actually depends on the electronic
density at two different points, r and r’. The homoge-
neous g(r,r’) is quite well known (see equation 55 for
the exchange part and Reference 36 for correlation), but
it corresponds to a density that is the same everywhere.
Therefore, the question is which of the two densities are
to be used in an inhomogeneous environment. Early efforts
went into the direction of calculating the pair correlation
function at an average density p(r), which in general is
different from p(r), and incorporates information about the
density at neighbouring points. Clearly, there is no unique
recipe for the averaging procedure, but there is at least a
crucial condition that this averaging has to verify, namely,
the normalization condition:#4~4%)

[ pxc (r 1) dr = f p(r) &"lIr —¥'|, p(r)]dr' = —1

(67)
Approaches of this type receive the name of weighted
density approximations (WDA). There is still a lot of
freedom in choosing the averaging procedure provided
that normalization is verified and, indeed, several different
approximations have been proposed.**=>" One problem
with this approach is that the r — r’ symmetry of g(r, r’)
is now broken. Efforts in the direction of the WDA are
intended to improve over the incorrect location of the
centre of the XC hole in the LDA. An exploration in
the context of realistic electronic structure calculations was
carried out by Singh but the results reported were not
particularly encouraging.®? Nevertheless, this is a direction
worth exploring in more depth.

Another possibility is to employ either standard or
advanced many-body tools, for example, one could try to
solve Dyson’s equation for the electronic Green’s function,
starting from the LDA solution for the bare Green’s
function.®® In the context of strongly correlated systems,
for example those exhibiting narrow d or f bands, where
the limitation of the LDA is at describing strong on-
site correlations of the Hubbard type, these features have
been introduced a posteriori within the so-called LDA + U
approach.®® This theory considers the mean-field solution
of the Hubbard model on top of the LDA solution, where
the Hubbard on-site interaction U are computed for the d
or f orbitals by differentiating the LDA eigenvalues with
respect to the occupation numbers.

Undoubtedly, and probably because of its computational
efficiency and its similarity to the LDA, the most popular
approach has been to introduce semi-locally the inhomo-
geneities of the density, by expanding Ey.[p] as a series
in terms of the density and its gradients. This approach,

known as generalized gradient approximation (GGA), is
easier to implement in practice, and computationally more
convenient than full many-body approaches, and has been
quite successful in improving over some features of the
LDA.

4.3 Generalized gradient approximations

The exchange-correlation energy has a gradient expansion
of the type

Eyclpl = f Ayclpl p(0)*? dr

+/ Cxclpl IVo@I*/p(m)**dr+---  (68)

which is asymptotically valid for densities that vary slowly
in space. The LDA retains only the leading term of
equation (68). It is well known that a straightforward
evaluation of this expansion is ill-behaved, in the sense
that it is not monotonically convergent, and it exhibits
singularities that cancel out only when an infinite number
of terms is re-summed, as in the RPA. In fact, the first-
order correction worsens the results and the second-order
correction is plagued with divergences.®>® The largest
error of this approximation actually arises from the gradient
contribution to the correlation term. Provided that the
problem of the correlation term can be cured in some way,
as the real space cut-off method proposed by Langreth and
Mehl,57:3® the biggest problem remains with the exchange
energy.

Many papers have been devoted to the improvement of
the exchange term within DFT. The early work of Gross
and Dreizler®” provided a derivation of the second-order
expansion of the exchange density matrix, which was later
re-analysed and extended by Perdew.® This expansion
contains not only the gradient but also the Laplacian of the
density. The same type of expansion was obtained, using
Wigner distribution — phase space — techniques, by Ghosh
and Parr.©D

One of the main lessons learnt from these works is that
the gradient expansion has to be carried out very carefully
in order to retain all the relevant contributions to the desired
order. The other important lesson is that these expansions
easily violate one or more of the exact conditions required
for the exchange and the correlation holes. For instance,
the normalization condition, the negativity of the exchange
density and the self-interaction cancellation (the diagonal of
the exchange density matrix has to be minus a half of the
density). Perdew has shown that imposing these conditions
to functionals that originally do not verify them results
in a remarkable improvement of the quality of exchange
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energies.® On the basis of this type of reasoning, a number
of modified gradient expansions have been proposed along
the years, mainly between 1986 and 1996. These have
received the name of GGA.

GGAs are typically based either on theoretical develop-
ments that reproduce a number of exact results in some
known limits, for example, O and oo density, or the corre-
lation potential in the He atom, or are generated by fitting a
number of parameters to a molecular database (training set).
Normally, these improve over some of the drawbacks of the
LDA, although this is not always the case. These aspects
will be discussed below, after presenting some popular
functionals.

The basic idea of GGAs is to express the exchange-
correlation energy in the following form:

Exclol = [ o exclomldr+ [ Feclpw). Vow)r

(69)
where the function Fy. is asked to satisfy a number of
formal conditions for the exchange-correlation hole, such as
sum rules, long-range decay and so on. This cannot be done
by considering directly the bare gradient expansion (68).
What is needed from the functional is a form that mimics a
re-summation to infinite order, and this is the main idea of
the GGA, for which there is not a unique recipe. Naturally,
not all the formal properties can be enforced at the same
time, and this differentiates one functional from another.
A thorough comparison of different GGAs can be found in
Reference 62. In the following we quote a number of them:

1. Langreth—-Mehl (LM) exchange-correlation func-
tional.®”

LDA |Vp(r)|2 7 2
R C T TR

__ _RPA |Vp(l‘)|2
€c = ¢€¢ +a4p(r)4/3

(2e " + 187
where F = b|Vp(r)|/p(®)"/°, b= ©Om)'/°f, a=m/
(16(372)*3) and f = 0.15.

2. Perdew—Wang *86 (PW86) exchange functional.®®

2 m
£, = eLPA (1 +0.0864 + bs* + Cs6)
m

with m =1/15, b=14, ¢ =02 and s = |Vp(r)|/
(2kp) for k. = (3n2p)!/3.
3. Perdew—Wang *86 (PW86) correlation functional.®¥

IVo())?

_ LDA | o
ec =t¢ +e “C.p) NOLE

where

~ v
& = 17457 S Vo]
C.(p) o)/
C, + Cyry + Cyr?
1+ Csry + Cr2 + Cqr}

C.(p)=C, +

being £ = 0.11, C, = 0.001667, C, = 0.002568, C; =
0.023266, C, = 7.389 x 1079, Cs=18.723, Cy= 0.472,
C,;=7.389 x 1072,

Perdew—Wang *91 (PW91) exchange functional.(®>

€x

— gLDA 1+ a,s sinh™ ' (a,s) + (a3 + a, e710%")s2
X 1+ a,s sinh ™! (ays) + ass*

where a, = 0.19645, a, = 7.7956, a; = 0.2743, a, =
—0.1508 and a5 = 0.004.
Perdew—Wang *91 (PW91) correlation functional.(®

ec = s> + pHlp, 5, 1]
with

20 2+ Ar* )
B 1+ A2+ A%

+ CCO [Cc(p) - Ccl] ZZ e_loosz

Hlp, s, t] = %1n<1 +

and

A— %x [e—msdm/ﬁ2 _ 1]_1

where o = 0.09, p = 0.0667263212, C,, = 15.7559,
C., =0.003521, 1 = |Vp(r)|/(2k,p) for k, = (4k/
7)!/2, and pec[p] = eEPA[p].

Becke ’88 (B88) exchange functional.®®

_ DA [ _ p x?
fx = & 1 1/3 ol
215A 14 6Bx sinh™" (x)

for x = 2(6m?)!3s =213 |Vp(r)|/p(r)*3, A, = (3/4)
(3/m)!/3, and B = 0.0042.

Closed-shell, Lee—Yang—Parr (LYP) correlation func-
tional.®”

1 _
€c =~ —1/3 {p+bp 2 |:CF95/3_2tW

—
1+dp

1 1 _
+ § (tW + EVZF))] e ‘P 1/3}
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where

1 {IVp]?
[W=§<%—V2p)

and C, = 3/103n%)%3, a = 0.04918, b = 0.132, ¢ =
0.2533 and d = 0.349. This correlation functional is
not based on the LDA as the others, but it has
been derived as an extension of the Colle—Salvetti
expression for the electronic correlation in Helium, to
other closed-shell systems.

8. Perdew—Burke—Ernzerhof (PBE) exchange-correlation
functional. %% First, the enhancement factor Fy,
over the local exchange is defined:

Eyolo] = / DOEEPA [p(1)] Py (9 ¢, ) dr

where p is the local density, ¢ is the relative
spin polarization and s = |Vp(r)|/(2kzp) is the
dimensionless density gradient, as in PW86:

K
Fy(s) =1+ K—il e

where p = B(n?/3) =0.21951 and B = 0.066725 is
related to the second-order gradient expansion.>
This form: (i) satisfies the uniform scaling condition,
(ii) recovers the correct uniform electron gas limit
because F,(0) =1, (iii) obeys the spin-scaling rela-
tionship, (iv) recovers the LSDA linear response limit
for s — 0 (Fy(s) — 1+ ps?) and (v) satisfies the
local Lieb-Oxford bound,” &, (r) > —1.679p(r)*?3,
that is, Fy(s) < 1.804, for all r, provided that k <
0.804. PBE choose the largest allowed value k =
0.804. Other authors have proposed the same form, but
with values of k and p fitted empirically to a database
of atomization energies.””!~7® The proposed values of
k violate Lieb—Oxford inequality.

The correlation energy is written in a form similar to
PW91,69 that is,

ESOA — / o(0) [e£PA (0. ©) + Hp.t, 11] dr
with

Hlp, ¢, 1]

e? 3 By? 1+ Ar?
== 1+ [ — "
(%)yq) "t t [1+Az2+A2z4}

Here, t = |Vp(r)|/(2dk,p) is a dimensionless density
gradient, k, = (4k/ma,)'/? is the TF screening wave
number and () = [(1 +0)*3 + (1 —1¢)?*3]/2 is a

spin-scaling factor. The quantity p is the same as for the
exchange term B = 0.066725, and y = (1 — In2)/n* =
0.031091. The function A has the following form:
A=t [e—e?’*[pl/w&ez/au) _ 1]‘1

Y

So defined, the correlation correction term H satisfies
the following properties: (i) it tends to the correct
second-order gradient expansion in the slowly varying
(high-density) limit (+ — 0), (ii) it approaches minus
the uniform electron gas correlation —e=P* for rapidly
varying densities (f — 00), thus making the correlation
energy to vanish (this results from the correlation hole
sum rule), (iii) it cancels the logarithmic singularity
of €kPA in the high-density limit, thus forcing the
correlation energy to scale to a constant under uniform
scaling of the density.

This GGA retains the correct features of LDA
(LSDA) and combines them with the inhomogeneity
features that are supposed to be the most energetically
important. It sacrifices a few correct but less
important features, like the correct second-order
gradient coefficients in the slowly varying limit, and
the correct non-uniform scaling of the exchange energy
in the rapidly varying density region.

In the beginning of the age of GGAs, the most popu-
lar recipe was to use B88 exchange complemented with
Perdew ’86 correlation corrections (BP). For exchange, B88
remained preferred, while LYP correlation proved to be
more accurate than Perdew ’86, particularly for hydrogen-
bonded systems (BLYP). The most recent GGA in the mar-
ket is the PBE due to Perdew, Burke and Ernzerhof.©8:6
This is very satisfactory from the theoretical point of view,
because it verifies many of the exact conditions for the XC
hole and it does not contain any fitting parameters. In addi-
tion, its quality is equivalent or even better than BLYP.7%

The different recipes for GGAs verify only some of
the mathematical properties known for the exact-exchange-
correlation hole. A compilation and comparison of different
approximations can be found in the work of Levy and
Perdew.”

4.3.1 Trends of the GGAs

The general trends of GGAs concerning improvements over
the LDA are the following:

—_—

They improve binding energies and also atomic ener-
gies.

2. They improve bond lengths and angles.

3. They improve energetics, geometries and dynamical
properties of water, ice and water clusters. BLYP and
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PBE show the best agreement with experiment. In
general, they improve the description of hydrogen-
bonded systems, although this is not very clear for the
case of the F---H bond.

4. Semiconductors are marginally better described within
the LDA than in GGA, except for the binding energies.

5. For 4d-5d transition metals, the improvement of the
GGA over LDA is not clear and will depend on how
well the LDA does in the particular case.

6. Lattice constants of noble metals (Ag, Au, Pt) are
overestimated. The LDA values are very close to
experiment, and thus any modification can only worsen
them.

7. There is some improvement for the gap problem (and
consequently for the dielectric constant), but it is
not substantial because this feature is related to the
description of the screening of the exchange hole when
one electron is removed, and this feature is usually not
fully taken into account by GGA.

8. They do not satisfy the known asymptotic behaviour,
for example, for isolated atoms:

(8) vye(r) ~ —e2/r for r — oo, while V24904 (p)

vanish exponentially.
(b) vyc(r) — const. for r — 0, while vi24(r) —

const., but v§A(r) — —oo0.

4.3.2 Beyond the GGA

There seems, then, to exist a limit in the accuracy that
GGAs can reach. The main aspect responsible for this is
the exchange term, whose non-locality is not fully taken
into account. A particularly problematic issue is that GGA
functionals still do not compensate the self-interaction
completely.

This has motivated the development of approximations
that combine gradient-corrected functionals with exact, HF-
type exchange. An example is the approximation known as
B3LYP,7%-7® which reproduces very well the geometries
and binding energies of molecular systems, at the same
level of correlated quantum chemistry approaches like MP2
or even at the level of CI methods, but at a significantly
lower computational cost. Even if the idea is appealing
and physically sensible, at present there is no rigorous
derivation of it, and the functional involves a number of
fitting parameters.

In the past few years there have been serious attempts to
go beyond the GGA. Some are simple and rather successful,
although not completely satisfactory from the theoretical
point of view, because they introduce some fitting parame-
ters for which there are no theoretical estimates. These are
the meta-GGA described in the next subsection. A very
interesting approach that became very popular in recent

years is to treat the exchange term exactly. Some authors
call these third-generation XC functionals, in relation to
the early TF-like, and successive LDA-like, functionals.””
Exact exchange methods are described in the next section,
followed by methods that combine exact exchange (EXX)
with density functional perturbation theory for correlation.
The properties of this approach are very elegant, and the
error cancellation property present in GGA, meta-GGA
and hybrid methods is very much reduced. The computa-
tional cost of these two approaches is, at present, very high
compared to standard GGA or meta-GGA-like functionals.
Nevertheless, they are likely to become widespread in the
future.

Finally, another possibility is to abandon the use of the
homogeneous electron gas as a reference system (used at
the LDA level) for some other reference state. A functional
for ‘edge’ states, inspired in the behaviour of the density
at the surface of a system, has been proposed by Kohn and
Mattson,®® and further developed by Vitos et al.®1-8?

4.4 Meta-GGA

The second-order gradient expansion of the exchange
energy introduces a term proportional to the squared
gradient of the density. If this expansion is further carried
out to fourth order, as originally done by Gross and
Dreizler® and further developed by Perdew,®” it also
introduces a term proportional to the square of the Laplacian
of the density. The Laplacian term was also derived using
a different route by Ghosh and Parr,®" although it was
then dropped out when considering the gradient expansion
only up to second order. More recently, a general derivation
of the exchange gradient expansion up to sixth order,
using second-order density response theory, was given by
Svendsen and von Barth.®% The fourth-order expansion of
that paper was then used by Perdew et al.®* to construct a
practical meta-GGA that incorporates additional semi-local
information in terms of the Laplacian of the density. The
philosophy for constructing the functional is the same as
that of PBE, namely, to retain the good formal properties
of the lower-level approximation (the PBE GGA in this
case), while adding others.

The gradient expansion of the exchange enhancement
factor Fy is

10 146 , 73

F =14+ — — g
x(P,q) +81p+2025q 10597

+ Dp? + 0(Vp®) (70)

where
_ e
[4(37%)23%7]
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is the square of the reduced density gradient and

Vzp

NI EEr

is the reduced Laplacian of the density.

The first two coefficients of the expansion are exactly
known. The third one is the result of a difficult many-body
calculation, and has only been estimated numerically by
Svendsen and von Barth, to an accuracy better than 20%.
The fourth coefficient D has not been explicitly calculated
till date.

In the same spirit of PBE, Perdew, Kurth, Zupan and
Blaha (PKZB) proposed an exchange enhancement factor
that verifies some of the formal relations and reduces to
the gradient expansion (70) in the slowly varying limit of
the density. The expression is formally identical to that of
PBE:

FYSCA(p @) =14k — (71)

14+ x/k
where

_lo 146, B o] 10\*| ,
* 20257 T 40577 \s1) |”?

8l
is a new inhomogeneity parameter that replaces pwp in
PBE. The variable ¢ in the gradient expansion (the reduced
Laplacian) is also replaced by a new variable g defined as

_ 3[p] 9 p
qz—____

[2(3m2)23p3/3] 20 12
which reduces to g in the slowly varying limit but remains
finite at the position of the nucleus, while g diverges (an
unpleasant feature of most GGA). In the above expression,
t[p] = v, + 1, is the kinetic energy density for the non-
interacting system, with

occup

1
=5 2 IV, M

o =1, |. The connection between t and the density is given
by the second-order gradient expansion

GEA _ 3 2 2.2/3 553 iw 1o

T —10(31) Pt ) +6Vp

The formal conditions requested for this functional are (i)
the spin-scaling relation, (ii) the uniform density-scaling
relation® and the Lieb—Oxford inequality.7? Actually,
a value of k = 0.804 in equation (71), corresponding to
the largest value ensuring that the inequality is verified for

all possible densities, is chosen in Reference 84 (exactly
as in References 68, 69). The coefficient D still remains
undetermined. In the absence of theoretical estimations,
PKZB proposed to fix D by minimizing the absolute error
in the atomization energies for a molecular data set. The
value so obtained is D = 0.113. The meta-GGA recovers
the exact linear response function up to fourth order in
k/2kp. This is not the case of PBE-GGA (and other
GGA’s), which recovers only the LSDA linear response,
and at the expense of sacrificing the correct second-order
gradient expansion.

The correlation part of the meta-GGA retains the correct
formal properties of PBE GGA correlation, such as the
slowly varying limit and the finite limit under uniform
scaling. In addition, it is required that the correlation energy
be self-interaction-free, that is, to vanish for a one-electron
system. PKZB proposed the following form:

Eé‘/IGGA[pm p¢]

2
§ : w
TU
= / pSgGA(pTv plﬂ Vst Vpi) 1 + C -

2%
o

A
- (1+C)Z<f> P4 (pg, 0, Vi, 0) ¢ dr (72)
o o

where S(gGA is the PBE-GGA correlation energy density
and tY is the von Weiszicker kinetic energy density
given by expression (33) above, which is exact for a one-
electron density. Therefore, the correlation energy vanishes
for any one-electron density, irrespectively of the value
of the parameter C. For many-electron systems, the self-
interaction cancellation is not complete, but the error is
shifted to fourth order in the gradient, thus having little
effect on systems with slowly varying density. As in the
case of the exchange term, there is no theoretical estimate
available for the parameter C. Perdew et al. obtained
a value of C = 0.53 by fitting it to PBE-GGA surface
correlation energies for jellium. Atomic correlation energies
also agree, but are slightly less accurate. Just as an example,
the correlation energy for He is —0.84 H in LSDA, —0.68 H
in PBE-GGA and —0.48 H in meta-GGA (MGGA), which
basically coincides with the exact value.®®

Unlike the PBE-GGA, the meta-GGA has two fitted
parameters, C and D. The reason for it is actually the
unavailability of first-principles theoretical estimates for
them. Other authors have proposed similar expansions con-
taining the kinetic energy density in addition to the density
gradients. These, however, took the road of constructing the
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functional in a semiempirical way, by fitting a large num-
ber of parameters (of the order of 10 or 20) to chemical
data, instead of using theoretically calculated values.®”-8%)
The quality of the results of different meta-GGA function-
als is quite similar. An assessment of the general quality
of the PKZB meta-GGA in comparison with GGA and
hybrid EXX — GGA models of the B3LYP type — has
been published very recently.®’ The conclusion is that
the kinetic energy density is a useful additional ingredi-
ent. Atomization energies are quite improved in PKZB
meta-GGA with respect to PBE-GGA, but unfortunately,
geometries and frequencies are worsened. In particular,
bond lengths are far too long. Adamo et al.®” argued that
a possible reason could be that in this functional the long-
range part of the exchange hole, which would help localize
the exchange hole, thus favouring shorter bond lengths,
is missing. Intriguingly enough, one of the semiempiri-
cal meta-GGA functionals®® gives very good geometries
and frequencies. According to the preceding discussion,
this effect on geometries should be due to the non-local
properties of the exchange functional, a factor that the
kinetic energy density, being still a semi-local object, can-
not account for. Therefore, this agreement must originate
in error cancellations between exchange and correlation.

S EXACT EXCHANGE: THE OPTIMIZED
POTENTIAL METHOD

The one-to-one correspondence between electronic density
and external potential embodied into Hohenberg—Kohn’s
theorem suggests that the variational problem of minimizing
the energy functional could be also formulated for the
potential, instead of the density. Historically, this idea
was proposed in 1953 by Sharp and Horton,*? well
before the formulation of DFT, and received the name of
Optimized Potential Method (OPM). The formal proof of
this equivalence was given later on by Perdew et al.®:%?

This idea proved very useful in the context of DFT,
because one of the main limitations of KS theory is that
even though the exact exchange-correlation energy is a
functional of the density, unfortunately this functional is not
explicitly known. This is the reason why approximations to
this term are needed and have been proposed at different
levels of accuracy.

It is to be noticed that the same happens with the
kinetic energy functional, which is not explicitly known
in terms of the density. However, in the case of non-
interacting electrons, the exact expression in terms of
the orbitals is well known. This is actually the basis
for KS theory.®D In order to visualize the mapping of
the interacting system to a non-interacting one with the

same density, one can employ a continuous sequence
of partially interacting systems with the same density as
the fully interacting one. In this way, by starting from
the non-interacting system, the electron—electron Coulomb
interaction is gradually switched on and the system evolves
continually towards the fully interacting system, always
maintaining the same electronic density. This procedure has
been named the adiabatic connection. Since the electronic
density for both interacting and non-interacting systems is
the same, and Hohenberg—Kohn theorem states that this
density is univocally determined by the potential for any
form of the electron—electron interaction (in particular,
full Coulomb and no interaction at all), the electronic
problem can be re-casted in the form of a non-interacting
problem with the same density of the interacting problem.
The potential, however, has to be different because the
interaction is different.

The OPM is useful because it deals with the following
problem: having a general expression for the energy,
which is a functional of the orbitals, it searches for the
optimum potential whose eigenorbitals minimize the energy
expression. The KS scheme can be viewed from the OPM
perspective, as a special case.

Mathematically, this can be formulated in the following
way:

Vz
(-— + vR[p](r)> @7 (r) = €77 ()

5 (73)

where the orbitals (p}’(r) = (p;-’[p] (r) are also functionals of
the density, although implicitly through the potential vg[p].
The energy of such a non-interacting electronic system can
be written as

E, [p] = Tglp] + / p(r)vg[p](r) dr (74)

with

(75)

Txlpl = ZZ] (r)(——)w,(r)dr

o j= 1

the exact kinetic energy of non-interacting electrons.

Coming back to the fully interacting system, the energy
functional can be written in terms of Ty [p] by displacing all
the ignorance about the electronic many-body problem into
the energy term Ey.[p]. This contains the exchange con-
tribution and, in addition, all correlation effects including
those omitted in the kinetic term:

Eyslp] = Trlp]l + / p(r)v(r) dr

1 p(r)p(r’) )
5// Tr—p) drdr o+ Exclel (76)
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This last expression is simply the definition of Ey.[p].
Now, by using the variational principle that p(r) minimizes
E¢[p], we obtain

3T, [p] o(®) ., 3Ey.[pl
5(r) +”(r”/|r—r’| T

Using the non-interacting equation (73), and first-order per-
turbation theory for calculating the variation of the single-
particle eigenvalues, it can be shown that the variation of
Tylp] with respect to the electronic density is

=0 (77)

STlo) _
Bp(r)

namely, that density and effective potential are conjugated
fields. This, in conjunction with equation (77), gives rise
to the desired expression for the non-interacting reference
potential:

—vglpl(r) (78)

p(r)
" dr’ + Vy[pl(r) + const.

vR[p](r)=v(r)+f ]
(79)

where

8Exc[p]

80
dp(r) (50)

Vxelpl(r) =

is the definition of the exchange-correlation potential.
Therefore, if the exact exchange-correlation energy func-
tional is used, then the density obtained from equation (77)
is the exact interacting density.

The potential vg[p] in equations (73) and (79) is chosen
so that the two energy functionals (74) and (76) have
the same minimizing density p. Further, the constant in
equation (79) is chosen so that the two functionals at
their common minimizing density have equal values. This
fact can be exploited to cast the variational problem in
a tractable form in terms of the non-interacting reference
system. The solution can then be obtained by solving
equation (73) and constructing the density according to the
usual expression for non-interacting electrons, whose wave
function is a single Slater determinant of the orbitals 9, (r),
that is,

e
p) =" ¢t () (81)

o j=1

The price for this simplification from an interacting many-
electron problem to an effective non-interacting problem is
that the effective potential defined by equation (79) depends
on the electronic density, which is constructed with the
solutions of the single-particle equations. Therefore, this
problem has to be solved in a self-consistent way, by
ensuring that the input and output densities do coincide.

Notice that this construction of the mapping onto a non-
interacting system is completely general and it relies only
on the assumption of v-representability of the interacting
electronic density. In particular, if an explicit dependence of
Eyc[p] on the density (or the density and its gradient as in
GGA or density, gradient and Laplacian, as in meta-GGA)
is assumed, the conventional KS scheme is recovered.

The above equations are quite general and can be used
even when an approximate expression for Ey[p] is given
as an implicit functional of the density, for example, in
terms of the orbitals. In order to deal with orbital-dependent
functionals, we have to calculate the density variation of
Eyc[p] via its variation with respect to the orbitals. This
can be done by applying the chain rule in the context of
functional derivation:

xc[p
dp,(r)

<8(p,-v(l‘/)
X —_—
3p4(T)

VXCO (I‘)

SEyc[p] )
Z Z / < 8¢, ()
> dr’ +c.c. (82)

where we have included a spin index (o) to be consistent
with the spin-dependence of the exact exchange functional.
But the orbitals are connected only implicitly with the
density, through the reference potential. Therefore, we have
to introduce another intermediate step of derivation with
respect to vg[pl:

SExclpl ( S, ()
Ve = ZZ//<5<P,-V(I“)> (8“Ru(r//)>

Vo=l

Sv, (r”
x (ﬁ) dr’ dr’ + c.c. (83)

805 (r)

The second factor in the product is the variation of the
non-interacting orbitals with respect to the potential, which
can be calculated using first-order perturbation theory:

) () @, (")
(pwg://) =3, Z |:(pku H :|‘Piu(r”)

k=1,k#i Ein ~ B
=GR (. 1")g;, (") (84)

where GX (r/,r”) is the Green’s function of the non-
interacting system, given by

Z (Pka(r )(pkc(r ) (85)

GR@' v =
€ _—¢€
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The third factor is the variation of the potential with respect
to the density, which is the inverse of the linear response
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function of the reference system xR, defined as

dpy(r)

— 86
o, BURH (r//) ( )

Xe ) =3

This is a well-known quantity for non-interacting systems,
which is related to the Green’s function above by

X', = ZG (", ), ()@}, () +cc. (87

As, from equation (85) GX is orthogonal to ¢,,, we have
[ xX@”,r)dr” = 0, and the linear response function is not
invertible. In a plane-wave representation, this means that
the G = 0 component is zero and, therefore, it should be
excluded from the basis set.>°% This is simple to do in
plane waves, but somewhat more complicated when dealing
with localized basis sets.®>

If the restricted XX(r”,r) (no G =0 component) is
considered, then the expression for the local XC potential
corresponding to orbital-dependent functionals assumes the
form:

SE
Vo™ = Z// [ 8(piC[f))
x (15

where the inversion step has to be carried out explicitly, and
this is typically a rather expensive numerical operation.
An equivalent formulation can be obtained by multiply-
ing both sides of equation (88) with x X(r’, r), integrating in
r, and replacing the expression (87) for the response func-
tion. In this case, we obtain the following integral equation:

R r")e, (") + c.c.:|

(’,r)dr dr’ (88)

z [ oo [VEE ) — S, 00)
x GR (', r)¢f(r)dr + cc. =0 (89)

where we have defined

8Exc[{(Pjt}]
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®) 3, 5(1)

u =
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(90)

The integral equation (89) is the so-called optimized effec-
tive potential (OEP) equation, and was originally proposed
by Sharp and Horton in 1953, and re-derived and applied
to atomic calculations by Talman and Shadwick in 1976.°9
However, in these works it was obtained as the solution to
the problem of minimizing the HF energy functional (76)
with respect to the non-interacting reference potential vg[p],

that is,
3E[vg,] .

Vg, (1) ©b
which, by applying again the functional chain rule, can
be shown to be strictly equivalent to the original Hohen-
berg—Kohn principle, stating that the energy functional is
a minimum at the ground state density.®°? The formu-
lation described above was originally proposed by Gorling
and Levy (GL).©7:%%

It can be easily seen that if the XC energy functional
depends explicitly on the density, and not on the orbitals,
then uQEF_(r) = wyc,lp](r) is also an orbital-independent
functional (an explicit functional of the density), and it
coincides with the usual X C potential in KS theory. In that
case we can choose Vyq (r) = Wy [pl(r), and the OEP
equation is automatically satisfied. With this choice, the
original definition of the reference potential (equation 79)
and the traditional KS scheme are recovered.

If this is not the case, then the OEP integral equa-
tion (89) or, equivalently, equation (88) has to be solved
for the XC potential, which is then used to construct
the reference potential v, (r). Orbital-dependent correlation
functionals are not very common. Notable exceptions are
Colle—Salvetti’s functional®®1%? and the early Perdew and
Zunger’s attempt at correcting the self-interaction prob-
lem of the LDA by considering orbital-dependent XC
functionals [self-interaction correction (SIC) approach].*?
The exchange term, however, is perfectly well known
as an orbital-dependent functional, as given by the Fock
expression:

Ny

Eylpl = —> Z Z/f

M T k=1
(Pju(r)(Pku (r )(pku (r)(PjM(r/)
X
[r —r'|

drdr’ (92)

so that its orbital functional derivative is

SEx[{94,)]

1o (1) 956 (1)
B¢y (r') _Z et )/ . —(pj O

and uQEF_(r) is obtained by using equation (90).

As in the conventional KS theory, the OEP equations
have to be solved self-consistently because the solution
depends on the single-particle orbitals. This scheme can
be implemented in its exact form, as it has been done for a
number of systems, or can be re-casted in an approximate,
more easily solvable form.
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5.1 The Krieger-Li-Iafrate approximation

The OEP formulation, although known for a long time, was
not used in practical applications until the early nineties,
except for the early work of Talman and Shadwick. The
main reason was that solving the full integral equation
numerically was perceived as an extremely demanding task,
which could only be achieved for very symmetric (spheri-
cally symmetric) systems. In fact, even up to 1999, the exact
exchange OEP method was used only to study spherically
symmetric atoms,!?1=1% and subsequently solids within
the atomic sphere approximation (ASA).(105-108)

In 1992, Krieger, Li and Iafrate'® proposed an alterna-
tive, still exact expression for the OEP integral equation,
using the differential equation that defines the Green’s
function of the reference system. After some algebraic
manipulation, the XC potential assumes the form:

Vies®) = 3 ( P Dcpw( I’
X [Vycio®) + (Voet, — iixcis)] + 0. (94)

where

V- [V @ Ve, ()] 95)

Vxcis(X) = Uycio(r) —

_1 g
910 (D)2

P,;,(r) are the solutions of the inhomogeneous KS-like
equation:

(g = 1) Wi ) = — [VEEE, () —

(V)?gzpc Uycio)] i) (96)

uXCio(r)

and the bars indicate averages over |(pl.0(r)|2.

This formulation is strictly equivalent to equation (89),
but it admits a reasonably well-controlled mean-field
approximation, which is obtained by neglecting the sec-
ond terms in equation (95), that is, vy (X) = Uy ;6 (T).
Even if this is not generally true, it can be shown that
the average of the neglected term is zero.'” This is
the Krieger—Li—Iafrate (KLI) approximation, and the KLI
expression for the XC potential is

Vicsn) = 5 ()ch( )

X [t cio@® + (VXEly — lixcio) ] + e (97)

where the averaged XC potential is obtained as the solu-
tion of a set of coupled linear equations. This equation is
much simpler to solve than the original OEP equation and

has been used in a number of different contexts, mainly
in atomic and molecular systems.!''” In order to distin-
guish the two approaches, we shall use EXX to refer to
the solution of the full integral equation and KLI to refer
to the above approximation. Both are based on the OEP
philosophy.

5.2 Properties of exact exchange in the OEP
approach

The formal properties of both the EXX approach and the
KLI approximation have been considered in detail by Grabo
et al."1% The most important ones, concerning the EXX (no
correlation) functional are the following:

1. Owing to the exact cancellation of the self-interaction,
the EXX and KLI exchange potentials decay (correctly)
as —1/r at long distances, in vacuum regions. This is
one of the most severe shortcomings of the LDA and
GGA, which leads to a number of unpleasant features
such as the incorrect dissociation limit for molecules
or the image potential at metallic surfaces showing an
incorrect decay into the vacuum.

2. The principle of integer preference,!!'" which states
that the exact XC potential considered as a continuous
function of the number of electrons, is discontinuous
at integer values — so that integer numbers of elec-
trons are preferred — is verified both in EXX and
in KLI. This is another great advantage over LDA
and GGA, none of which verifies this property. A
consequence of the lack of integer preference is the
well-known underestimation of the band gap in bulk
semiconductors.

3. At variance with HF theory, which at first glance
may seem equivalent, the long-range decay of the
exchange potential into vacuum regions goes, correctly,
as —1/r for all states, irrespectively of whether they are
occupied or empty. In HF, the potential corresponding
to occupied orbitals decays as —1/r, but for empty
orbitals it decays exponentially. Therefore, the HF
potential can support very few (if any) empty bound
states. In the same way, the exchange potential in the
LDA and GGA decays exponentially for all states,
occupied and empty. Again, only a few bound excited
states are possible and, moreover, many negatively
charged ions are not even bound. The OEP solves
these problems and has been shown to support a whole
Rydberg molecular series.®> In addition, in HF all the
occupied orbitals decay exponentially with the same
exponent, while in the OEP each orbital decays with
its own exponent, as it should be.
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4. In exchange-only calculations, that is, when neglect-
ing the correlation term, the spin-unrestricted Hartree—
Fock (SUHF) approach gives the variationally lowest
ground state energy. Therefore, Eqyyp is a lower bound
for any other exchange-only scheme. It has been shown
that the EXX approach gives energies Epxy, which are
only marginally larger than Egyyg.!'? This fact might
appear as an inconsistency because both the SUHF and
the EXX approaches are exact. However, the nature
of the HF (non-local X potential) and DFT (local X
potential) approaches is different, in the sense that
the partition between exchange and correlation ener-
gies is different in both schemes. Therefore, this small
difference is related to the fact that correlation has
been neglected and should disappear when the exact
correlation is considered. In the next subsection we dis-
cuss some attempts to combine EXX and/or KLI with
approximate orbital-dependent correlation functionals.

5.3 Orbital-dependent correlation functionals

Although the EXX and KLI formulations are general for
orbital-dependent XC functionals, the exact correlation
functional is not known. This approach has been normally
implemented in its exchange-only form(!0%103.113.114) qp
augmented with the usual LDA and/or GGA density-only
correlation functionals.©3-%4115

An orbital-dependent correlation functional has been
proposed by Colle and Salvetti,**!%0 starting from a
correlated Jastrow-type many-electron wave function, and
performing a series of approximations. The expression of
the correlation energy, as given by Lee, Yang and Parr,®”
is the following:

EE((g,,)) = —ab [ dr yws(o
1
x [Z Pe(®) Y [V, ()]* — Z|Vpc(r>|2]
— ab/dr Y(r)E(r)

1 1
x [‘Z > 0V, (1) + Zp(r)vzp(r)}

—a / dr y(r)@ (98)
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where
) = 42100 ©99)

p%(r)

nr) =1+dp ()
p~3(r) exp[—cp™ /3 (r)]
n(r)

(100)

§(r) = (101)
with a = 0.04918, b = 0.132, ¢ = 0.2533 and d = 0.349.

A purely density-dependent functional — instead of orbit-
al-dependent — inspired in Colle—Salvetti’s formula has
been proposed by Lee, Yang and Parr,®” and became
very popular in standard GGA calculations under the
name of LYP correlation functional (see Section 4.3). It
is commonly used in conjunction with Becke exchange(®®
(BLYP functional), and also in hybrid DFT-HF schemes
such as B3LYP,7%~7® which are nowadays the way of
choice in quantum-chemical (QC) applications.

The original CS functional is, however, orbital-dependent
and can be used in an OEP scheme in conjunction with the
EXX or KLI exchange functional. This program has been
carried out by Grabo et al.''” (KLICS scheme), and the
results compared with density-dependent GGA, correlated
QC calculations, and exact values, for atomic and molecular
systems.

The spirit of Colle—Salvetti functional is, however, the
same as that of GGA, in the sense that it is constructed in
terms of the local density and the gradients of the orbitals
and the density. Therefore, it is an approximation that is
valid in the case of slowly varying orbital densities and
cannot constitute a solution for the correlation problem
in the general case. A possible consistent approach to
deal appropriately with the correlation functional will
be discussed in the following section. Nevertheless, this
is a very active area of research, and several different
approaches are currently being explored. In the last section
we shall review some applications and compare the results
obtained using different exchange functionals (LDA, GGA,
M-GGA and exact), and also combined with the appropriate
correlation functionals.

6 TOWARDS AN ACCURATE
CORRELATION FUNCTIONAL

While the exchange contribution to the energy and potential
is well known, and has been usually approximated in
DFT because of its computational cost, the correlation
contribution, in the general case of an inhomogeneous
electronic system, is still unknown in a closed form. A few
simple cases, such as the homogeneous electron gas and
some atomic systems (especially He), have been studied
numerically very accurately, so that nowadays there are a
number of benchmarks to compare the quality of different
approximations to correlation.
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In order for an approximation to exchange and correlation
to be reliable, it is needed that both terms are treated
consistently. This is one of the main achievements of the
LDA, where both energy functionals are approximated in
the same limit of a locally homogeneous system. Therefore,
even if separately each term is not particularly accurate,
the sum of the two terms is rather precise, at least
from the energetic point of view. The same can be said
about properly constructed GGAs, where exchange and
correlation are treated consistently.®®%% In this case, the
reference system is an electron gas whose density is slowly
varying in space.

Proper GGAs are, by construction, better approximations
than the LDA. They should include the LDA as a limiting
case when the density gradient terms in the functional
are neglected. It is to be remarked that some popular
GGA, like the BLYP functional, do not satisfy this limit.
In addition, GGAs are constructed to fulfil some other
exactly known conditions that the LDA does not, like
the correct linear response limit and the correct limit for
slowly varying densities, amongst others. Therefore, if a
proper GGA performs worse than the LDA for some system
when compared with experimental data, this means that
the good performance of the LDA is actually fortuitous,
and it is based mainly on cancellation of errors. This
happens, for example, for noble metals, where the LDA
lattice constant is virtually on top of the experimental
value, while PBE gives a value that is expanded by a few
percent.

This is, then, the main reason for the seemingly poor
performance of exact exchange combined with local cor-
relation functionals, that is, EXX-LDA and EXX-GGA
approaches. This is more dramatic in atoms and molecules
than in solids because, there, local correlation function-
als based on the homogeneous electron gas are partic-
ularly inappropriate. Even the Colle—Salvetti pair corre-
lation function, where the radius of the correlation hole
is parametrized to fit the correlation energy of the He
atom,'® strongly departs from the correct long-range
dependence. In fact, for the uniform electron gas it
should decay as r~*, but the assumption of a strong
Gaussian damping for the pair Jastrow correlation fac-
tor (the pair density matrix) prevents against such a
decay.

This, together with other studies, indicates that the
main limitation of such a hybrid (exact exchange — local
correlation) approach is that the long-range tail of exchange,
which is treated exactly, is not properly compensated by a
similar long-range tail of opposite sign in the correlation
term. Therefore, there is a clear need for improvement at
the level of correlation functionals, which should now take
into account this aspect. A possible route to include this

limit would be to make a connection with the RPA, which
is known to treat properly long-range correlations.'!” The
short-range behaviour of the RPA correlation is, however,
rather poor.(!'® Therefore, a different approach is needed in
that region. One possibility is to connect with the standard
GGA19-120) _ or new variants of the GGA?D — at short
distances, where GGAs are rather accurate. Nevertheless,
other partitionings are also possible.(12%123)

These approaches for finding a good approximation to
the (orbital-dependent) correlation functional can be put
on a sounder basis by making a connection with quantum
many-body theory. In quantum chemistry, the perturbative
approach known as Mgller-Plesset (MP) theory has been
used since the early days of quantum mechanics.© It
starts from the HF solution and introduces electronic
correlations in a perturbative way on top of HF. The
perturbation expansion is now customarily carried out to
2nd order (MP2), and sometimes also to 4th order (MP4). In
DFT, the analogous density functional perturbation theory
(DFPT) has been developed and discussed in detail by
Gorling and Levy!?#129 (GL theory). In the following, we
sketch the salient features of GL theory and discuss some
applications.

Gorling and Levy considered the many-body Hamilto-
nian

o~

H =T+V, +2U, (102)
where 0 <\ <1 is a coupling constant representing the
strength of the electron—electron interaction and {/\x is
constrained to be the local external potential that keeps
the ground state density p, , corresponding to H, , invariant
for any value of )\ and equal to the density of the fully
interacting system, p. The total energy for interaction
strength '\ is written as

E,lpl = EQlpl + ED[p] + El[p]  (103)
where E@[p] is the energy associated with the non-
interacting Hamiltonian, NEV[p] = E [p] is the exact
exchange energy given by the Fock expression and E*p]
is formally given by the expression

EZ\[p] = [(llf)xlf + )\ﬁeelllj)\) - (llf()lf + )\ﬁeelllj())] (104)

where s, and W, minimize (T 4 %U,,) and (T, respectively.

Owing to exact scaling relations derived by Levy
and Perdew,!?® the correlation energy at any interaction
strength N\ can be written in terms of the correlation energy
of the fully interacting system (A = 1), but at a uni-
formly scaled density p, , (x, y,2) = A7 p(x /%, y/%, 2/N).
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The scaling relation is

E.lp; ;] = %E}[p} (105)
so that
Elp; 5] = % [V 1T + 2T, 1)
— (Ul T + WU, 1]
= % [E, — Eq — (Yol H, — Hylo)]  (106)

where the \-interacting Hamiltonian I:Ix is partitioned in
the following way:

o~

H, = H,

R SE,[p, ]

107)
and the term inside curly brackets is treated as a perturba-
tion. Here, u(r) is the Hartree (direct Coulomb) potential
and v (r) is the (local) exchange potential (in the sense
of the OEP discussed above). By considering the Taylor
series in A around the non-interacting limit (A = 0), and
being consistent in the order in A (care has to be taken with
the last term in the perturbing potential in equation (107),
which depends on '\ and on the correlation potential itself),
the following expansion is obtained:

o0

Elp 5] =Y N7 E[p]
n=2

(108)

where the terms E[p] are now calculated perturbatively
on the non-interacting system, for which the orbitals are
known (e.g., the KS orbitals). The total correlation energy
is obtained as a coupling constant integration, which is a
result of the adiabatic connection formula.!!'” The latter
states that the correlation contribution to the kinetic energy,
which is neglected in the non-interacting reference system
(KS), can be absorbed into the correlation potential energy
(E,), by averaging the correlation energy corresponding to
interaction A\ from the non-interacting case h =0 to the
fully interacting case h = 1:

o0

1 1
E,lp] = /O . Elpy) =Y ——Ep]

(109)
n=2 —1

The general expression for EU” has been given by
Gorling and Levy.(!?%125 While, in general, the perturba-
tive terms in the above expansion are complicated and com-
putationally very expensive, the second-order term assumes
the familiar form known from the usual second-order per-
turbation theory, although applied to KS states

o0 0 gy ~ o~ 0
£ = 3 W10 = Vi = VVIE

110
E} - EJ (1o

k=1

with ¥ the kth excited state of the unperturbed Hamil-
tonian — which are KS determinantal states — and E? the
corresponding energies. Obviously, the ground state is
excluded from the summation. This can be put in terms
of KS single-particle orbitals, recalling that ﬁee is a two-
particle operator, while V,; and V, are single-particle oper-

ators. The expression obtained is(>”)
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where f is the Fock-like, non-local exchange operator,
but formed with the {¢;}, which are KS single-particle
orbitals with associated eigenvalues ¢;. The indices i and j
correspond to occupied single-particle orbitals, while o and
B indicate empty orbitals.

As in MP theory, the computational cost of higher-
order terms in the series is prohibitively expensive, so
that normally it would not be possible to afford more than
second-order DFPT. This is sometimes called second-order
Gorling—Levy theory (GL2). As such, GL2 theory has been
used by Ernzerhof to calculate the energetics of atomiza-
tion of molecular systems,!?® and compared with the more
traditional DFT and QC approaches such as LSD, GGA,
HF and MP2. One important conclusion of this work is
that if the perturbative series for the correlation is simply
cut at the GL2 level, then the resulting atomization ener-
gies are particularly bad, even worse than the local spin
density (LSD) values. Ernzerhof suggested that the one
important shortcoming of this type of approximation is that
some known exact limits, for example, the limit of very
strongly interacting systems (A — 00), are not fulfilled. He
then proposed an empirical re-summation of the series, in
the spirit of the GGA, so that these exact limits are ver-
ified. The comparison of these results with experimental
atomization energies is very favourable, even improving
over MP2 results in some difficult cases such as the F, and
O; molecules.
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Another application of the bare GL2 theory, combined
with EXX, was carried out by Engel eral.,'*” who
analysed the problem of the van der Waals binding of
closed-shell-atom dimers. This is a difficult benchmark
problem in many-body theory, which, ultimately, any
correlation functional should address. It has attracted a lot
of attention in the past, since the early work of Zaremba and
Kohn,"® up to recent proposals.(1?>130-133) The origin of
the van der Waals interaction between two non-chemically
bonded fragments is the coupling of the electric field
generated by fluctuations in the electronic density of one
fragment, with the density of the other fragment. At long
distances, this interaction should approach the classical
dipole—dipole interaction, which decays as R, with R
the distance between fragments. Special cases of van der
Waals systems are dimers of closed-shell atoms such as
He,.

While most works concentrated precisely on this long-
range behaviour, the goal of a correlation functional is
to reproduce the correct behaviour of the whole poten-
tial energy surface, especially binding energies and bond
lengths. This analysis has been presented by Engel et al.('>”
for the case of He, and Ne,, where a comparison between
LDA, HF, KLI (x-only), MP2 and KLI-GL2 calculations
and exact results is reported. It is very clear that the LDA
severely overbinds, while HF and x-only KLI do not bind
the dimers at all. Therefore, correlation is confirmed as a
crucial ingredient. In fact, the two correlated approaches,
MP2 and KLI-GL2, bind the dimer quite reasonably.
Compared to exact results for Ne, (D, = 3.6meV), 3%
MP?2 tends to underbind — giving a dissociation energy of
2.3meV, while KLI-GL2 overbinds (D, = 8.3 meV). This
is reflected at the level of geometry, where the MP2 bond
length is somewhat long (6.06 bohr) against 5.48 bohr in
KLI-GL2, and 5.84 bohr in the exact calculation. Also, the
dynamics follows the same trends: lower frequency in MP2
(23cm™") and higher in KLI-GL2 (46 cm™!), compared to
the exact value of 29 cm~!. This indicates that correlations
to a level higher than second order are necessary to obtain
a quantitative agreement.

These applications of GL2 theory show a general fea-
ture of perturbative expansions, namely, that unless the
perturbation is really very weak, the simplest approach of
cutting the expansion at some low order is not quite suc-
cessful. There are two possible reasons for that: first, that
the higher-order terms are not significantly smaller than
the second-order one; second, that for some range of val-
ues of the coupling parameter A, the perturbative series
might even be divergent. This feature was already noticed
by GL,1?*125 who clearly stated that their expansion was
based upon the assumption that the correlation energy can

be expanded in Taylor series for all values of the coupling
constant 0 <\ < 1.

This hypothesis was tested by Seidl et al.!'*> on the
basis of the atomization energies calculated by Ernz-
erhof in the GL2 approximation.!'?® Surprisingly, they
found that, except for a few notable cases such as H,
and CH,, the radius of convergence of the perturba-
tive series is always A\, < 1. In some cases it can be
very small indeed (0.06 for B,). As already remarked
by Ernzerhof, this is the reason for the poor values
obtained for the atomization energies. They have also
shown, in a model calculation, how this problem of the
radius of convergence is manifested numerically, in a
real calculation. Basically, the truncated series in equa-
tion (108) behaves well until \., where it departs from
the expected behaviour, and shows its tendency to diverge
(diverges only if the infinite series is considered). Succes-
sive terms in the expansion have different signs, so that
the series oscillates upon adding more and more terms.
In the correlation energy, this is reflected as an oscilla-
tory behaviour as a function of the number of terms in the
expansion.

Seidl et al. generalized, then, the re-summation ideas
proposed by Ernzerhof, in the spirit of GGAs. They did
this by asking the correlation functional to verify the limit
of very strong interaction (A — o0), which is the region
of interaction strengths where the perturbative expansion is
likely to fail. In this limit, the electronic positions become
strictly correlated and give rise to Wigner crystallization.
The correlation functional for such very strong interaction
was calculated in the point charge plus continuum (PC)
model,*® and given in terms of the electronic density and
its gradient. Then, an interpolation formula was proposed
(the interaction strength interpolation, or ISI), which has
the above limit for A — oo, and also reproduces the small
N limit, thatis, Ey. — E, + E?Lz, where E, is the EXX.
It was shown that, as a function of the number of terms
in the expansion, the perturbative Taylor series oscillates
around the correlation energy given by the interpolation
formula.('*> Results presented for atomization energies of
molecules, as in the case of Ernzerhof, compare extremely
well with experiment. The limit of weak interactions is
more dubious, because for the reference system, that is,
the uniform electron gas, GL perturbation theory does not
work. The reason is that each term in the perturbative
series is divergent, and they have to be grouped together
into some re-summation scheme to give a finite correlation
energy. Such a framework is provided, for example, by the
RPA mentioned above. Then, some kind of interpolation
scheme is needed in order to go from the weak to
the strong interaction limit (from RPA to PC). Another
interesting approach has been proposed by Casida,!3”
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who extended the OPM to include correlation, in addition
to exchange. He showed that the OEP method finds the
variationally best local potential for the non-interacting
reference system, which has the same density as the
interacting system. Actually, the exact self-energy function
3 (r, r', ) is non-local both in space and time. The OEP
method finds the best local approximation to this self-
energy. In order to do this, it is necessary to solve the
OEP integral equation, which involves calculating the
matrix elements of the self-energy operator. Casida has
shown that this approach is closely connected with the
Green’s function many-body theory developed by Sham
and Schliiter.*® Unfortunately, it seems that casting this
framework into a practical scheme for performing actual
calculations is not an easy task. In fact, no applications
of this approach are known, even if the formalism is very
appealing.

As a summary, in Figure 2 we show a scheme of the
different approaches to deal with the electronic kinetic,
exchange and correlation contributions within DFT, includ-
ing a number of approaches devised to deal also with
electronic excitations within the DFT framework.

Orbital-dependent
functionals

Exact
exchange
C

Local airy
gas (LAG)

Edge electron
gas

Time-dep.
DFT

7 COMPARISON AND SALIENT
FEATURES OF THE DIFFERENT
APPROXIMATIONS

7.1 Atoms and molecules: exchange-only

In this subsection we summarize the properties of different
exchange-only approaches (i.e., neglecting correlation), as
compared to exact HF calculations, xXLDA and xGGA.

1. Total energies: EXX energies are marginally larger
than the SUHF ones. For instance, for atomic systems
the difference is only of a few ppm (2ppm for Xe,
40 ppm for Be, the worst case).!1?

(a) The KLI approach, being an approximation to
the exact OEP (EXX), gives ground state ener-
gies that are higher. For atoms, however, the
differences between Ey; | and Egyy are also very
small — between 1 and 10 ppm — thus indicating
that the KLI scheme is a rather good approxi-
mation for this class of systems.!!'” The average

Density-
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Figure 2. Schematics of the different approximations devised to deal with the different energy terms in density functional theory. Also,
a few approaches to deal with electronic excitations are included: Ensemble DFT,?>=29 the adiabatic connection,®**? time-dependent
DFT®%-2%) and many-body Dyson’s equation within the GW approximation.®® The letters K, X and C indicate which parts of the

energy are approximated (kinetic, exchange and/or correlation).
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error with respect to EXX, for 1 < Z <54, is
3.1mH.

Usual gradient-corrected DFT local exchange
functionals (GGA) give much larger errors when
compared to EXX results. Differences could
be as large as several hundred ppm for low-
Z atoms, although they decrease significantly
for high-Z species. The average error for the
B88 functional®® is 66 mH and for the PW91
functional® is 53 mH.

The case of the x-only LDA functional (Slater’s
exchange) is somewhat worse, especially for low-
Z atoms, owing to the severe lack of cancellation
of the self-interaction. It is well known that the
x-LDA energy of the H-atom is 0.457 H, instead
of the exact value of 0.5H. For low-Z atoms,
differences can be as large as 50000 ppm. For
higher-Z atoms, as in GGA, these differences
decrease, leading to an average error of 160 mH.
For comparison, Grabo et al.(!'% reported results
obtained by using the SIC scheme of Perdew and
Zunger,*? implemented as in the KLI approxi-
mation. This approach solves the self-interaction
problem, thus adjusting the discrepancies for the

(b)

(©)

(d)

low-Z atoms (H and He are actually exact within
the SIC approach). However, results worsen
notably for atoms with more electrons, leading
to an average error of 300 mH.

2. Eigenvalues and exchange potentials: The trends
illustrated for the ground state energies, that is, that
HF and EXX are virtually identical, KLI is a very
good approximation to EXX, xGGAs are one order
of magnitude worse than KLI and xLDA is the worst
approximation of all, are preserved for most quantities
of interest. For instance, the single-particle eigenval-
ues, which are a measure of the quality of the exchange
potential, show that KLI produces a high-quality Vy(r),
while LDA and GGA are seriously in error. Interest-
ingly, standard SIC results for eigenvalues are much
better than the LDA and GGA ones. This can also be
seen by directly inspecting the shape of the exchange
potential. The EXX and KLI exchange potentials decay
(correctly) as —1/r in the asymptotic region, as well
as the SIC potential, while LDA and GGA’s poten-
tials decay too fast, either exponentially or with the
incorrect power law. In the inner region, the inter-shell
maxima (peaks) are poorly reproduced in GGA, and
are almost absent in SIC. Also, the GGA potentials
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Figure 3. The exchange potential for the He atom within different approximations [Reproduced by permission of APS Journals from

C. Umrigar and X. Gonze (1994) Phys. Rev. A, 50, 3827.](39
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exhibit an unphysical divergence at the position of the
nucleus, which is related to a pathology of the gradi-
ent expansion. In fact, the LDA is not divergent there.
Figure 3 shows the shape of the exchange potential in
the He atom for the xLDA and for different xGGA, as
reported by Umrigar and Gonze.3® Clearly, none of
these functionals is particularly accurate.

3. Magnetic properties: Spin polarization densities are
well described by the EXX, KLI and SIC functionals,
although the approximate schemes miss the fine shell
structure. GGAs give radically different results, even
predicting non-magnetic properties for magnetic atoms.
For the magnetization density at the nucleus, which is
an important quantity to interpret NMR experiments,
the KLI approach is somewhat erratic; it is in fair
agreement for some elements, but for others it even has
the wrong sign. All other approaches are also erratic
and of poorer quality than KLI.

4. Diatomic and polyatomic systems: Diatomic mole-

cules are quite well described in the KLI approxi-
mation, as compared to HF results.''?) Total energies
are within ~0.01%, highest orbital eigenvalues within
~0.1% and multipole moments within a few percent.
An interesting exception is the N, molecule, for which
the ordering of the two highest occupied molecular
orbitals (HOMO), Im, and 30, is reversed in all
DFT approaches with respect to HF. The xLDA results
are of much poorer quality, giving much higher total
energies (a few percent off), and HOMO eigenvalues
that are twice as large as the HF values, due to the
wrong exponential decay of the LDA exchange poten-
tial. Interestingly, the KLI approach also reproduces
some well-known failures of HF, such as the instabil-
ity of Be,, the Beryllium dimer (a particularly difficult
case, where correlation is a crucial ingredient).
Exact exchange methods for polyatomic molecules
have been devised by Gorling,®> Ivanov et al.''® and
van Gisbergen et al.''¥ The conclusions are basically
the same as for diatomics.

7.2 Atoms and diatomic molecules: correlation
effects

Correlation is the smallest contribution to the total energy.
Its magnitude for atoms is around 30 times smaller than the
exchange one. This does not mean that correlation is not
important. In fact, several physical and chemical properties
depend actually on the potential rather than the energy, and
very different potentials can correspond to similar energies.
Therefore, even if the energetics is correct, it is important
to assess also the quality of the correlation potential. We
now summarize the results obtained for different exchange

functionals combined with appropriate correlation function-
als. Following Grabo et al.,"'9 we consider the KLICS
approach (KLI exchange and Colle—Salvetti correlation),
self-interaction corrected LDA (SIC-LDA), GGAs (BLYP
and PW91) and QC approaches.

1. Total energies: For atomic systems in the KLICS

approximation, these are of very high quality, compa-
rable to QC calculations. LDA performs rather badly
for these systems, which is significantly improved by
the SIC-LDA. Even better results for the energetics
are obtained within GGA, almost as good as KLICS
and QC. Average errors for first-row atoms are 380 mH
(LDA), 130 mH (SIC-LDA), 10 mH (GGA) and 5 mH
(KLICS and QC). Similar trends are obtained for
second-row atoms.
Individually, EX" and ESS are much closer to the
exact values than their GGA counterparts, for example,
E® and EEP. The KLI (or EXX, which is almost
identical) exchange energy is lower than the GGA one,
while the CS correlation energy is higher. The sum
of the two terms, however, is quite similar in both
approaches, thus leading to the well-known, remarkable
cancellation of errors between exchange and correlation
energies. In the LDA, this derives from the fact that
the exchange-correlation hole corresponds to a well-
defined physical system (the homogeneous electron
gas), so that a number of crucial sum rules are
automatically verified. The SIC-LDA approach does
rather poorly in both terms.

2. lonization potentials: When calculated from ground
state energy differences, ionization potentials are
very well described both in KLICS and GGA (see
Table 1). Average deviations from experimental values
are around 10mH. QC approaches are one order
of magnitude better, and the SIC-LDA somewhat
poorer. The quality of the XC potential is measured
by the ionization potential calculated from the
HOMO of the neutral atom (Janak’s theorem). Here,
the KLICS approach is definitely superior to the
GGA. KLICS values systematically overestimate the
ionization potential by less than 100mH (typically
10%), while GGAs give results that are roughly half
of the experimental values, that is, it underestimates by
50%. SIC-LDA is of much better quality in this respect.
The reason is that both KLICS and SIC-LDA reproduce
the correct —1/r behaviour of the exchange potential
at long distances from the nucleus, and this is a crucial
aspect for the correct determination of the HOMO.
Therefore, the X C potential is much better described in
KLICS than in GGA. Values for the first 18 elements
of the periodic table are presented in Table 1, for two
different GGA and for the KLICS approach. LSDA
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Table 1. Ionization energies from ground state energy differences for the first 18 elements in the periodic table, in different
approximations: LSDA,? two different GGA PW91 and BLYP),''” a meta-GGA (MGGA),®” HF!4® and KLICS.'? The last three
columns present ionization energies calculated from the neutral atom eigenvalues, in the PW91, BLYP and KLICS approximations.!'9
Experimental values are from Reference 141. Units are eV.

z Exact LSDA PWI1 BLYP KLICS HF MGGA P-e B-e K-e
He 2 0.903 0.892 0.903 0.912 0.903 0.862 0.910 0.583 0.585 0.945
Li 3 0.198 0.200 0.207 0.203 0.203 0.196 0.202 0.119 0.111 0.200
Be 4 0.343 0.331 0.333 0.330 0.330 0.296 0.337 0.207 0.201 0.329
B 5 0.305 0.315 0.314 0.309 0.314 0.291 0.306 0.149 0.143 0.328
C 6 0.414 0.429 0.432 0.425 0.414 0.396 0.416 0.226 0.218 0.448
N 7 0.534 0.548 0.551 0.542 0.527 0.513 0.544 0.308 0.297 0.579
(0] 8 0.500 0.508 0.505 0.508 0.495 0.437 0.504 0.267 0.266 0.559
F 9 0.640 0.659 0.660 0.656 0.621 0.577 0.645 0.379 0.376 0.714
Ne 10 0.792 0.812 0.812 0.808 0.767 0.728 0.799 0.494 0.491 0.884
Na 11 0.189 0.195 0.198 0.197 0.191 0.182 0.192 0.113 0.106 0.189
Mg 12 0.281 0.283 0.281 0.280 0.275 0.243 0.282 0.174 0.168 0.273
Al 13 0.220 0.220 0.221 0.212 0.218 0.202 0.214 0.112 0.102 0.222
Si 14 0.300 0.302 0.305 0.294 0.294 0.281 0.294 0.171 0.160 0.306
P 15 0.385 0.386 0.389 0.376 0.379 0.369 0.382 0.233 0.219 0.399
S 16 0.381 0.385 0.379 0.379 0.380 0.331 0.381 0.222 0.219 0.404
Cl 17 0.477 0.484 0.482 0.476 0.471 0.433 0.478 0.301 0.295 0.506
Ne 18 0.579 0.585 0.583 0.576 0.575 0.542 0.582 0.380 0.373 0.619

values are similar to the GGA ones and HF results are
similar to KLICS, although somewhat reduced due to
the absence of correlation.

Electron affinities: These are more stringent a test
for Vy.. The wrong asymptotic behaviour in LDA
and GGA in many cases prevents the very existence
of bound states in negative ions, so that electron
affinities cannot be calculated. Owing to the proper
asymptotic decay, KLICS and SIC-LDA support such
bound states. However, the calculated electron affinities
are rather poor. If calculated from ground state energy
differences, they are underestimated by approximately
10mH, although in some cases such as O, it is
underestimated by as much as 40 mH. In B, it has even
the wrong sign. Calculating them from the HOMO of
the negative ion, electron affinities are overestimated
roughly by a factor of 2, the agreement worsening for
increasing number of valence electrons. QC approaches
are extremely accurate in this respect. This indicates
that the CS correlation potential is rather poor and
needs further improvement.

Correlation functional: The CS correlation functional
has been studied more in detail by analysing the case of
two-electron systems (Helium-isoelectronic series), 19
where the KLI is essentially exact and the only error
introduced is due to correlation. The correlation energy
is clearly superior in CS with respect to GGA and
SIC-LDA. The average error is around 5 mH, com-
pared to 50 to 100 mH in other methods. Also, HOMO
eigenvalues are in much better agreement. However,

this agreement is mainly due to the improvement in
the description of the exchange, as testified by x-only
calculations. Interestingly, including the CS correla-
tion actually worsens the results obtained in x-only.
This is an indication that the CS correlation poten-
tial has the wrong sign, and this has been confirmed
by analysing directly V. for the He atom. The exact
correlation potential is positive, while all the approx-
imations (LDA, PW, LYP and CS) are negative and
longer ranged. Moreover, gradient-corrected function-
als exhibit spurious divergences at the origin. Recent
work by Tao e al.''® proved that the CS functional
actually recovers only 25% of the correlation energy of
the uniform electron gas. Previous calculations, which
were the basis for adopting CS and derived func-
tionals in DFT calculations, misleadingly suggested
a much better quality. This indicates that there is a
clear need for improvement on the correlation func-
tional. Short-range correlations appear to be described
very well, but it misses in the long-range part. This
is not extremely important in atoms, but in more
extended systems such as molecules and solids it can
be crucial.

Bond lengths: KLICS bond lengths in diatomic
molecules are shortened with respect to LDA and GGA
values. Actually, these bonds as well as HF ones are
too short compared to experiment. For instance, in N,
it goes from 2.068 bohr in LDA to 2.079 bohr in GGA,
and to 1.998 bohr in KLICS, while the experimental
value is 2.074 bohr, remarkably similar to the GGA
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Table 2. Atomization energies for a few selected molecules. The first column quotes experimental values (reproduced from Refer-
ence 84), the next three are for pure DFT approaches: LSD, a GGA (PBE) and a meta-GGA (PKZB),® the following two columns
report HF and correlated quantum-chemical MP2 results,(1?® then orbital-dependent DFT KLICS,"'? a hybrid HF/DFT functional
(B3LYP)® and finally a DFT perturbative correlated approach (second-order Gorling-Levy), bare and re-summed in the Interaction

Strength Interpolation (ISI).3% Units are mH.

Mol. Exp. LSDA PBE MGGA UHF MP2 KLICS B3LYP GL2 ISI

H, 174.5 180.3 166.7 182.5 133.9 165.7 171.4 — 181.7 180.0
Li, 39.3 37.9 31.7 35.9 4.8 255 324 335 62.1 35.9
Be, 4.8 20.6 15.6 7.2 11.2 -1.6 —10.5 — 35.1 9.1
N, 364.0 427.1 387.6 365.2 183.3 368.1 287.3 365.6 545.0 373.9
F, 62.1 124.6 85.1 68.8 —159 111.6 —22.7 57.7 213.5 54.2
LiH 92.4 96.9 85.2 93.1 52.6 86.1 89.4 92.9 111.6 93.7
OH 169.6 197.9 175.0 171.8 108.4 165.7 — 172.3 204.0 173.1
HF 225.7 259.1 226.3 221.0 154.6 227.9 193.9 222.1 275.7 229.0
H,0 370.0 4249 373.2 366.7 245.4 366.5 — 368.1 436.6 375.6
NH; 473.9 537.5 480.8 476.2 318.7 462.1 — 478.4 541.8 479.5
CH4 668.2 737.2 669.0 671.1 522.7 661.3 — 670.4 723.5 674.7
CcO 413.2 476.3 428.4 408.0 277.3 4239 — 408.3 565.7 423.7
NO 243.7 316.2 273.9 252.6 84.5 2422 — 248.0 4223 251.6
Cl, 92.4 132.1 103.7 94.7 — — 87.8 — —

value. The reason for this disagreement is, partly, the
correlation functional, but more importantly, the zero-
point motion of the nuclei. In fact, the anharmonicity
of the potential energy surface along the bond is
such that the quantum average of the bond length is
displaced towards larger values [2]. In the case of the
H, molecule, the bond length is increased by 3%, and
the vibrational frequency decreases by 400cm™! by
considering the quantum mechanics of the protons.!4?
GGA results are remarkably close to experimental
values, but for the wrong reason. When corrected for
zero-point motion, KLICS results are in much better
agreement with experiment.

Dissociation energies: KLICS dissociation energies of
diatomics are disappointingly far from experimental
values, except for a few exceptions. The left—right cor-
relation error in molecules is well known in HF theory,
and it is clearly inherited by the KLICS approach. The
correlation functional has to compensate properly the
long-range part of the exchange potential, so that the
combined XC hole is shorter ranged than the X and
C holes separately. Evidently, the CS functional is not
adequate to solve this problem. This feature is simi-
lar to the one appearing when considering meta-GGA
functionals. Dissociation energies are much better in
the LDA and GGA because of the better compen-
sation of exchange and correlation in the long-range
region. LDA is known to overbind molecules, and
GGA reduces this overbinding tendency. In particular,
GGA values are remarkably close to the experimen-
tal ones. Results for a few selected molecules within

different approximations, including many-body pertur-
bative approaches (see previous section) are presented
in Table 2.

Exchange-correlation potential: The quality of the
KLICS XC potential is, nevertheless, superior to that
of GGA. This can be seen by inspecting the HOMO
eigenvalues of diatomics, which should coincide with
the ionization potential. For instance, in N,, the HOMO
eigenvalue goes from 0.3826 H in the LDA to 0.3804 in
GGA, and to 0.6643 H in KLICS. Experimental value
is 0.5726 H. As for atoms, this behaviour can be traced
back to the correct asymptotic decay of EXX.
Polyatomic molecules: An EXX method for poly-
atomic molecules, where the correlation term is treated
within the usual LDA and GGA approaches, has been
developed by Gorling.®> Pure EXX atomization ener-
gies are close to HF values. Inclusion of correla-
tion improves the agreement with experiment, better
in LDA than in GGA. However, as in the case of
diatomics, the pure GGA results (X and C treated
within GGA) are in much better agreement with exper-
iment, which is worsened when improving the descrip-
tion of exchange. This clearly indicates that the good
performance of GGA heavily relies on error cancella-
tion between exchange and correlation. Very interesting
results have been obtained for eigenvalue spectra. In
contrast to LDA, GGA and HF spectra, the EXX-GGA
spectrum is physically meaningful: the HOMO lies in
the correct energetic region (coinciding with the ioniza-
tion potential), and it also exhibits a Rydberg molecular
series, which is absent in all other methods. This is a
consequence of the correct asymptotic behaviour of the
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Figure 4. Eigenvalue spectrum of the CO molecule [Reproduced
by permission of APS Journals from A. Gorling (1999) Phys. Rev.
Lett., 83, 5459.10%

exchange potential, not only for occupied states but
also for empty states. Figure 4 shows the eigenvalue
spectrum of the CO molecule within the PBE, HF and
EXX-PBE approaches, as calculated by Gorling.®>

7.3 Solids

Exact exchange methods for solids have been developed
by a number of authors. Kotani!%~1%® implemented
a linear-muffin-tin-orbitals method within the atomic
sphere approximation (LMTO-ASA), while Bylander and
Kleinman!'> and Stidele et al.®**% proposed, instead,
a pseudopotential plane-wave implementation. For the
correlation, they used the usual LDA and GGA functionals.
The accuracy of the KLI and another approximation —
the average Fock approximation (AFA)!4314) _ in solids
was investigated in Reference 115. A very thorough
study of many properties of eight semiconductors in
several approximations was presented by Stidele et al.*3%%
In the observations below, we mainly follow these
works.

1.  Exchange energies: Exact-exchange energies have
been compared against different approximations.
LDA values are small, roughly by 5%, while differ-
ent GGAs produce results of very high quality (lower
by 1%) compared to EXX. The best agreement is
obtained when the exchange energy is calculated at
the EXX converged density, although the difference is

very small, especially for GGA. This proves that most
of the error arises from the energy functional and not
from the self-consistent density. An analysis of the
individual contributions to the total energy reveals
that the LDA underestimates the absolute values of
the kinetic, Hartree, exchange and electron—nuclear
interaction by 1 to 2%. The reason for this is that LDA
densities are homogeneous in excess. GGA energetic
contributions are, individually, much closer than the
LDA ones, thus indicating the high quality of the
GGA density.

Since EXX and HF densities are practically identical,
the density-dependent terms of the energy (Hartree
and electron—nuclear) are almost equal. Kinetic and
exchange energies, however, are somewhat different.
This is because even if both densities are constructed
from a single-determinantal wave function, the HF
and EXX single-particle states are solutions to dif-
ferent equations: the EXX determinant minimizes the
kinetic energy and corresponds to a local effective
potential, while the HF determinant minimizes the
sum of kinetic and electrostatic energies, and the
effective potential is non-local. As a consequence,
the kinetic energy is lower in EXX and the exchange
energy is lower in HF.

Cohesive energies: Within the HF approximation,
cohesive energies of solids are severely underesti-
mated, by more than 1 eV/atom (20—30%). Exchange-
only calculations give cohesive energies that are virtu-
ally identical with HF results, as in the case of atoms.
On the other side, DFT calculations within the LDA
are known to exhibit a significant overbinding, of the
order of 1-2eV/atom (again 20-30%). Since EXX
contains the exact exchange, it is sensible to analyse
the effect of combining EXX with usual LDA and
GGA correlation functionals. EXX-LDA cohesive
energies are very much improved with respect to pure
EXX, while the EXX-GGA ones are remarkably close
to experimental values.®>°¥ Similar results have
been reported for HF-GGA calculations.'4> Figure 5
shows the performance of different approaches for the
cohesive energy of eight different semiconductors, as
reported by Stidele et al.®3%¥

Lattice constants: Owing to the well-known
overbinding effect, lattice constants in DFT-LDA are
usually underestimated by 1 to 3%. GGAs normally
over-correct this effect. EXX-LDA lattice constants
are also in rather good agreement with experiment,
somewhat better than the LDA. An important issue
in the case of pseudopotential calculations is how
these pseudopotentials have been generated, that is,
which approximation of exchange and correlation
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Figure 5. Cohesive energies for several semiconductors within
the LDA, pure EXX, EXX combined with PW86-GGA correlation
and HF [Reproduced by permission of APS Journals from
M. Stddele, M. Moukara, J.A. Majevski, P. Vogl, and A. Gorling
(1999) Phys. Rev. B, 59, 10031.]¥

has been used for the core electrons. EXX-LDA
calculations use EXX-LDA pseudopotentials. These
are less attractive than pure LDA ones, due to the
better screening provided by the EXX. Therefore,
when used in a pure LDA calculation, lattice constants
increase, the discrepancy being more important for
increasing number of core electrons. In a consistent
EXX-LDA functional, which describes both core and
valence electrons at the same level, the previous
effect is counteracted because the valence charge
density shrinks with respect to the LDA one. A
remarkably good agreement is obtained when LDA
calculations are supplemented with pseudopotentials
corrected for the non-additivity of the core and
valence charge (non-linear core corrections.)!46) This
effect is supposed to be smaller in EXX calculations,
although it has not been assessed directly.

4. Bulk moduli: These are overestimated in the EXX-
LDA approach by approximately 20% with respect
to experiment, while LDA values are in much bet-
ter agreement. EXX pseudopotential LDA calcula-
tions underestimate them, so that the disagreement
arises from the correlation of the valence electrons. In
the pure LDA approach, the agreement is fortuitous,
and mainly based on error cancellation. The prob-
lem of the EXX-LDA approach is that exchange and

correlation are treated at different levels of accuracy.
Exchange is much better described than in the LDA,
but correlation does not compensate for this improve-
ment, and hence the discrepancies. Therefore, a better
treatment of correlation is needed in order to obtain
more accurate bulk moduli.

Energy band gaps: While the above properties probe
the global energetics, the quality of the EXX poten-
tial is probed by single-particle properties such as the
OEP eigenvalues. Band structures have been carefully
studied by several authors, and shown to improve
systematically in the EXX approach. The underes-
timation of the band gap — the smallest energy dif-
ference between valence and conduction bands in
semiconductors — has been a long-standing problem
for density functionals. It was shown to be solved by
performing the full many-body calculation, for exam-
ple, in the GW approximation.©®314”) This has been a
benchmark problem for approximate functionals, but
none of the usual GGA was able to improve signif-
icantly on it. The reason for this is again the lack
of self-interaction cancellation in LDA and GGA. In
the EXX, occupied orbitals are self-interaction-free,
and hence more localized and lower in energy than
the LDA ones. At the same time, conduction states
are not affected by self-interaction because they are
empty. Therefore, the gap is increased in the EXX,
and agreement with experiment is astonishingly good,
as it is shown in Figure 6, extracted from the work of
Stidele e al. 39 Hartree—Fock gaps are known to
be extremely large compared to experiment, the rea-
son being that empty states ‘see’ a different potential
than occupied states, which is not self-interaction-
free. The EXX potential is state-independent, treating
occupied and empty states consistently.

XC discontinuity: The energy gap defined as the
orbital eigenvalue difference ¢, is actually different
from the true band gap, which is defined as the energy
difference between states with N and N + 1 electrons,
that is, E,,, = E(N +1) + E(N — 1) —=2E(N):

EXX | .c
Egp = 8gup + Axc = gyt 8p + Ay (112)

where 52X is the eigenvalue gap in the exchange-
only EXX calculation, €, is a contribution to the
gap arising from correlation and Ay is an energy
difference originated in the discontinuous jump of
the exchange-correlation potential at integer num-
bers of electrons (the integral preference principle).
This quantity Ay is usually called the discontinuity.
The magnitude of this discontinuity was controversial
up to now, but EXX calculations®*°¥ have shown
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Figure 6. Energy band gaps for several semiconductors within the
LDA and EXX [Reproduced by permission of APS Journals from
M. Stiddele, M. Moukara, J.A. Majevski, P. Vogl, and A. Gorling
(1999) Phys. Rev. B, 59, 10031.]6%

that E,,, and g X are actually very close, so that
Ayc ~ —gg,,- Typical values for semiconductors are
of the order of —0.1eV in the LDA and 0.2¢eV in
the GGAs. Discriminating the exchange and corre-
lation parts of the discontinuity was also possible,
and indicated values of the order of 5eV for A, .
This implies values of A_ of the order of —5¢eV, and
a massive cancellation between exchange and corre-
lation discontinuities. The discontinuity, that is, the
difference between real quasiparticle gaps (E,,,) and
EXX eigenvalue gaps (e5,,), is actually the excitonic
binding energy, and is very much dependent on the
particular system and also on external conditions like
pressure. 148)

Band structures: The full k-dependence of the band
structure across the Brillouin zone is very well
reproduced by the EXX approach, in particular, the
ordering of the conduction-band minima, which is a
well-known LDA problem in some semiconductors
like Ge (negative LDA direct gap at I', where an
indirect gap at L is experimentally observed). Part of
this tendency, especially the direct gaps, is already
corrected at the level of pseudopotentials, when the
core electrons are treated within the EXX. However,
this is not the case at every k-point. Bandwidths, due
to the absence of self-interaction, are decreased in the
EXX relative to the LDA values.

Optical properties: As a consequence, optical prop-
erties like the dielectric function, which depend on
the details of the band structure, are remarkably well

Vy[eV]

reproduced in comparison to experimental reflectiv-
ity data. The positions of the salient features, that is,
the absorption edge and peaks, and also the inten-
sity of the features are very precise, except for some
neglected effects like excitonic binding (a many-body
correlation effect) and spin-orbit coupling.

Exchange potential The quality of the exchange
potential in the LDA and GGA has been analysed
by comparing them with the EXX (exact) potential,
in a few semiconductors. The first observation is
that, in the EXX, the exchange potential is not a
simple function of the density, so that there is a
range of values of Vy corresponding to the same
density. The LDA value mimics the average density
dependence of EXX at low electronic densities, but
at higher densities it departs, becoming much less
attractive than it should be, owing to the residual
self-interaction. Looking specifically at the Vy(r)
profile along the covalent bonds, it was observed
that the LDA is not attractive enough in the bonding
region, again due to the self-repulsion. In the core
region, however, the LDA does reasonably well.
GGAs, which attempt at correcting the problem of
self-interaction, effectively do much better than LDA
in the bonding region, which is the main aspect
responsible for chemical properties. However, they
exhibit unphysical peaks in the region approaching
the nuclear sites, because of the artificial divergence
of the approximation (see above). These features can

[111] directon ———

Figure 7. Exchange potential for bulk Si along the Si-Si
bond, for the LDA, GGA and EXX functionals [Reproduced
by permission of APS Journals from M. Stiddele, M. Moukara,
J.A. Majevski, P. Vogl, and A. Gorling (1999) Phys. Rev. B, 59,
10031.]9%
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10.

be observed in Figure 7, reproduced from the work
of Stidele et al.®*°%

KLI approximation: The KLI approximation to
EXX proved very good for atomic systems and was
assumed to be also good for solids, but without
proof.'3 Stidele e al.®*°Y have actually shown
that total energies are a few tenth of an eV/atom
higher than EXX ones, while energy gaps are under-
estimated by about 0.5eV. These conclusions do not
depend much on the pseudopotentials used (KLI or
EXX), but mainly on the description of exchange for
the valence electrons. Probably the reason lies on the
averaging of the denominator in the Green’s function
in the KLI approximation, which could be too crude
in solids because of the k-vector dependence of the
eigenvalues.

NOTES

[1]

(2]

The mentor of modern density functional theory, Prof.
Walter Kohn, has been awarded the 1998 Nobel prize
for chemistry together with Prof. John Pople, who
popularized quantum chemical calculations by means
of the computational package GAUSSIAN.

J. Kohanoff (unpublished).
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