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Abstract

In this paper, we address the (to the best
of our knowledge) new problem of ex-
tracting a structured description of real
estate properties from their natural lan-
guage descriptions in classifieds. We sur-
vey and present several models to (a) iden-
tify important entities of a property (e.g.,
rooms) from classifieds and (b) structure
them into a tree format, with the entities
as nodes and edges representing a part-of
relation. Experiments show that a graph-
based system deriving the tree from an ini-
tially fully connected entity graph, outper-
forms a transition-based system starting
from only the entity nodes, since it better
reconstructs the tree.

1 Introduction

In the real estate domain, user-generated free text
descriptions form a highly useful but unstructured
representation of real estate properties. How-
ever, there is an increasing need for people to find
useful (structured) information from large sets of
such descriptions, and for companies to propose
sales/rentals that best fit the clients’ needs, while
keeping human reading effort limited. For exam-
ple, real estate descriptions in natural language
may not be directly suited for specific search fil-
ters that potential buyers want to apply. On the
other hand, a hierarchical data structure represent-
ing the real estate property enables specialized fil-
tering (e.g., based on the number of bedrooms,
number of floors, or the requirement of having a
bathroom with a toilet on the first floor), and is ex-
pected to also benefit related applications such as
automated price prediction (Pace et al., 2000; Na-
garaja et al., 2011).

Our primary objective is to define the new real

estate structure extraction problem, and explore
its solution using combinations of state-of-the-art
methods, thus establishing its difficulty by obtain-
ing performance results for future reference. More
specifically, we contribute with: (i) the defini-
tion of the real estate extraction problem, amount-
ing to a tree-like structured representation of the
property (the property tree) based on its natu-
ral language description; (ii) the introduction of
structured learning methods that solve the newly
defined problem; and (iii) experimental evalua-
tion of the systems on a newly created and anno-
tated real-world data set. For part (ii), we break
down the problem into simpler components, using
(1) Conditional Random Fields (CRFs) for real es-
tate entity recognition (where entities are floors,
rooms, sub-spaces in rooms, etc.), (2) non-projec-
tive dependency parsing to predict the part-of re-
lationships between such entities (comparing lo-
cal and global graph-based, and transition-based
algorithms), and (3) a maximum spanning tree al-
gorithm for decoding the desired property tree.

2 Related work

The challenge in structured prediction largely
stems from the size of the output space. Specifi-
cally in NLP, for sequence labeling (e.g., named
entity recognition), which is the first building
block of our system, a number of different meth-
ods have been proposed, namely CRFs (Lafferty
et al., 2001), Maximum Margin Markov Network
(M3N) (Taskar et al., 2003), SVMstruct (Tsochan-
taridis et al., 2004) and SEARN (Daumé III et al.,
2009).

We exploit dependency parsing methods for the
construction of the property tree which is similar
to the problem of learning the dependency arcs
of a sentence. Dependency parsing research has
focused on both graph-based and transition-based



parsers. McDonald et al. (2005; 2007) have shown
that treating dependency parsing as the search of
the highest scoring maximum spanning tree in
graphs yields efficient algorithms for both pro-
jective (dependencies are not allowed to cross)
and non-projective (crossing dependencies are al-
lowed) trees. Later, Koo et al. (2007), adapted
the Matrix-Tree Theorem (Tutte, 2001) for glob-
ally normalized training over all non-projective
dependency trees. On the other hand, transition-
based dependency parsing aims to predict a tran-
sition sequence from an initial to some termi-
nal configuration and handles both projective and
non-projective dependencies (Nivre, 2003; Nivre,
2009). Recent advances on those systems in-
volve neural scoring functions (Chen and Man-
ning, 2014) and globally normalized models (An-
dor et al., 2016).

More recently, a substantial amount of work
(Kate and Mooney (2010), Li and Ji (2014), Miwa
and Sasaki (2014) and Li et al. (2016)) jointly con-
sidered the two subtasks of entity recognition and
dependency parsing. Our work is different since
we aim to handle directed spanning trees, or equiv-
alently non-projective dependency structures (i.e.,
the entities involved in a relation are not necessar-
ily adjacent in the text since other entities may be
mentioned in between), which complicates pars-
ing.

3 Structured prediction of real estate
properties

We now present the real estate extraction problem
and our proposed proof-of-concept solutions.

3.1 Problem formulation

We define entities and entity types for our real es-
tate extraction task. We define an entity as an un-
ambiguous, unique part of a property with inde-
pendent existence (e.g., bedroom, kitchen, attic).
We define as entity mention, a textual phrase (e.g.,
“a small bedroom”) that we can potentially link
to one or more of the entities and whose seman-
tic meaning unambiguously represents a specific
entity. Each entity can occur several times in the
text, possibly with different mentions and we fur-
ther classify entities into types as listed in Table 1.

The goal of our structured prediction task is to
convert the given input text to a structured repre-
sentation in the form of a so-called property tree,
as illustrated in Fig. 1. That conversion implies

Entity type Description Examples

property The property. bungalow, apartment
floor A floor in a building. ground floor
space A room within the building. bedroom, bathroom
subspace A part of a room. shower, toilet
field An open space inside or out-

side the building.
bbq, garden

extra building An additional building which
is also part of the property.

garden house

Table 1: Real estate entity types.

O r i g i n a l ad :
The p r o p e r t y i n c l u d e s an a p a r t m e n t house
wi th a g a r a g e . The house has l i v i n g room ,
k i t c h e n and bathroom wi th shower .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Struc tured r e p r e s e n t a t i o n :
house | ment ion = ‘ a p a r t m e n t house ’

l i v i n g room | ment ion = ‘ l i v i n g room ’
k i t c h e n | ment ion = ‘ k i t c h e n ’
bathroom | ment ion = ‘ bathroom ’

shower | ment ion = ‘ shower ’
g a r a g e | ment ion = ‘ garage ’

Figure 1: Sample unstructured ad and correspond-
ing structured representation as a property tree.

both the detection of entities of various types (the
“house” property entity, and the spaces “living
room”, “kitchen”, etc.) as well as the part-of de-
pendencies between them (e.g., that the “kitchen”
is a part of the “house”). We cast the tree con-
struction given the entities as a dependency pars-
ing task over the search of the most probable prop-
erty tree, since (i) this means decisions on all pos-
sible part-of relations are taken jointly (e.g., a cer-
tain room can only be part of a single floor), and
(ii) we can deal with the fact that there are no hard
a priori constraints on the types of entities that can
be part of others (e.g., a room can be either part of
a floor, or the property itself, like an apartment).
It’s worth mentioning that dependency annotations
for our problem exhibit a significant number of
non-projective arcs (26%), meaning that entities
involved in the part-of relation are non-adjacent
(i.e., interleaved by other entities), as intuitively
expected.

3.2 Structured prediction model

We now describe the constituents of our pipeline
to solve the property tree extraction from natural
language ads, as sketched in Fig. 2: (1) recognize
the entity mentions (Section 3.2.1), then (2) iden-
tify the part-of dependencies between those en-
tity mentions (Section 3.2.2), and finally (3) con-
struct the tree structure of the property (e.g., as in
Fig. 1). In step (2), we focus on comparing lo-



(1) entity
recognition

(2) part-of RE (3) tree
construction

...

(2+3) direct tree construction

Figure 2: The full structured prediction pipeline.

cally and globally trained graph-based models and
a transition-based one. We only explicitly perform
step (3) in graph-based models, by applying the
maximum spanning-tree algorithm (Chu and Liu,
1965; Edmonds, 1967) for the directed case (see
McDonald et al. (2005)). As an alternative, we
use a transition-based system, which by definition
deals with non-projective trees, and does not need
spanning tree inference.

3.2.1 Sequence labeling
The first step in our structured prediction baseline
is a sequence labeling task, similar to NER: given
a real estate ad’s plain text, we extract the entity
mention boundaries and map the type of the entity
mentions. We adopt linear chain CRFs, a special
case of the CRF algorithm (Lafferty et al., 2001;
Peng and McCallum, 2006), widely used for the
problem of sequence labeling.

3.2.2 Part-of tree construction
The aim of this component is to connect each en-
tity to its parent. This is similar to dependency
parsing but instead of mapping the whole sen-
tence, we map only the identified entity set x (e.g.,
house) to a dependency structure y. Given the en-
tity set x with n terms, a dependency is a tuple
(p, c) where p ∈ {0, ..., n} is the index of the par-
ent term in entity set x, p = 0 is the root-symbol
(only appears as parent) and c ∈ {1, ..., n} is the
index of the child term in the entity set. We use
D(x) to refer to all possible dependencies of x and
T (x) to all possible dependency structures.

We now present our approaches to solve this
part-of tree construction problem.

Locally trained model (Threshold/Edmonds)
We focus on local discriminative training meth-
ods (Yamada and Matsumoto, 2003) where a bi-
nary classifier learns the part-of relation model
(step (2)). Given a candidate parent-child pair,
the classifier scores reflect how likely the part-of
relation holds. The output is then used for the
next and final step (3) of constructing the prop-

erty tree. Specifically, we construct a fully con-
nected directed graph G = {V,E} with the en-
tities as nodes V , and edges E representing the
part-of relation with the respective classifier scores
as weights. A naive approach to obtain the tree
prediction is threshold-based: keep all edges with
weights exceeding a threshold. This is obviously
not guaranteed to end up being a tree and might
even contain cycles. Our approach directly aims
at finding the maximum spanning tree inside the
(directed) graph to enforce a tree structure. To this
end, techniques designed for dependency parsing
in natural text can be used, more in particular we
use Edmonds’ algorithm (McDonald et al., 2005).

Globally trained model (MTT)
The Matrix-Tree theorem (MTT) (Koo et al.,
2007) provides the algorithmic framework to train
globally normalized models that involve directed
spanning trees, i.e., score parse trees for a given
sentence. Assume we have a vector θ in which
each value θh,m ∈ R corresponds to a weight
∀(h,m) ∈ D(x). The conditional distribution
over all dependency structures y ∈ T (x) is:

P (y|x; θ) =
1

Z(x; θ)
exp

 ∑
h,m∈y

θh,m

 (1)

normalized by the partition function Z(x; θ),
which would require a summation over the expo-
nentially large number of all possible dependency
structures in T (x). However, the MTT allows di-
rectly computing Z(x; θ) as det(L(θ)), in which
L(θ) is the Laplacian matrix of the graph.

Transition-based dependency parsing (TB)
Given that our system needs to be able to han-
dle non-projective dependency arcs, we employ
a greedy transition-based parsing system (Nivre,
2009; Bohnet and Nivre, 2012) as the basis of
our parser. The system is defined as a configu-
ration C = (Σ, B,A) which consists of Σ the
stack, B the buffer and A the set of dependency
arcs. The aim is, given an initial configuration
and a set of permissible actions, to predict a tran-
sition sequence to some terminal configuration to
derive a dependency parse tree. We define the ini-
tial configuration for an entity set x = w1, ..., wn

to be ([root],[w1, ..., wn],{}) and the terminal con-
figuration ([0],[],A) (for any arc set A). The first
three actions (LEFT-ARC, RIGHT-ARC, SHIFT)
are defined similar to arc-standard systems (Nivre,



Entity type TP FP FN Precision Recall F1

property 3170 1912 2217 0.62 0.59 0.61
floor 2685 515 529 0.84 0.84 0.84
space 11952 2053 2003 0.85 0.86 0.86
subspace 4338 575 1181 0.88 0.79 0.83
field 2083 700 718 0.75 0.74 0.75
extra building 253 34 143 0.88 0.64 0.74

Overall 24481 5789 6791 0.81 0.78 0.80

Table 2: Performance of the real estate entity
recognition with hyperparameter λCRF = 10.

2003) for projective dependency parsing. In ad-
dition, the SWAP operation reorders the input
words, thus allowing to derive non-projective trees
(Nivre, 2009).

4 Experimental results

We present results for the total real estate frame-
work as well as for each step individually.

4.1 Experimental setup
We collected 887,599 Dutch property advertise-
ments from a real estate company.1 Three hu-
man annotators manually annotated 2,318 ads (1
annotation per ad, ∼773 ads per annotator) by
creating the property tree of the advertisements.
The dataset is available for research purposes, see
our github codebase.2 In our experiments, we
use only the annotated text advertisements. We
implemented the local model, the MTT and the
non-projective transition-based system. The code
thereof is available on github.2 We also use our
own CRF implementation. We measure precision,
recall, and F1 on the test set, and report averaged
values in a 5-fold cross-validation setting.

4.2 Entity extraction
Table 2 presents our results for the sequence label-
ing subtask. We separately show the performance
of our model for each entity type (see Table 1).
Overall, the CRF performs well with a score of
F1 = 0.80. Specifically, space is the best perform-
ing entity type. Note that the space entity type is
the most frequent one in our table. On the other
hand, property is the least represented class, since
the ads usually mention the property type only
once. The performance of the property class is
lower because it can have a wide range of values
(e.g., “helios apartments”, “milos villa”). More-
over, the entity mentions for the space type are

1https://www.realo.be/en
2https://github.com/bekou/ad_data

Model TP FP FN Precision Recall F1

kn
ow

n
en

tit
ie

s Thresh. 15723 6365 16461 0.71 0.49 0.58
Edm. 22058 10126 10126 0.69 0.69 0.69
MTT 22361 9823 9823 0.70 0.70 0.70
TB 14816 17368 17368 0.46 0.46 0.46

fu
ll

pi
pe

lin
e Thresh. 9309 9846 22965 0.49 0.29 0.36

Edm. 12859 17417 19415 0.42 0.40 0.41
MTT 12426 17850 19848 0.41 0.39 0.40
TB 9677 19043 22507 0.34 0.30 0.32

Table 3: Performance of the three approaches on
the structured prediction task. The top half are
results for known entities (i.e., the gold standard
as annotated), while the bottom half starts from
the entities as found in step (1) of our end-to-end
pipeline (λCRF = 10 and C = 1).

better separable, as expected, since the mentions
do not vary a lot (e.g., “shower”, “bedroom”).

4.3 Dependency parsing

The upper part of Table 3 lists the performance for
the dependency parsing subtask by itself, assum-
ing perfect real estate entity recognition: for this
evaluation we used the gold standard provided by
the annotations. We measure the performance on
the threshold-based model, the logistic regression
and the MTT scorings followed by Edmonds’ al-
gorithm for directed graphs to enforce a tree struc-
ture and the transition-based (TB) model. Note
that in the case of known entities we have that
there are exactly as many false positives as false
negatives, since an incorrect edge prediction (FP)
implies that the correct one has not been predicted
(FN), and vice versa, because of the enforced tree
structure that has to cover all entities. As expected,
the MTT approach performs better than the others,
because the globally trained model learns directed
spanning trees. Predicting the maximum spanning
tree (Edmonds’) achieves higher F1 score than
simply considering the predictions of the classi-
fier without any structural enforcement (threshold-
based). The TB class of parsers is of great inter-
est because of their speed, state-of-the-art perfor-
mance (Andor et al., 2016) and the potential to be
extended towards joint models (future work), al-
though in our comparative study they tend to per-
form slightly worse than the graph-based parsers,
because of subsequent error propagation (Chen
and Manning, 2014).



4.4 Pipeline approach
The bottom rows in Table 3 refer to the pipeline
approach combining both sequence labeling and
dependency parsing subtasks: input entities for the
parser are not necessarily correct. Given a new
real estate ad, first the CRF identifies the entity
mention token boundaries and then the tree struc-
ture among the extracted entities is constructed.
The locally trained approach yields marginally
better performance than MTT: MTT learns span-
ning tree sequences as a whole, so it is harder to
connect segments that are incorrect or incomplete.
The TB system exhibits the same performance as
in the case where entities were known, but we
think that incorporating neural scoring functions
(Chen and Manning, 2014) or using beam-search
instead of using the greedy approach will improve
performance (Andor et al., 2016).

5 Conclusion

In this paper, we presented a comparative study on
the newly defined problem of extracting the struc-
tured description of real estate properties. We di-
vided the problem into the sub-problems of se-
quence labeling and non-projective dependency
parsing since existing joint models are restricted
to non-crossing dependencies. Overall, MTT out-
performs other approaches when the entities are
known while adopting a maximum spanning tree
algorithm using individual scored edge weights
seems to be marginally better in our pipeline.
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