Reconstructing the house from the ad: Structured prediction on real estate classifieds

Giannis Bekoulis, Johannes Deleu, Thomas Demeester and Chris Develder Ghent University - imec, Belgium

I. Introduction	II. Structured prediction model
Real estate advertisements: Useful, but unstructured, plain text	 Entity recognition: Identify important entities of a property from classifieds Part-of tree construction: Structure them into a tree format the so-called <i>property tree</i>
 Need for structured representation: User queries (e.g., "at least 3 bedrooms") Additional services (e.g., statistics, price prediction) New problem: Extract a structured description of the property based on the ad 	(1) entity recognition (2) part-of RE (3) tree construction (2+3) direct tree construction
III. Example	IV. Dependency types

III. Example

Original ad:

The property includes an apartment house with a garage. The house has a living room and a bathroom with shower. The garage is equipped with an electric gate and a bike wall bracket.

Structured representation:

house	mention='apartment house'
living room	mention='living room'
bathroom	mention='bathroom '
shower	mention='shower'
garage	mention='garage'
gate	mention='electric gate '
bike bracket	mention='bike wall bracket'

Projective dependency structures, i.e., crossing dependencies are not allowed **Non-projective** dependency structures, i.e., dependencies are allowed to cross Significant number of non-projective arcs (26%) in real estate classifieds Entities in the part-of relation are non-adjacent

V. Step (1): Entity recognition					
Extract the entity	Entity type	Description	Examples	-	
boundaries	property floor	The property. A floor in a building.	bungalow, apartment ground floor		
Map the type of the	space subspace	A room within the building. A part of a room	bedroom, bathroom shower_toilet		

Entity recognition results

Entity type	TP	FP	FN	Precision	Recall	F_1
property	3170	1912	2217	0.62	0.59	0.61
floor	2685	515	529	0.84	0.84	0.84
space	11952	2053	2003	0.85	0.86	0.86
subspace	4338	575	1181	0.88	0.79	0.83

 Image the type of the entities CRF 	subspace field extra building	A part of a room. s An open space inside or outside b the building. An additional building which is g also part of the property.	hower, toilet bq, garden ;arden house	subs field extra Overa	space 4338 575 1181 0.88 0.79 0.83 d 2083 700 718 0.75 0.74 0.75 ra building 253 34 143 0.88 0.64 0.74 rall 24481 5789 6791 0.81 0.78 0.80
VII. Steps (2)+(3): Pa	rt-of tree const	ruction	Transition based ((TB)	Locally trained model
 The aim is to connect each entity to its parent Similar to dependency parsing but map only the identified entity set x (e.g., house) to the dependency structure y Evaluation: Dependency parsing subtask by itself Pipeline approach combining both sequence labeling and dependency parsing subtasks (steps (1)+(2)) 		 Greedy transition- Handles non-projection Predict the sequection derive the dependence of permissible 	 sition-based parsing system projective arcs using SWAP sequence of transitions to ependency parse tree given a issible actions Binary classifier for part-of relations Classifier score reflects the likelihood of the part-of relat (between parent-child) Threshold: keep all edges with weights > threshold Edmond: Find maximum spanning tree starting from a connected directed graph 		
Globally trained model	(MTT)			VIII. Part-of tree co	onstruction results
 Train globally normalize Score parse trees for a g The conditional distribution normalized by Z(x; θ) 	ed models that lead given sentence tion over all dependence $P(y x;\theta) = \frac{1}{2}$ requires a summ	rn directed spanning trees ndency structures $y \in T(x)$: $\frac{1}{T(x;\theta)} \exp\left(\sum_{h,m\in y} \theta_{h,m}\right)$ ation over all $T(x)$		full known entities	ModelTPFPFNPrecisionRecall F_1 TB1481617368173680.460.460.46Thresh.157236365164610.710.490.58Edm.2205810126101260.690.690.69MTT22361982398230.700.70 0.70 TB967719043225070.340.300.32Thresh.93099846229650.490.290.36Edm.1285917417194150.420.40 0.41

Conclusion & Future work

Comparative study on the newly defined problem of extracting the structured description of real estate properties Divided the problem into the sub-problems of sequence labeling and non-projective dependency parsing

CONCLUSION

MTT approach better in dependency parsing subtask

Locally trained approach better in pipeline setting

FUTURE WORK

■ Joint models (perform all steps at once) for non-projective dependency parsers

Neural scoring functions