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Problem
Joint entity recognition and relation extraction

Example

PER ORG LOC

Smith headed the Disease Center AtlantainJohn
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Tasks

1 Entity recognition � � �
2 Relation extraction y y y

Our idea

(1) + (2) with adversarial training
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Introduction
Adversarial training

Idea

Regularization method to improve the robustness of neural network
methods by adding small perturbations in the training data.

Panda Noise Gibbon 

Figure: Goodfellow et al. (2015).

In NLP

Text classification (Miyato et al., 2017)

Relation extraction (Wu et al., 2017)

POS tagging (Yasunaga et al., 2018)

G. Bekoulis, J. Deleu, T. Demeester, and C. Develder Adversarial training for entity and relation extraction 4 / 17



Outline

1 Introduction

2 Baseline model

3 Adversarial model

4 Experimental results

5 Conclusions

G. Bekoulis, J. Deleu, T. Demeester, and C. Develder Adversarial training for entity and relation extraction 5 / 17



Baseline model

Joint architecture
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Relation extraction

Multi-head selection
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Adversarial model

Training
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Adding worst case noise from the perspective of the loss

ηadv = argmax‖η‖≤ε LJoint(w + η; θ̂)→ ηadv = εg/ ‖g‖
with g = ∇wLJoint(w ; θ̂) (Goodfellow et al., 2015)
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Experimental results
Datasets

ACE04

The United Nations’ Secretary-General, Kofi Annan, opened the exhibition with a speech.

ORG PER

EMP-ORG

CoNLL04

Robert Bernero, chief of waste disposal for the NRC.

ORGPER

Works for
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Experimental results
Datasets

DREC

The property  includes an apartment house  with a garage.

The house has a living room, kitchen and bathroom  with shower.

PROP PROP PROP

SPACE SPACE SPACE SUBSPACEPROP

property

apartment house

shower

garage

living room bathroomkitchen

ADE

Intravenous azithromycin induced ototoxicity .

DRUG EFFECT

ADE
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Experimental results
Performance close or better compared to feature based models

Settings Features Entity Relation Overall F1
A

C
E

04
Miwa and Bansal (2016) 3 81.80 48.40 65.10

'Katiyar and Cardie (2017) 7 79.60 45.70 62.65
baseline 7 81.16 47.14 64.15

baseline + AT 7 81.64 47.45 64.54

C
oN

L
L

04

Gupta et al. (2016) 3 92.40 69.90 81.15

'
Gupta et al. (2016) 7 88.80 58.30 73.60

Adel and Schütze (2017) 7 82.10 62.50 72.30
baseline EC 7 93.26 67.01 80.14

baseline EC + AT 7 93.04 67.99 80.51
Miwa and Sasaki (2014) 3 80.70 61.00 70.85

>baseline 7 83.04 61.04 72.04
baseline + AT 7 83.61 61.95 72.78

D
R

E
C

Bekoulis et al. (2018) 7 79.11 49.70 64.41
baseline 7 82.30 52.81 67.56

baseline + AT 7 82.96 53.87 68.42
baseline 7 81.39 52.26 66.83

baseline + AT 7 82.04 53.12 67.58

A
D

E

Li et al. (2016) 3 79.50 63.40 71.45

�Li et al. (2017) 3 84.60 71.40 78.00
baseline 7 86.40 74.58 80.49

baseline + AT 7 86.73 75.52 81.13
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Experimental results
Improvement for both entities and relations

⇓ ⇓
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Experimental results

ACE04
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AT outperforms the neural baseline model consistently across
multiple and diverse datasets

Improvement of AT depends on the dataset
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Conclusions

Investigate the consistent effectiveness of AT as a
regularization method over a multi-context baseline joint
model

Large scale experimental evaluation

Improvement for each task separately, as well as the overall
performance of the baseline joint model

Code: https://github.com/bekou/multihead_joint_entity_

relation_extraction
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