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Abstract

Solving arithmetic word problems is a cornerstone task in assessing language under-
standing and reasoning capabilities in NLP systems. Recent works use automatic ex-
traction and ranking of candidate solution equations providing the answer to arithmetic
word problems. In this work, we explore novel approaches to score such candidate
solution equations using tree-structured recursive neural network (Tree-RNN) configu-
rations. The advantage of this Tree-RNN approach over using more established sequen-
tial representations, is that it can naturally capture the structure of the equations. Our
proposed method consists of transforming the mathematical expression of the equation
into an expression tree. Further, we encode this tree into a Tree-RNN by using different
Tree-LSTM architectures. Experimental results show that our proposed method (i) im-
proves overall performance with more than 3% accuracy points compared to previous
state-of-the-art, and with over 15% points on a subset of problems that require more
complex reasoning, and (ii) outperforms sequential LSTMs by 4% accuracy points on
such more complex problems.

Keywords: arithmetic word problems, recursive neural networks, information
extraction, natural language processing

1. Introduction

Natural language understanding often requires the ability to comprehend and reason
with expressions involving numbers. This has produced a recent rise in interest to
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build applications to automatically solve math word problems (Kushman et al., 2014;
Koncel-Kedziorski et al., 2015; Mitra & Baral, 2016; Wang et al., 2018b; Zhang et al.,
2019). These math problems consist of a textual description comprising numbers with a
question that will guide the reasoning process to get the numerical solution (see Fig. 1
for an example). This is a complex task because of (i) the large output space of the
possible equations representing a given math problem, and (ii) reasoning required to
understand the problem.

The research community has focused in solving mainly two types of mathematical
word problems: arithmetic word problems (Hosseini et al., 2014; Mitra & Baral, 2016;
Wang et al., 2017; Li et al., 2019; Chiang & Chen, 2019) and algebraic word problems
(Kushman et al., 2014; Shi et al., 2015; Ling et al., 2017; Amini et al., 2019). Arith-
metic word problems can be solved using basic mathematical operations (+,−,×,÷)
and involve a single unknown variable. Algebraic word problems, on the other hand,
involve more complex operators such as square root, exponential and logarithm with
multiple unknown variables. In this work, we focus on solving arithmetic word prob-
lems such as the one illustrated in Fig. 1. This figure illustrates (a) arithmetic word
problem statement, (b) the arithmetical formula of the solution to the problem, and
(c) the expression tree representation of the solution formula where the leaves are con-
nected to quantities and internal nodes represent operations.

The main idea of this paper is to explore the use of tree-based Recursive Neural
Networks (Tree-RNNs) to encode and score the expression tree (illustrated in Fig. 1(c)
that represents a candidate arithmetic expression of a specific arithmetic word prob-
lem). This contrasts with predominantly sequential neural representations (Wang et al.,
2017, 2018a; Chiang & Chen, 2019) that encode the problem statement from left to
right or vice versa. By using Tree-RNN architectures, we can naturally embed the
equation inside a tree structure such that the link structure directly reflects the various
mathematical operations between operands selected from the sequential textual input.
We hypothesize that this structured approach can efficiently capture the semantic rep-
resentations of the candidate equations to solve more complex arithmetic problems
involving multiple and/or non-commutative operators. To test our results, we use the
recently introduced SingleEQ dataset (Koncel-Kedziorski et al., 2015). It contains a
collection of 508 arithmetic word problems with varying degrees of complexity. This
allows us to track the performance of the evaluated systems on subsets that require

(a) Problem:
Mark’s father gave him $85. 
Mark bought 10 books, each 
of which cost $5. How much 
money does Mark have left?

(b) Solution:
85 10 5

–

+

(c) Tree representation:

85 –10 x 5

Figure 1: An example of arithmetic word problem from the SingleEQ dataset. It illustrates the (a) an arith-
metic word problem statement, (b) the respective solution formula, and (c) the expression tree representing
the solution.

2



different reasoning capabilities. More concretely, we subdivide the initial dataset into
different subsets of varying reasoning complexity (i.e., based on the number of op-
erators, commutative (symmetric) or non-commutative (asymmetric) operations), to
investigate whether the performance of the proposed architecture remains consistent
across problems of increasing complexity.

Integer Linear 
Programming (ILP)

Arithmetic Word Problem
Mark's father gave him $85. Mark bought 10 books, each of which cost $5. How much money does Mark 
have left?

(1) Candidate Generator

Parsing and Number 
Extraction

x = (85 + (10 * 5))
x = (85 - (10 / 5))
x = (85 - (10 * 5))
x = ((85 + 5) / 10)
....

(2) Candidate Ranker 

x = (85 - (10 * 5))

Recursive NNs (Tree-RNN)

Tree-LSTM

Sequential

LSTM

B-LSTMNT-LSTM T-LSTM

Bidirectional LSTM (BiLSTM) over text

Figure 2: High-level conceptual view of the arithmetic word problem architecture used throughout the paper.
It consists of two main components: (1) candidate generator responsible for generating candidate equations
to solve a particular arithmetic word problem, and (2) candidate ranker, for selecting the best candidate from
the list provided by candidate generator, using the models NT-LSTM, T-LSTM, or B-LSTM.

Figure 2 provides a high-level conceptual view of the interconnection between the
main components of our proposed system. The processing flow consists of two main
steps. In the first step, we use the candidate generator to generate a list of poten-
tial candidate equations for solving a particular arithmetic word problem. To achieve
this, we employ the Integer Linear Programming (ILP) constraint optimization com-
ponent proposed by Koncel-Kedziorski et al. (2015) (see Section 3.1). In the second
step, the candidate equations are ranked by the candidate ranker, and the equation
with the highest score is chosen as the solution to the processed arithmetic word
problem (see Section 3.2). In this paper, we focus on this second step by exploring
the impact of structural Tree-RNN-based and sequential Long Short Term Memory-
based (LSTM; Hochreiter & Schmidhuber (1997)) candidate equation encoding meth-
ods. More specifically, we define two Tree-RNN models inspired by the work of
Tai et al. (2015) on Tree-LSTM models: (i) T-LSTM (Child-Sum Tree-LSTM), and
(ii) NT-LSTM (N-ary Tree-LSTM). In the rest of the manuscript we refer to the gen-
eral tree-structured architecture of these models as Tree-LSTM. The main difference
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between the two is that, while in T-LSTM the child node representations are summed
up, in NT-LSTM they are concatenated. Unlike the representation used in Tai et al.
(2015), where the input is given by the word embeddings, our Tree-LSTM models
also take as input the operation embeddings (in inner nodes) that represent each of the
arithmetic operators (−, +, ÷, ×). This allows our architecture to distinguish between
different operators that are contained in a particular expression tree. We show that NT-
LSTM is more suitable to deal with equations that involve non-commutative operators
because this architecture is able to capture the order of the operands. We also compare
our Tree-LSTM models with a sequential LSTM model which we call B-LSTM. All
the models (T-LSTM, NT-LSTM, and B-LSTM) take as input the contextualized rep-
resentation of the numbers in text produced by a bidirectional LSTM layer (BiLSTM)
(see Section 3.2 for details). After conducting a thorough multi-fold experimentation
phase involving multiple random weight re-initializations in order to ensure the validity
of our results, we will show that the main added value of our Tree-LSTM-based mod-
els compared to state-of-the-art methods lays in an increased performance for more
complex arithmetic word problems.

More concretely, our contribution is three-fold: (i) we propose using Tree-LSTMs
for solving arithmetic word problems, to embed structural information of the equation,
(ii) we compare it against a strong neural baseline model (B-LSTM) that relies on se-
quential LSTMs, and (iii) we perform an extensive experimental study on the SingleEQ
dataset, showing that our Tree-LSTM model achieves an overall accuracy improvement
of 3%, including an increase >15% for more complex problems (i.e., requiring multi-
ple and non-commutative operations), compared to previous state-of-the-art results.

2. Related work

Over the last few years, there has been an increasing interest in building systems to
solve arithmetic word problems. The adopted approaches can be grouped in three main
categories: (i) Rule-based systems, (ii) Statistical systems, and (iii) Neural network
systems.
Rule-based systems: The first attempts to solve arithmetic problems date back to the
1960s with the work by Bobrow (1964), who proposed and implemented STUDENT,
a rule-based parsing system to extract numbers and operations between them by using
pattern matching techniques. Charniak (1968, 1969) extended STUDENT by including
basic coreference resolution and capability to work with rate expressions (e.g., “kms
per hour”). On the other hand, Fletcher (1985) designed and implemented a system
that given a propositional representation of a math problem1, applies a set of rules to
calculate the final solution. The disadvantage of this system is that it needs a parsed
propositional representation of a problem as input and cannot operate directly on raw
text. This issue was tackled by Bakman (2007), who developed a schema-based system

1With propositions such as GIVE Y X P9, where entity Y gives to entity X the object defined in P9. This
proposition in particular can be linked to the first sentence of example in Fig. 1: “Mark’s father gave him
$85”, where Y represents “Mark’s father”, X represents “him” which is coreferenced to “Mark”, and P9
represents “$85” that are being given.
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that consisted of six main reasoning schemas, each one with slots to fill in. After
instantiating the schemas for a particular math problem using lexical verb-based rules,
the system could derive the corresponding mathematical equation to solve the problem.

The main disadvantages of such rule-based approaches are that they (i) rely on
hard-coded lexico-grammar rules, and (ii) lack an integrated view of the problem to
be solved, extracting operations one by one. We address these issues by propos-
ing a model that integrates the mathematical representation of a problem in a single
structured expression tree. This way, we are able to capture the operator-operator and
number-operator relations involved in a particular mathematical expression in a unified
manner. Furthermore, we avoid the use of lexico-grammar hard-coded rules (e.g., the
use of pattern-based matching) when connecting numbers with the operators, replac-
ing them by composition-semantic representations that link the arithmetic operations
with parameters (numbers or other operations) in a recursive tree. Consequently, our
solution is more generalizable by not depending on explicit hand-crafted logic.
Statistical systems: Recently, there has been a shift towards statistical feature-driven
systems that automatically produce models by capturing patterns present in arithmetic
word problem datasets. For example, Hosseini et al. (2014) presented an inductive
model that links specific lexicon-based features (e.g., verb categories) to equation op-
erators. The mathematical solution to the problem is built sequentially using state
transitions related to operators that are triggered by different verb categories found
in the problem statement. On the other hand, Mitra & Baral (2016) connected care-
fully designed features to equation templates in order to solve specific problem types.
While these techniques produced competitive results, they were limited to addition
(+) and subtraction (−) operations on a very narrow problem set domain. In order
to solve more diverse types of problems that also involve multiplication and division
operators, the community shifted towards more integrated approaches involving tree
structure representations. Koncel-Kedziorski et al. (2015) proposed to rank candidate
expression trees by training jointly a local model to link spans of text with opera-
tor tree nodes, and a global model that is used to score the consistency of an entire
tree. The list of candidates to these two models is generated by an ILP constraint op-
timization component that, given a set of extracted numbers from a arithmetic word
problem text as input, produces a set of candidate solution equations. Conversely,
Roy & Roth (2015, 2017) introduced the concept of monotonic expression tree to
generate candidates. It defines a set of conditions (e.g., two division and subtraction
nodes cannot be connected to each other) that considerably restricts the expression tree
search space. The authors propose to score the resulting monotonic expression trees
jointly by summing up the scores of different classifiers related to a specific expres-
sion tree (e.g., the mathematical operator between two numbers in the tree, whether
a particular number is related to a rate such as “kms per hour”, etc). Recently, the
same authors (Roy & Roth, 2018) included additional latent declarative rules (e.g.,
[Verb1 ∈ HAVE]∧ [Verb2 ∈ GIVE]∧ [Coref(Subj1,Subj2)] =⇒ Subtraction) to
link textual expression patterns (derived from preliminary dependency parsing) to spe-
cific operations. While these statistical approaches rely on tree structures to evaluate
the mathematical expressions, on one hand, they require high manual effort to engineer
the features and, on the other hand, it is hard to scale the features to capture operations
between more than two numbers. This makes it challenging to apply such models to
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more complex equations that involve multiple operators. We tackle this problem by
defining a single Tree-RNN structure that evaluates an entire mathematical expression
at once. This is done by recursively combining the information from the child nodes
in the expression tree and then using a backpropagation mechanism to correspondingly
adjust the weights of our model. Furthermore, our equation ranking architecture does
not depend on hand-crafted features and parsing-dependent rules, making it more ef-
fective in generalizing across different domains.
Neural network systems: Recently, as in all sub-domains of natural language pro-
cessing, neural network architectures have been applied to tackle math word problems.
The first contribution was made by Wang et al. (2017), who introduced a model trained
to map problem statements to equation templates. Their model was expanded upon
by Huang et al. (2018), who introduced an attention-based copy mechanism for to-
kens representing numbers. They used a reinforcement learning setting, where positive
rewards were assigned when the predicted mathematical expression resulted in a cor-
rect answer. Recently, Chiang & Chen (2019) used stack structures inside a sequential
encoder-decoder setting where the encoder captures the semantics of a math word prob-
lem in a vector that is used by decoder to generate the equation to solve the problem.
Moreover, Wang et al. (2018b) proposed the use of Q-Networks in order to generate
expression trees, by giving positive reward whenever the operator between two num-
bers is correct. The aforementioned studies, while showing promising results, were not
designed to naturally capture the structural form of mathematical expressions when
multiple operators are involved (e.g., 1 + (2/3) vs. (1 + 2)/3). We propose encod-
ing equations with Tree-LSTMs (Tai et al., 2015), which are recursive neural sequence
models, thus allowing to naturally reflect the execution order of operations in an ex-
pression tree by recursively combining the children nodes’ semantic representations.

Table 1 compares our approach (the use of Tree-LSTM-based T-LSTM and NT-
LSTM models) with the rest of the methods described in this Section. The main differ-
ence of our architecture is that we explore the impact of using tree-based neural encod-
ing (i.e., by means of Tree-LSTM models). We hypothesize that this approach allows
to better capture the arithmetic equation structure than the currently predominant neu-
ral sequential models (Wang et al., 2017, 2018a; Chiang & Chen, 2019). Furthermore,
the independence from feature-based and rule-based methods makes our solution more
generalizable. This is because our model does not depend on hand-crafted rules or
features to capture the patterns of a particular dataset. This aspect will be explored
further when comparing the performance of our model to the current feature-based
state-of-the-art system (Koncel-Kedziorski et al., 2015) in Section 5.

Tree-RNN models (Socher et al., 2011) have been shown to perform better for
modeling data on tasks that have an inherently hierarchical structure. For example,
Socher et al. (2011) proposed to use recursive models in order to model the com-
positional structure of scene images (e.g., a scene image of a house can be split in
composing regions such as doors, windows, walls, etc.). The authors show that a Tree-
RNN-based architecture outperforms previous methods in prediction of hierarchical
structure of scene images and in scene image classification. Later, Socher et al. (2013)
also showed how recursive structures can be used to encode the inherently hierarchical
phrase structural grammar (e.g., the sentence “riding a bike” can be decomposed in
the verb “riding” and the noun phrase “a bike”, which itself can be decomposed into
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Method Rules Features N-Nets Tree-Based Tree-Based
Representation Encoding

Bobrow (1964) 3 − − − −
Charniak (1968, 1969) 3 − − − −
Fletcher (1985) 3 − − − −
Bakman (2007) 3 − − − −
Hosseini et al. (2014) − 3 − − −
Koncel-Kedziorski et al. (2015) 3 3 − 3 −
Mitra & Baral (2016) − 3 − − −
Roy & Roth (2015, 2017) − 3 − 3 −
Wang et al. (2017) − − 3 − −
Roy & Roth (2018) 3 3 − 3 −
Huang et al. (2018) − 3 3 − −
Wang et al. (2018b) − 3 3 3 −
Chiang & Chen (2019) − − 3 − −
Li et al. (2019) − − 3 − −
Our Approach (T-LSTM & NT-LSTM) − − 3 3 3

Table 1: Comparison of the various architectures explored in related work. We focus on the following
five characteristics: (i) Rules indicates whether a rule-based approach is used or not, (ii) Features specifies
whether the architecture relies on manually engineered features, (iii) N-Nets indicates whether artificial neu-
ral networks are used or not, (iv) Tree-Based Representation groups the models that incorporate information
coming from tree structures (e.g., by using trees for feature engineering), and (v) Tree-Based Encoding in-
dicates whether the tree structures are used as encoders in a neural network model. The 3 indicates the
presence of a particular characteristic.

determiner “a” and the noun “bike”). This way, the authors achieved state-of-the-art
performance in grammatical parsing of the sentences. More recently, Tai et al. (2015)
and Chen et al. (2017) showed how encoding the syntactic parsing trees of the sen-
tence with Tree-LSTM models can improve the performance in tasks such as sentiment
classification and semantic relatedness (e.g., natural language inference). Similarly, we
propose to take advantage of the inherently hierarchical representation of mathematical
expression trees by encoding them using Tree-LSTM architectures. Our experiments
demonstrate that this representation can be helpful in capturing the semantic relations
between operators needed in order to solve more complex arithmetic problems consist-
ing of multiple and/or non-commutative operations.

3. Proposed Architecture

Shortly stated, our task at hand is to identify the correct arithmetic equation, corre-
sponding to an arithmetic problem expressed in natural language text. We follow a two-
step approach similar to the work of Koncel-Kedziorski et al. (2015), which formalizes
solving multi-sentence arithmetic word problems as (i) the generation and (ii) ranking
of expression trees. The first step consists of generating candidate equations using the
ILP optimization solver proposed in Koncel-Kedziorski et al. (2015) (candidate gen-
erator component in Fig. 2). The second step ranks these candidates and selects the
top ranked one as the final answer to the arithmetic word problem (candidate ranker
component in Fig. 2). We use the rest of this section to provide more insights into the
candidate generator component in Section 3.1, and to describe in detail our proposed
candidate ranker model in Section 3.2.
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3.1. Candidate Generator
This component is responsible for generating possible candidate equations to solve
a given arithmetic word problem. A straightforward solution would be to perform
an exhaustive search on all the possible arithmetic expression trees given n extracted
numbers from a particular problem. However, the resulting search space would grow
exponentially with n, which makes this approach not scalable. In order to deal with
this exponential growth in the number of candidates, we re-use the Integer Linear Pro-
gramming (ILP) solver proposed by Koncel-Kedziorski et al. (2015). This solver takes
as input the extracted numeric quantities with extra attributes derived from syntactic
parsing2, and generates the most promising candidate equations using two types of
constraints:

1. Hard Constraints: such as the maximum equation length and syntactic validity
of equations (e.g., only one unknown allowed, no division by 0, etc.). As a
post-processing step, the ILP solver also removes the arithmetic expressions that
produce negative or fractional results.

2. Soft Constraints: these constraints assign additional weight to candidate equa-
tions whose related entity types (extracted from dependency parse tree) are con-
sistent. For example, in the problem of Fig. 1, the sum (85 + 5) will be prioritized
over the sum (5 + 10), because both 85 and 5 refer to the same entity type (“$”),
while 10 refers to entity type “books”.

To provide a fair comparison between the candidate ranker model of ALGES proposed
by Koncel-Kedziorski et al. (2015) and our approach (see Section 3.2), we use both the
same constraint configuration, and also consider only the top 100 equations produced
by the candidate generator. As in ALGES, we report the coverage as ILP Coverage
in our results section (see Section 5). Additionally, we include in our result tables
the performance of the ILP Naive approach, which consists of selecting the highest
scored candidate by the ILP solver. This score allows us to estimate the impact of the
candidate ranker component.

3.2. Candidate Ranker
Our proposed candidate ranker model architecture is sketched in Fig. 3 and comprises:
(i) a word embedding layer, (ii) a bidirectional LSTM layer (BiLSTM) over the text,
and (iii) an additional layer that encodes the equation, using either BiLSTM (B-LSTM
model) or Tree-LSTM (T-LSTM and NT-LSTM models) based approaches, detailed
below.

The input to our model is a sequence of tokens of length N , W = {w1, ..., wN}
of the arithmetic word problem, which we pass through an embedding layer to obtain
embedded representations X = {x1, ..., xN} where xt ∈ Rd1 . We adopt a BiLSTM
to obtain contextual representations of the tokens. The following is the formal repre-
sentation of the first LSTM (Hochreiter & Schmidhuber, 1997) layer used to produce
the representation referred to as “BiLSTM over text” in Fig. 3:

2Stanford Dependency Parser in CoreNLP 3.4 is used.
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85 10 5

Tree-LSTM
over equation

BiLSTM over text

GloVe
embeddings

sigmoid

−

×

score

(b) T- and NT-LSTM architectures

85 10 5

BiLSTM over text

Glove
embeddings

( − )(

. . .

. . .

. . .. . . . . .

×

BiLSTM
over equation

score(a) B-LSTM architecture

. . . . . .. . . . . .

type of       cell
depends on

T- vs NT-LSTM

Figure 3: Models for scoring equations, taking the text and the equation from Fig. 1 to score (e.g., 85 −
(10 × 5)) as input: (i) a word embedding layer at the bottom, (ii) a BiLSTM layer over the text, and (iii) a
top layer that encodes the equation. For the latter we consider either (a) a sequential BiLSTM (B-LSTM
architecture), or (b) a structured Tree-LSTM (T-LSTM and NT-LSTM architectures).

it = σ (Wixt + Uiht−1 + bi) (1)
ot = σ (Woxt + Uoht−1 + bo) (2)
ft = σ (Wfxt + Ufht−1 + bf ) (3)

ut = tanh (Wuxt + Uuht−1 + bu) (4)
ct = ft � ct−1 + it � ut (5)

ht = ot � tanh(ct) (6)

where t ∈ {1, ..., N} represents a particular recursive execution time step and ht ∈ Rd2

is the LSTM hidden state. The advantage of using the LSTM-based structure instead
of a simpler recursive formulation, such as ht = tanh(Wxt + Uht−1 + b), is that
an LSTM model avoids the problems of exploding or vanishing gradients during the
training process discussed in Hochreiter & Schmidhuber (1997); Bengio et al. (1994).
This is achieved by using additional weight matrices and gates σ in Eqs. 1–3 in order
to regulate the amount of information from previous execution steps ht−1 and current
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input xt that affect the current state ht.3 More concretely, Wi, Wf , Wo, Wc ∈ Rd2×d1

and Ui, Uf , Uo, Uc ∈ Rd2×d2 are the weight matrices related to different LSTM gates,
and bi, bf , bo, bc ∈ Rd2 are the respective biases. In our experiments we initialize xt
with GloVe word embeddings (Pennington et al., 2014) and keep them static during
training. These GloVe embeddings are depicted at the bottom of graphs (a) and (b) in
Fig. 3. In order to obtain the BiLSTM representation (“BiLSTM over text” in Fig. 3),
we run two LSTMs in different directions and concatenate the respective hidden states.
This results in N hidden state representations H = {h(b)1 , ..., h

(b)
N } where h(b)i ∈ Rd3

and d3 = 2 · d2. Using the input in H , we propose two different models to encode the
candidate equations referred to as (a) and (b) in Fig. 3, and explained below:
(a) Sequential B-LSTM: We perform an in-order traversal of the expression tree to
obtain a sequential representation of the equation (e.g., (85− (10× 5))) that is en-
coded using a second BiLSTM (see “BiLSTM over equation” in Fig. 3(a)). We use as
input the hidden state representations H calculated above for the numbers and (train-
able) embeddings O = {o−, o+, o÷, o×, o(, o)} for the operators (−,+,÷,×) and
opening/closing parentheses. More formally, the input to BiLSTM is represented by
XE = {xe1, ..., xeK} where xet ∈ {H∪O} , xet ∈ Rd3 andK is the number of tokens in
the equation, including parentheses and operations. E.g., the equation (85− (10× 5))
contains 9 tokens. In terms of the formal notation of LSTM in Eqs. 1–6, each xet cor-
responds to input vector xt. In order to obtain a score for ranking the equation, we
concatenate the last (left and right) hidden states of the BiLSTM producing a vector
of dimensionality d4, and then apply a linear transformation followed by a sigmoid
function.
(b) Tree-LSTM: We base our implementation on the Tree-LSTM architecture pro-
posed by Tai et al. (2015). This architecture is based on the LSTM formulation de-
scribed in Eqs. 1–6, but instead of being linearly linked, the input to a particular LSTM
cell can come from different child step LSTM executions. More formally, we can
describe the T-LSTM structure as follows:

3For a more detailed description of the LSTM architecture please refer to Hochreiter & Schmidhuber
(1997).
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h̃t =
∑

k∈{L,R}

hkt−1 (7)

it = σ
(
Wixt + Uih̃t + bi

)
(8)

ot = σ
(
Woxt + Uoh̃t + bo

)
(9)

fkt = σ
(
Wfxt + Ufh

k
t−1 + bf

)
(10)

ut = tanh
(
Wuxt + Uuh̃t + bu

)
(11)

ct = it � ut +
∑

k∈{L,R}

fkt � ckt−1 (12)

ht = ot � tanh (ct) (13)

where {L,R} is the set that consists of left (L) and right (R) child nodes for the current
execution node at step t. More specifically, a particular execution step t corresponds to
the respective arithmetic operation in the expression tree (see Fig. 1(c)). This step takes
as input the cell (c) and hidden (h) states of previous execution step (t − 1) for each
of the child nodes ({L,R}) that correspond to left and right operands in the expression
tree. This execution process is recursive: each of the execution steps produces as out-
put a hidden state ht (Eq. 13) which is used by the parent execution step recursively in
Eq. 7 either as left (hLt−1) or right (hRt−1) child. Additionally, a cell state ct is passed
across the execution steps, and contains a summarized historic information of the tree
traversal4 operations performed so far. Similarly as with LSTM, a forget gate fkt , in-
put (it) and update (ut) gates are used to determine which historic information is kept
(forget gate) and which new information is added (input/update gates) to the cell state.
Wi, Wo, Wf , Wu ∈ Rd4×d3 together with Ui, Uo, Uf , Uu ∈ Rd4×d4 are the weight
matrices that transform the inputs xt ∈ Rd3 , the current hidden state h̃t ∈ Rd4 and the
children’s hidden states hkt−1 ∈ Rd4 , by means of the Tree-LSTM gate representations.
As depicted in Fig. 3(b), the inputs xt to the leaf nodes are the hidden state representa-
tions in H (coming from “BiLSTM over text” in Fig. 3(b)) on the positions where the
numbers occur in the problem statement. The input xt to the inner nodes, on the other
hand, are one of the randomly initialized operation embeddings O = {o−, o+, o÷, o×}
depending on the operation represented by the node. This contrasts with the original
setup proposed in Tai et al. (2015) where the input xt always comes from the word rep-
resentation in the sentence. By using a separate operation embeddings set O as input,
we expect our model to be able to capture a semantic representation for each of the
different operations o ∈ O. The Tree-LSTM model finally outputs the hidden state for
the root of the expression tree (i.e., the last executed operation), which is then passed
through a sigmoid to deliver the score for a particular candidate arithmetic expression.

While T-LSTM allows to encode the equation information in a tree structure, it

4Post-order traversal is used, since it reflects the order of operator execution in an arithmetic equation to
obtain the final result.
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is symmetric in its child nodes. This is because the hidden states of the children are
first summed up in Eq. 7 before applying the linear transformation and the gate activa-
tion functions. This could be problematic for non-commutative operations (− and ÷)
where the result depends on the order of the operands. The reason for this is that Eq. 7
is commutative with respect to child nodes. Thus, given two child nodes k ∈ {L,R}
we have that h̃t = hLt−1 + hRt−1 = hRt−1 + hLt−1. As a consequence, the affine transfor-
mations Ui, Uo, and Uu in Eqs. 8, 9 and 11 cannot capture the order of the states of the
input nodes. Furthermore, since there is only one weight matrix Uf for both hLt−1 and
hRt−1 in Eq. 10, it can not apply a different affine transformation for left and right child
nodes. This makes the T-LSTM model indifferent to the order of the arguments of the
operations in a particular expression tree. Therefore, we introduce a second model,
called NT-LSTM, that uses distinct weight matrices to transform each of the children’s
hidden states. More formally, the gate definition in NT-LSTM is as follows:

it = σ

Wixt +
∑

k∈{L,R}

Uk
i h

k
t−1 + bi

 (14)

ot = σ

Woxt +
∑

k∈{L,R}

Uk
o h

k
t−1 + bo

 (15)

fkt = σ

Wfxt +
∑

l∈{L,R}

Ukl
f h

l
t−1 + bf

 (16)

ut = tanh

Wuxt +
∑

k∈{L,R}

Uk
uh

k
t−1 + bu

 (17)

ct = it � ut +
∑

k∈{L,R}

fkt � ckt−1 (18)

ht = ot � tanh (ct) (19)

where, similarly as for T-LSTM, {L,R} is the set of child nodes. By introducing
different weights U for each of the child node states hkt−1, we make sure that the model
can differentiate between the order of the operands. This is because now each of the
affine transformations U (l)

i , U (l)
o and U (l)

t is different for each input child hidden state
hlt−1 in Eqs. 14, 15 and 17. Similarly, each of the children’s (k ∈ {L,R}) forget gates
fkt contains now two affine transformations Ukl

f (l ∈ {L,R}), one for each child. This
way, the model can prioritize (components of fkt close to 1) or inhibit (components
of fkt close to 0) separately the input of a particular child k based on the state of
another child l (k 6= l). This can be useful when the state of one of the operands
(e.g., influenced by the words that surround a particular number in text) has a strong
indication of some operation, while the state of the other has very little evidence. As
we will show in Section 5, the use of NT-LSTM makes a big difference compared to
the performance of T-LSTM for equations involving non-commutative operations.
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4. Experimental setup

We evaluate the proposed models (code publicly available5) on the SingleEQ dataset
introduced by Koncel-Kedziorski et al. (2015). SingleEQ consists of 1,117 sentences
and 15,292 words, and includes 508 arithmetic problems of varying complexity (i.e.,
equations with single or multiple operators). Each of the word problems is mapped to
a single correct equation with one unknown. These equations include one or more of
the following operators: multiplication (×), division (÷), subtraction (−), and addi-
tion (+). The data was gathered from the following grade-school websites: http://
math-aids.com, http://k5learning.com, and http://ixl.com as well
as from a subset of problems from Kushman et al. (2014). To obtain results compa-
rable to previous work, we perform 5-fold cross-validation using the original splits
defined in Koncel-Kedziorski et al. (2015). Similar to the work of Koncel-Kedziorski
et al. (2015) and Wang et al. (2018b), we report performance using the overall accuracy
metric. The training/testing process is run for 5 different splits, in each one a separate
fold is left as test set. This way, our results are reported on the whole SingleEQ dataset
by concatenating the predictions of test folds across the splits. In total, we train 25
models with different seeds (5 for each split) and report average and standard deviation
in Tables 4–5 and 7 in Section 5. Furthermore, we tune the neural net hyperparameters
independently for each of the splits on the validation set that consists of 20% randomly
selected arithmetic problems in each of the train folds. Due to limited resources that
prevented us to perform a complete grid search, we conduct the hyperparameter tuning
in steps. More specifically, in each step we perform a grid search on two hyperparam-
eters that we identified as most correlated with each other. Table 2 summarizes our
hyperparameter search space for each of the sequential tuning steps. Besides the usual
hyperparameters (i.e., learning rate, batch size and dropout) tuning, we also adjust the
dimensionalities d3 (Dim LSTM) of the first BiLSTM layer (indicated as “BiLSTM
over text” in Fig. 3), and d4 (Dim Encoder) of either the sequential BiLSTM (“BiLSTM
over equation” in Fig. 3) or the tree-based NT-LSTM models’ encoder layers (“Tree-
LSTM” in Fig. 3). The best hyperparameters are chosen after training for 75 epochs for
each of the cross-validation splits independently.

Step Hyperparameters
Learning Rate Batch Size Dim LSTM Dim Encoder Dropout

1 {3e−4, 1e−4} {64, 128} - - -
2 - - {256, 512} - {0.3, 0.4}
3 - - - {256, 512} {0.3, 0.4}

Table 2: The range of the hyperparameter search space for each of the hyperparameter tuning steps for each
of the cross-validation splits of SingleEQ dataset.

Furthermore, we partition the dataset into several subsets to investigate the effect of
varying problem complexity on the models’ performances. These different subsets are
characterized in Table 3. We form three main categories: (i) Full: the whole dataset is

5https://github.com/klimzaporojets/arithmetic-word-problems
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Subset Equation types # Problems

Full All operators 508

Single Single operator 390
Multi Multiple operators 118

Singlesym Single symmetric operators 208
Multisym Multiple symmetric operators 68
Singleasym Single asymmetric operators 182
Multiasym Multiple asymmetric operators 50

Table 3: The defined subsets of the SingleEQ dataset with varying degrees of complexity.

included in this setting, (ii) Complexity: two subsets (i.e., Single, Multi) are formed
based on the number of operators in the solution’s equation, and (iii) Symmetry: four
main subsets, namely Singlesym, Singleasym, Multisym, and Multiasym are formed to in-
dicate whether the solution’s equation contains single/multiple symmetric (× and +)
or asymmetric (÷ and −) operations.

We hypothesize that our Tree-LSTM models will exhibit stronger performance
on subsets involving multiple and/or non-commutative operations (Multi, Multisym,
Multiasym), since they should be able to better capture the semantic relationships be-
tween operator nodes encoded in a tree structure. We also expect a significant differ-
ence between T-LSTM and NT-LSTM architectures on subsets involving non-commutative
operations (Singleasym and Multiasym). By using different weight matrices to transform
each of the children’s states (see Eqs. 14–17 of the NT-LSTM in Section 3.2 for more
details), the NT-LSTM model should be able to capture the order of the operands and
link the resulting structural information of a particular non-commutative mathematical
expression to the semantic representation of the problem statement.

We obtain the top-100 equation-trees using the ILP solver of Koncel-Kedziorski
et al. (2015), which we rank using scores provided by our proposed model (see Sec-
tion 3.2). Training of our model is performed using the Adam optimizer (Kingma &
Ba, 2015). As a bottom token representation layer, we use pre-trained 100-dimensional
(d1 = 100) GloVe embeddings (Pennington et al., 2014)6 which we keep static during
the training process.

5. Results

In this section, we evaluate the performance of our proposed models on the SingleEQ
dataset. Besides the performance on the full dataset, we are particularly interested in
evaluating how each architecture behaves when evaluated on arithmetic problems of
varying complexity. We assume that the problems become more complex (i) as the
number of needed mathematical operators grows, and (ii) when the used operators are
non-commutative (asymmetric). We hypothesize that our structured Tree-LSTM-based

6 https://nlp.stanford.edu/projects/glove/
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Model Features Trees Accuracy (%)

Hosseini et al. (2014) 3 7 48.00
Wang et al. (2018b) 3 3 52.96
Roy & Roth (2015) 3 3 66.38
Roy & Roth (2017) 3 3 72.25

ALGES 3 3 72.39

ILP Coverage - - 91.34
ILP Naive - - 52.56

B-LSTM 7 7 74.88±0.64
T-LSTM 7 3 74.88±1.06

NT-LSTM 7 3 75.47±0.62

Table 4: Accuracy attained by the proposed and state-of-the-art methods on the Full SingleEQ dataset. The
3 and 7 symbols indicate whether or not a model adopts hand-crafted features (‘Features’) or tree-structured
encoding of the equations (‘Trees’). The best result is typeset in bold.

approach is better suited to solve the aforementioned complex problems. In order to
demonstrate this, we perform an extensive evaluation (Tables 4–5 and 7) of our models
on subsets of different degree of complexity as defined in Table 3. Furthermore, in all
of the result tables we include the potential maximum accuracy that can be achieved
when using the candidates from the ILP candidate generator (ILP Coverage). This
allows us to estimate how much improvement can still be achieved by candidate ranker.
Conversely, in order to evaluate the impact of candidate ranker models, we also report
the accuracy achieved when picking the top-weighted candidate by ILP solver (ILP
Naive).
Comparison on the Full dataset: Table 4 shows the results of the evaluated systems on
the Full SingleEQ dataset. The proposed models are the (i) B-LSTM, (ii) T-LSTM, and
(iii) NT-LSTM as presented in Section 3.2. Clearly, all newly proposed architectures
outperform previous methods. Concretely, our methods are able to outperform strong
baselines on the task, reporting an accuracy improvement of more than 3% without
relying on hand-crafted features (Hosseini et al., 2014; Koncel-Kedziorski et al., 2015;
Roy & Roth, 2015, 2017). As detailed later on in this section (see analysis of Ta-
ble 5 and Table 7), most of this improvement with respect to the current state-of-the-art
(Koncel-Kedziorski et al., 2015) comes from an increased performance on the more
complex arithmetic word problems that involve non-commutative and multiple opera-
tions. This supports our original hypothesis that tree-based architectures are superior
in representing mathematical operations between operands, specially when the math-
ematical expressions involve multiple operations. The hand-crafted features, used in
previous works, are usually related to terms indicating specific operations and thus if
they are not detected in the data, the system cannot generalize well on out-of-domain
mathematical descriptions. This also applies to recent neural-based methods (see, e.g.,
Wang et al. (2018b)) where explicitly defined features are encoded in the neural struc-
ture. Furthermore, in order to ensure the validity of the differences between our pro-
posed approaches, we carry out a bootstrap significance analysis (Efron & Tibshirani,
1994) by sampling with replacement the results of B-LSTM, T-LSTM, and NT-LSTM

15



Model Complexity Symmetric Asymmetric
Single Multi Singlesym Multisym Singleasym Multiasym

ILP Coverage 93.33 84.75 94.71 83.82 91.76 86.00
ILP Naive 56.41 39.83 53.85 69.12 59.34 0.00

ALGES 77.69‡ 54.70‡ 89.90 72.06 63.74‡ 30.64‡

B-LSTM 79.59±0.72 59.32±2.34 80.87±0.64‡ 69.12±2.08‡ 78.13±1.36 46.00±4.38
T-LSTM 79.59±1.24 59.32±1.61 81.35±0.98‡ 72.35±1.44 77.58±2.72 41.60±2.33?

NT-LSTM 80.21±0.95 59.83±1.75 81.35±1.44‡ 71.17±2.20 78.90±2.13 44.40±4.96

Table 5: Comparison of the proposed methods with the state-of-the-art on the SingleEQ dataset in terms of
accuracy. Bold font indicates the best results for each subset of SingleEQ (see Table 3). The markers ?, †,
‡ respectively indicate the achieved bootstrap significance levels α <0.1, <0.05 and <0.01 with respect to
the best performing model in each of the subsets.

models 10,000 times. We compare the performance with respect to the NT-LSTM
model in Table 4. We observe that, while our NT-LSTM model seems to outperform
T-LSTM and B-LSTM models, this difference in performance is not significant.
Comparison for different problem complexity: Table 5 compares our models with
ALGES (Koncel-Kedziorski et al., 2015) (i.e., the best performing state-of-the-art model
of Table 4), for subsets of different complexity levels (defined in Table 3). We use boot-
strap significance testing to estimate the degree of certainty between the lower perform-
ing models and the best performing one in each of the subsets. We indicate significant
differences with p-values below the 1%, 5%, and 10% level (respectively denoted with
‡, †, and ?) in order to identify models performing significantly different from the best
performing model in each of the subsets.

We observe that our newly proposed models do not significantly differ among each
other for solving problems involving single (Single, Singlesym, and Singleasym subsets)
operations. Conversely, on the problem subset requiring multiple commutative opera-
tions in their solution (Multisym), our tree-based T-LSTM significantly outperforms the
sequential B-LSTM model, suggesting a potential benefit in using tree-based models
to solve the problems involving multiple operations. For the subset involving multiple
non-commutative operations (Multiasym) the B-LSTM and NT-LSTM models outper-
form the T-LSTM model, indicating a potential limitation of the latter in dealing with
non-commutative operations, due to its symmetrical structure in its child nodes (a sin-
gle weight matrix is used on the sum of children’s states h̃t as described in Section 3.2).
We were surprised by an overall good performance of our sequential B-LSTM model,
specially on Multiasym subset, where it performs on par with the potentially more ex-
pressive NT-LSTM model. This fact also motivated us to explore the robustness of our
models against additional asymmetric noise (see further analysis in the next paragraphs
corresponding to the results in Table 7).

The results in Table 5 further show that the feature-based ALGES model has com-
petitive performance on problems requiring single and/or non-commutative operators
in the solution equations. In fact, it significantly outperforms all our models on the
Singlesym dataset and is only marginally outperformed by our tree-based T-LSTM
model on Multisym. This suggests that the feature-based ALGES is able to explic-
itly capture symmetric operations by focusing on carefully engineered features. How-
ever, we observe a large drop in performance of ALGES on problems that require non-

16



Candidates Metric Subsets
Full Single Multi Singlesym Multisym Singleasym Multiasym

ILP Correct 2.53 1.44 6.13 1.89 7.72 0.92 3.96
Incorrect 12 2.9 42.08 2.48 28.43 3.38 60.64

ILP + Asym Correct 2.41 1.44 5.62 1.89 7.66 0.92 2.84
Incorrect 15.08 4.06 51.5 3.57 35.43 4.62 73.36

∆ Correct −4.74% 0.00% −8.32% 0.00% −0.78% 0.00% −28.28%
∆ Incorrect 25.67% 40.00% 22.39% 43.95% 24.62% 36.69% 20.98%

Table 6: This table illustrates the difference in average number of Correct and Incorrect candidate equations
per problem between the original ILP candidate generation process and the one obtained by adding noisy
equations with asymmetric operators (ILP + Asym).

commutative (asymmetric) operations to be solved. This is showcased by a difference
of more than 15% accuracy points on Singleasym and Multiasym subsets in Table 5.
This validates our initial intuition that feature-based models fall short to capture the
reasoning necessary to address problems that require more complex (non-commutative
and multiple) operators.
Robustness against asymmetric noise: The results analyzed so far are based on scor-
ing the candidates generated by the ILP component introduced in Koncel-Kedziorski
et al. (2015). However, this component already significantly reduces the number of
incorrect candidates, particularly those involving asymmetric operators (e.g., by re-
moving candidate equations that produce negative or fractional results as described in
Section 3.1). In order to evaluate the robustness of the proposed models, we train and
evaluate them on a noisy asymmetric candidate set where we add all possible permuta-
tions to the equations involving non-commutative operators. For example, if a partic-
ular candidate equation is x = 8/2, we would also add x = 2/8 to the candidate set.
Table 6 shows the statistics of the noisy dataset (ILP + Asym) with respective deltas
that indicate the percentage points (%) of increase/decrease in the average number
of correct/incorrect candidate equations per problem with respect to the original ILP-
generated candidate set. We observe a significant increase in the number of incorrect
candidates for all subsets, as well as a drop in average number of correct equations for
the subsets involving asymmetric operations (Multi and Multiasym). This is because,
similarly as in the original ILP setup, we only consider the first 100 generated candi-
dates, which in ILP + Asym include more incorrect equations, leaving many correct
ones out. This results in a lower correct/incorrect ratio that makes it more challenging
for the evaluated models to find the right mathematical expression to solve a particular
problem. Table 7 compares our models with the best performing state-of-the-art model
(i.e., ALGES) on candidates generated in the ILP + Asym setting. Compared to the re-
sults presented in Table 5, we observe a sharp decrease in performance of the ALGES
model on subsets involving multiple operations (Multi, Multisym and Multiasym). This
demonstrates once more the weakness of this feature-based model in capturing the rea-
soning necessary to distinguish the order of the operands involved in equations contain-
ing multiple and non-commutative operators. Furthermore, we observe that the sequen-
tial B-LSTM model is now significantly outperformed by the tree-based NT-LSTM on
subsets involving multiple operations to be solved (Multi, Multisym and Multiasym).
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Model Full Complexity Symmetric Asymmetric
Single Multi Singlesym Multisym Singleasym Multiasym

ILP Coverage 91.14 93.33 83.90 94.71 83.82 91.76 84.00
ILP Naive 52.56 56.41 39.83 53.85 69.12 59.34 0.00

ALGES 68.44‡ 75.90† 43.59‡ 85.58 61.76‡ 64.83‡ 18.36‡

B-LSTM 72.99±1.14 78.21±0.97 55.76±2.10‡ 83.36±1.20† 71.76±3.40‡ 72.30±2.37 34.00±2.19?

T-LSTM 57.95±1.34‡ 61.69±1.49‡ 45.59±1.25‡ 80.58±2.44‡ 72.65±2.20‡ 40.11±0.92‡ 8.80±0.98‡

NT-LSTM 73.19±0.93 76.97±1.02† 60.67±1.15 80.76±2.37‡ 76.47±0.93 72.63±1.61 39.20±2.40

Table 7: Comparison of the proposed methods with the state-of-the-art model (i.e., ALGES) on the SingleEQ
dataset in terms of accuracy evaluated on candidate equations generated using ILP + Asym procedure (see
Table 6). Bold font indicates the best results for each subset of SingleEQ (see Table 3). The markers ?, †,
‡ respectively indicate the achieved bootstrap significance levels α <0.1, <0.05 and <0.01 with respect to
the best performing model in each of the subsets.

This again supports our initial hypothesis that tree-structured approach is better suited
to capture more complex reasoning which is necessary to solve arithmetic problems.
In the ILP + Asym candidate generation setting this is even more important because
of the additional noise introduced with the incorrect candidates that involve multiple
and asymmetric operations. Conversely, for arithmetic problems involving single op-
erations to be solved (Single, Singlesym, and Singleasym subsets), the B-LSTM model
shows a competitive performance, surpassing the tree-based NT-LSTM model on prob-
lems requiring single commutative operations (Singlesym). Additionally, we observe
an important drop in performance of T-LSTM model which is mainly influenced by low
accuracy scores on asymmetric subsets (Singleasym and Multiasym). This is in line with
our initial intuition that by using a single weight matrices Ui, Uo, Uf , Uu to transform
either the sum of the children’s states h̃t (see Eqs. 7–9 and 11) or the individual children
states hk (Eq. 10), the T-LSTM model is unable to distinguish the order of the operands
involved in asymmetric equations. This difference is less evident in Table 5 because
most of the incorrect candidates involving non-commutative operations are already fil-
tered out by the ILP component. However, in our ILP + Asym candidate generation
setup, we make sure that for each candidate involving non-commutative operation,
we also include noisy candidates with all the possible asymmetric permutations. This
makes it necessary not only to detect the right operation, but also to distinguish the
order of the operands, where the T-LSTM model fails. Finally, we observe that overall
(on Full dataset) our tree-based NT-LSTM model exhibits less variance among the dif-
ferent bootstrap results, compared to the sequential B-LSTM model. This indicates that
NT-LSTM model is less susceptible to different seed initialization during the training
process, making it more robust than other proposed models (T-LSTM and B-LSTM).
Error Analysis: In order to understand our system’s weaknesses, we manually ana-
lyzed the errors that it consistently makes across different training seed instances. We
grouped them into three main categories represented in Table 8: complex reasoning,
parsing and counting, and world knowledge errors. We observe that more than half
(57%) of our system’s errors are due to problems requiring complex reasoning while
the numbers have been correctly extracted from the text. This reflects the results from
Tables 5 and 7 that show lower performance of our models on problems requiring
multiple and/or non-commutative operations. As future work to alleviate this type of
problems we can complement the tree-structures using additional information such as
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Type Problem Text NT-LSTM

Complex
reasoning (57%)

Seth bought 20 cartons of ice cream and 2 car-
tons of yogurt. Each carton of ice cream cost
$6 and each carton of yogurt cost $1. How
much more did Seth spend on ice cream than
on yogurt?

20/2− 1× 6

Parsing and
counting (22%)

Jane’s dad brought home 24 marble potatoes.
If Jane’s mom made potato salad for lunch and
served an equal amount of potatoes to Jane,
herself and her husband, how many potatoes
did each of them have?

n/a

World
Knowledge
(21%)

Bert runs 2 miles every day. How many miles
will Bert run in 3 weeks?

3× 2

The sum of three consecutive odd numbers is
69. What is the smallest of the three numbers?

n/a

Table 8: Examples of problems where our NT-LSTM model fails.

the entities inside the sentence. For instance, in the first example illustrated in Table 8,
if the system would know that “ice cream” from the second sentence represents the
same concept as in the first one, it would be easier to link numbers 6 and 20. A second
consistent type of error is related to parsing and counting. It mainly happens when
there are several entities involved in a problem statement and the system has to count
them correctly. For instance, in the second example presented in Table 8, our current
system is unable to produce the correct candidate mathematical expression since it can
only extract the number 24 from text. Further work in improving aspects related to
parsing and entity identification in the problem statement should significantly reduce
this kind of mistakes. Finally, the world knowledge related errors account for 21% of
the total mistakes. Most of these errors are due to the fact that the system is unable
to capture the units correctly (i.e., there are 7 days in a week, or one dime equals 0.1
dollars). However, as in the second example, some of the problems require a more
advanced conceptual world understanding, such as the notion of odd numbers. Future
work can be directed towards methods that are able to capture and represent this kind
of world knowledge.
Limitations of the current state-of-the-art: We performed an empirical study on the
predicted results to understand better where our proposed model outperforms the cur-
rent state-of-the art model, ALGES (Koncel-Kedziorski et al., 2015). Table 9 illustrates
some examples of the problems where our model gets consistently correct predictions
on different training initialization weights (Section 4). Most of the gains came from im-
proving on problems requiring multiple and/or asymmetric operations, corroborating
our previous findings.
Strengths of the current state-of-the-art and limitations of our approach: Ta-
bles 5 and 7 illustrate that in the case of single symmetric operations (Singlesym), the
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Problem Text ALGES NT-LSTM

Nancy bought 615 crayons that came
in packs of 15. How many packs of
crayons did Nancy buy?

615− 15 615/15

Carrie’s mom gave her $91 to go shop-
ping. She bought a sweater for $24, a
T-shirt for $6, and a pair of shoes for
$11. How much money does Carrie
have left?

91 + 24 + 6 + 11 91− (24 + 6 + 11)

Melanie had 19 dimes in her bank. Her
dad gave her 39 dimes and her mother
gave her 25 dimes. How many dimes
does Melanie have now ?

19− 39 + 25 19 + 39 + 25

On Saturday, Sara spent $10.62 each on
2 tickets to a movie theater. Sara also
rented a movie for $1.59, and bought a
movie for $13.95. How much money in
total did Sara spend on movies?

10.62+2×1.59+13.95 10.62×2+13.95+1.59

Table 9: Examples of problems that NT-LSTM provides a correct solution, but current state-of-the-art
ALGES (Koncel-Kedziorski et al., 2015) fails.

ALGES method outperforms the proposed architectures (i.e., B-LSTM, T-LSTM, and
NT-LSTM). We hypothesize that the main reason for this is the use of carefully hand-
engineered features, many of which depend on third-party tools (e.g., dependency pars-
ing). Table 10 illustrates four examples whose solution requires mathematical expres-
sions with a single operator. In the first two cases our NT-LSTM model is outperformed
by the current state-of-the-art ALGES which correctly predicts the commutative oper-
ators (+ in the first example and × in the second one). We have found that these
correctly predicted commutative cases are highly correlated with the entity match fea-
ture (i.e., when the noun phrase connected to the number such as “pounds” in the first
example is the same in two numbers). This feature has high positive correlation with
addition and negative correlation with multiplication operations, which is illustrated in
the first and second examples respectively. It also requires an additional dependency
parsing which, in case of ALGES, is performed using Stanford Dependency Parser7.
Other word-based features are also highly correlated with some operations. For ex-
ample, the presence of the word “and” in the description of the problem is correlated
with addition. However, while these features may be a strong indicators of some op-
erators, their application is limited to problems where the underlying patterns appear.
This is illustrated in the last two examples that contain two features highly correlated
with the addition (i.e., entity match and “and” word), but that require a different (non-
commutative) operation in their solutions. In both cases, biased by the most likely

7More concretely, the Stanford Dependency Parser in CoreNLP 3.4 is used.
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Problem Text ALGES NT-LSTM

Diane is a beekeeper. Last year, she
harvested 2,479 pounds of honey. This
year, she bought some new hives and
increased her honey harvest by 6,085
pounds. How many pounds of honey
did Diane harvest this year?

6, 085 + 2, 479 6, 085− 2, 479

Jack has a section filled with short story
booklets. If each booklet has 9 pages
and there are 49 booklets in the short
story section, how many pages will Jack
need to go through if he plans to read
them all?

9× 49 9 + 49

Benny received 67 dollars for his birth-
day. He went to a sporting goods store
and bought a baseball glove, baseball,
and bat. He had 33 dollars left over.
How much did he spent on the baseball
gear?

67 + 33 67− 33

Janes mom picked cherry tomatoes
from their backyard. If she gathered 56
cherry tomatoes and is about to place
them in small jars which can contain 8
cherry tomatoes at a time, how many
jars will she need?

56 + 8 56/8

Table 10: Examples of problems that require a single operation to be solved. The first two involve commu-
tative operations (+ and × respectively) where our NT-LSTM model fails compared to the feature-based
model (ALGES; Koncel-Kedziorski et al. (2015)). The rest of the examples illustrate cases where ALGES
fails and NT-LSTM returns the correct answer. The words that represent features used in ALGES that are
highly correlated with the predicted operation (entity match and the word “and”) are highlighted.

feature-based operation, the answer given by ALGES is incorrect. This contrasts with
our feature-independent NT-LSTM model which manages to predict the correct equa-
tion. This is reflected in Tables 5 and 7, where the features-based approach falls short in
capturing the more intricate nature of solutions involving non-commutative operations
(Singleasym and Multiasym). In these cases, our tree-based NT-LSTM model exhibits
superior performance.

6. Conclusion

In this work we addressed the reasoning component involved in solving arithmetic
word problems. We proposed a recursive tree architecture to encode the underlying
equations for solving arithmetic word problems. More concretely, we proposed to use
two different Tree-LSTM architectures for the task of scoring candidate equations. We
performed an extensive experimental study on the SingleEQ dataset and demonstrated
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consistent effectiveness (i.e., more than 3% increase in accuracy on the Full dataset and
more than 15% for a subset of complex reasoning tasks) of our models compared to
current state-of-the-art.

We observed that, while very strong on simple instances involving single oper-
ations, the current feature-based state-of-the-art model exhibits a significant gap in
performance for mathematical problems whose solution comprises non-commutative
and/or multiple operations. This reveals the weakness of this method to capture the
intricate nature of reasoning necessary to solve more complex arithmetic problems.
Furthermore, our experiments show that, while a traditional sequential approach based
on recurrent encoding implemented using BiLSTMs over the equation proves to be a
robust baseline, it is outperformed by our recursive Tree-LSTM architecture to encode
the candidate solution equation on more complicated problems that require multiple
operations to be solved. This difference in performance becomes more significant as
we introduce additional noise in our set of candidates by adding incorrect equations
that contain non-commutative operations.
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programma Artificiële Intelligentie (AI) Vlaanderen” programme.

References

Amini, A., Gabriel, S., Lin, S., Koncel-Kedziorski, R., Choi, Y., & Hajishirzi, H.
(2019). Mathqa: Towards interpretable math word problem solving with operation-
based formalisms. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers) (pp. 2357–2367).

Bakman, Y. (2007). Robust understanding of word problems with extraneous informa-
tion.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157–166.

Bobrow, D. G. (1964). Natural language input for a computer problem solving system.

Charniak, E. (1968). Carps: a program which solves calculus word problems.

Charniak, E. (1969). Computer solution of calculus word problems. In Proceedings of
the 1st international joint conference on Artificial intelligence (pp. 303–316). Mor-
gan Kaufmann Publishers Inc.

Chen, Q., Zhu, X., Ling, Z.-H., Wei, S., Jiang, H., & Inkpen, D. (2017). Enhanced
LSTM for natural language inference. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1657–
1668).

22



Chiang, T.-R., & Chen, Y.-N. (2019). Semantically-aligned equation generation for
solving and reasoning math word problems. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers) (pp. 2656–
2668).

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Fletcher, C. R. (1985). Understanding and solving arithmetic word problems: A com-
puter simulation. Behavior Research Methods, Instruments, & Computers, 17(5),
565–571.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8), 1735–1780.

Hosseini, M. J., Hajishirzi, H., Etzioni, O., & Kushman, N. (2014). Learning to solve
arithmetic word problems with verb categorization. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 523–
533).

Huang, D., Liu, J., Lin, C.-Y., & Yin, J. (2018). Neural math word problem solver
with reinforcement learning. In Proceedings of the 27th International Conference
on Computational Linguistics (pp. 213–223).

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic optimization. In Pro-
ceedings of the International Conference on Learning Representations. San Diego,
USA.

Koncel-Kedziorski, R., Hajishirzi, H., Sabharwal, A., Etzioni, O., & Ang, S. D. (2015).
Parsing algebraic word problems into equations. Transactions of the Association for
Computational Linguistics, 3, 585–597.

Kushman, N., Artzi, Y., Zettlemoyer, L., & Barzilay, R. (2014). Learning to automat-
ically solve algebra word problems. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 271–
281). volume 1.

Li, J., Wang, L., Zhang, J., Wang, Y., Dai, B. T., & Zhang, D. (2019). Modeling intra-
relation in math word problems with different functional multi-head attentions. In
Proceedings of the 57th Conference of the Association for Computational Linguistics
(pp. 6162–6167).

Ling, W., Yogatama, D., Dyer, C., & Blunsom, P. (2017). Program induction by ratio-
nale generation: Learning to solve and explain algebraic word problems. In Proceed-
ings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers) (pp. 158–167).

Mitra, A., & Baral, C. (2016). Learning to use formulas to solve simple arithmetic
problems. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers) (pp. 2144–2153). volume 1.

23



Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP) (pp. 1532–1543).

Roy, S., & Roth, D. (2015). Solving general arithmetic word problems. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing (pp.
1743–1752).

Roy, S., & Roth, D. (2017). Unit dependency graph and its application to arithmetic
word problem solving. In Thirty-First AAAI Conference on Artificial Intelligence.

Roy, S., & Roth, D. (2018). Mapping to declarative knowledge for word problem
solving. Transactions of the Association of Computational Linguistics, 6, 159–172.

Shi, S., Wang, Y., Lin, C.-Y., Liu, X., & Rui, Y. (2015). Automatically solving number
word problems by semantic parsing and reasoning. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing (pp. 1132–1142).

Socher, R., Bauer, J., Manning, C. D. et al. (2013). Parsing with compositional vec-
tor grammars. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 455–465). volume 1.

Socher, R., Lin, C. C., Manning, C., & Ng, A. Y. (2011). Parsing natural scenes
and natural language with recursive neural networks. In Proceedings of the 28th
international conference on machine learning (ICML-11) (pp. 129–136).

Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations
from tree-structured long short-term memory networks. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing (Volume 1: Long Pa-
pers) (pp. 1556–1566). volume 1.

Wang, L., Wang, Y., Cai, D., Zhang, D., & Liu, X. (2018a). Translating a math word
problem to a expression tree. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (pp. 1064–1069).

Wang, L., Zhang, D., Gao, L., Song, J., Guo, L., & Shen, H. T. (2018b). Mathdqn:
Solving arithmetic word problems via deep reinforcement learning. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Wang, Y., Liu, X., & Shi, S. (2017). Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing (pp. 845–854).

Zhang, D., Wang, L., Zhang, L., Dai, B. T., & Shen, H. T. (2019). The gap of semantic
parsing: A survey on automatic math word problem solvers. IEEE.

24


	Introduction
	Related work
	Proposed Architecture
	Candidate Generator
	Candidate Ranker

	Experimental setup
	Results
	Conclusion

