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Abstract

This paper introduces improved methods for
sub-event detection in social media streams,
by applying neural sequence models not only
on the level of individual posts, but also di-
rectly on the stream level. Current approaches
to identify sub-events within a given event,
such as a goal during a soccer match, essen-
tially do not exploit the sequential nature of so-
cial media streams. We address this shortcom-
ing by framing the sub-event detection prob-
lem in social media streams as a sequence la-
beling task and adopt a neural sequence archi-
tecture that explicitly accounts for the chrono-
logical order of posts. Specifically, we (i) es-
tablish a neural baseline that outperforms a
graph-based state-of-the-art method for binary
sub-event detection (2.7% micro-F1 improve-
ment), as well as (ii) demonstrate superior-
ity of a recurrent neural network model on
the posts sequence level for labeled sub-events
(2.4% bin-level F1 improvement over non-se-
quential models).

1 Introduction

Social media allow users to communicate via real-
time postings and interactions, with Twitter as a
notable example. Twitter user posts, i.e., tweets,
are often related to events. These can be so-
cial events (concerts, research conferences, sports
events, etc.), emergency situations (e.g., terrorist
attacks) (Castillo, 2016), etc. For a single event,
multiple tweets are posted, by people with vari-
ous personalities and social behavior. Hence, even
more so than (typically more neutral) traditional
media, this implies many different perspectives,
offering an interesting aggregated description.

Given this continuous and large stream of
(likely duplicated) information in Twitter streams,
and their noisy nature, it is challenging to keep
track of the main parts of an event, such as a soc-
cer match. Automating such extraction of differ-

ent sub-events within an evolving event is known
as sub-event detection (Nichols et al., 2012). For
tracking each of the sub-events, the timing aspect
is an important concept (i.e., consecutive tweets in
time). Thus, a sequential model could successfully
exploit chronological relations between the tweets
in a Twitter stream as an informative feature for
sub-event detection.

Several methods have been proposed for sub-
event detection: clustering methods (Pohl et al.,
2012), graph-based approaches (Meladianos et al.,
2015), topic models (Xing et al., 2016) and neural
network architectures (Wang and Zhang, 2017).
None of these studies exploits the chronological
relation between consecutive tweets. In contrast,
our work does take into account that chronolog-
ical order and we predict the presence and the
type of a sub-event exploiting information from
previous tweets. Specifically, we (i) propose a
new neural baseline model that outperforms the
state-of-the-art performance on the binary classi-
fication problem of detecting the presence/absence
of sub-events in a sports stream, (ii) establish
a new reasonable baseline for predicting also the
sub-event types, (iii) explicitly take into account
chronological information, i.e., the relation among
consecutive tweets, by framing sub-event detec-
tion as a sequence labeling problem on top of our
baseline model, and (iv) perform an experimental
study, indicating the benefit of sequence labeling
for sub-event detection in sports Twitter streams.

2 Related Work

Twitter streams have been extensively studied
in various contexts, such as sentiment analy-
sis (Kouloumpis et al., 2011), stock market pre-
diction (Nguyen and Shirai, 2015) and traffic de-
tection (D’Andrea et al., 2015). Specifically, for
sub-event detection in Twitter, several approaches



Figure 1: Our sub-event detection model comprises: (a) a bin layer, (b) a unit layer, (c) a word embeddings layer,
(d) a representation layer and (e) a chronological LSTM layer to model the natural flow of the sub-events within
the event. We represent each bin using either (i) a tweet- or (ii) a word-level representation. The AVG∗ represents
an average pool operation, performed either directly on the embeddings or on the tweet’s LSTM representation.

have been tried. Unsupervised methods such as
clustering aim to group similar tweets to detect
specific sub-events (Pohl et al., 2012; Abhik and
Toshniwal, 2013) and use simple representations
such as tf-idf weighting combined with a similar-
ity measure. Other unsupervised algorithms use
topic modeling approaches, based on assumptions
about the tweets’ generation process (Xing et al.,
2016; Srijith et al., 2017). Several methods (Zhao
et al., 2011; Zubiaga et al., 2012; Nichols et al.,
2012) assume that a sub-event happens when there
is a ‘burst’, i.e., a sudden increase in the rate
of tweets on the considered event, with many
people commenting on it. Recently, neural net-
work methods have used more complicated repre-
sentations (Wang and Zhang, 2017; Chen et al.,
2018). Also supervised methods have been ap-
plied (Sakaki et al., 2010; Meladianos et al., 2018)
for the sub-event detection task. These meth-
ods usually exploit graph-based structures or tf-idf
weighting schemes. We believe to be the first to
(i) exploit the chronological order of the Twitter
stream and take into account its sequential nature,
and (ii) frame the sub-event detection problem as
a sequence labeling task.

3 Model

3.1 Task Definition

The goal is, given a main event (i.e., soccer
match), to identify its core sub-events (e.g., goals,
kick-off, yellow cards) from Twitter streams.
Specifically, we consider a supervised setting, re-
lying on annotated data (Meladianos et al., 2018).

3.2 Word- vs Tweet-Level Representations

Similar to previous works, we split a data stream
into time periods (Meladianos et al., 2018): we
form bins of tweets posted during consecutive
time intervals. E.g., for a soccer game, one-minute
intervals (bins) lead to more than 90 bins, de-
pending on the content before and after the game,
halftime, stoppage time, and possibly some pre-
game and post-game buffer. Thus, for each bin,
we predict either the presence/absence of a sub-
event (Section 3.3) or the most probable sub-event
type (Section 3.4), depending on the evaluation
scenario.

We consider representing the content of each
bin either on (i) a word-level or (ii) a tweet-level
(see Fig. 1). Formally, we assume that we have a
set of n bins b1, ..., bn, where each bin bi consists
of mi tweets and ki words (i.e., all words of tweets
in bin bi). Then, the tweet-level representation of
bin bi is symbolized as ti1, ..., timi , where timi is
the mth

i tweet of bin bi. In the word-level represen-
tation, we chronologically concatenate the words
from the tweets in the bin: wi1, .., wiki , where wiki

is the kth
i word of bin bi.

3.3 Binary Classification Baseline

To compare with previous work (Meladianos et al.,
2018), we establish a simple baseline for binary
classification: presence/absence of a sub-event.
For this case, we use as input the word-level
representation of each bin. To do so, we use
word embeddings (randomly initialized) with av-
erage (AVG) pooling (Iyyer et al., 2015) in com-
bination with a multilayer perceptron (MLP) for
binary classification, i.e., presence/absence of a



sub-event. Note that we experimented with pre-
trained embeddings as well as max-pooling, but
those early experiments led to performance de-
crease compared to the presented baseline model.
We found that training based on average bin rep-
resentations works substantially better than with
max-pooling, and we hypothesize that this is re-
lated to the noisy nature of the Twitter stream.

3.4 Sequence Labeling Approach

Building on the baseline above, we establish a new
architecture that is able to capture the sub-event
types as well as their duration. We phrase sub-
event detection in Twitter streams as a sequence
labeling problem. This means we assume that the
label of a bin is not independent of neighboring
bin labels, given the chronological order of bins
of the Twitter stream, as opposed to independent
prediction for each bin in the binary classification
baseline above. For instance, when a goal is pre-
dicted as a label for bin bi, then it is probable that
the label of the next bin bi+1 will also be goal. Al-
though a sub-event may occur instantly, an identi-
fied sub-event in a Twitter stream can span con-
secutive bins, i.e., minutes: users may continue
tweeting on a particular sub-event for relatively
long time intervals. For this reason, we apply the
well-known BIO tagging scheme (Ramshaw and
Marcus, 1995) for the sub-event detection prob-
lem. For example, the beginning of a goal sub-
event is defined as B-goal, while I-goal (inside)
is assigned to every consecutive bin within the
same sub-event, and the O tag (outside) to every
bin that is not part of any sub-event. To prop-
agate chronological information among bins, we
adopt an LSTM on the sequence of bins as illus-
trated in Fig. 1, layer (e). Note that this tagging
approach assumes that sub-events do not overlap
in time, i.e., only at most one is ongoing in the
Twitter stream at any point in time.

4 Experimental Setup

We evaluated our system1 on the dataset from
Meladianos et al. (2018), with tweets on 20 soc-
cer matches from the 2010 and 2014 FIFA World
Cups, totalling over 2M pre-processed tweets fil-
tered from 6.1M collected ones, comprising 185
events. The dataset includes a set of sub-events,
such as goal, kick-off, half-time, etc. To compare

1https://github.com/bekou/subevent_
sequence_labeling

our binary classification baseline system to previ-
ous methods (Table 1), we use the same train/test
splits as Meladianos et al. (2018), where 3 matches
are used for training and 17 matches as test set.
In this setting, we predict only the presence/ab-
sence of a sub-event. Similar to previous work,
we count a sub-event as correct if at least one of
its comprising bins has been classified as a sub-
event. For the experimental study of our proposed
sequence labeling approach for sub-event detec-
tion, where sub-event types are predicted, we have
randomly split the test set into test (10 matches)
and development (7 matches) sets. We use the de-
velopment set to optimize the F1 score for tuning
of the model parameters, i.e., the word/tweet em-
bedding representation size, LSTM hidden state
size, dropout probability. We adopt 2 evaluation
strategies. The first one, referred to as relaxed
evaluation, is commonly used in entity classifi-
cation tasks (Adel and Schütze, 2017; Bekoulis
et al., 2018a,c) and similar to the binary classifi-
cation baseline system evaluation: score a multi-
bin sub-event as correct if at least one of its com-
prising bin types (e.g., goal) is correct, assuming
that the boundaries are given. The second evalu-
ation strategy, bin-level, is stricter: we count each
bin individually, and check whether its sub-event
type has been predicted correctly, similar to the
token-based evaluation followed in Bekoulis et al.
(2018b).

5 Results

5.1 Baseline Results

Table 1 shows the experimental results of our base-
line model. The Burst baseline system is based on
the tweeting rate in a specific time window (i.e.,
bin) and if a threshold is exceed, the system iden-
tifies that a sub-event has occurred. We report
evaluation scores as presented in Meladianos et al.
(2018). The second approach is the graph-based
method of Meladianos et al. (2018). We observe
that our baseline system (Section 3.3) has a 1.2%
improvement in terms of macro-F1 and 2.7% im-
provement in terms of micro-F1, compared to the
graph-based model from Meladianos et al. (2018),
mainly due to increased precision, and despite the
recall loss.

5.2 Sequence Labeling Results

Table 2 illustrates the predictive performance of
our proposed model (i.e., using the chronological

https://github.com/bekou/subevent_sequence_labeling
https://github.com/bekou/subevent_sequence_labeling


LSTM) compared to models making independent
predictions per bin. The upper part of Table 2
contains models without the chronological LSTM.
Our experiments study both word-level and tweet-
level bin representations (see Fig. 1), as reflected
in the ‘Word’ vs. ‘Tweet’ prefix, respectively, in
the Model column of Table 2.

The simplest word-level representation uses the
tf-idf weighting scheme (as in Pohl et al. (2012))
followed by an MLP classifier. For the other
word-level models, we exploit several architec-
tures: AVG pooling (Iyyer et al., 2015), a CNN
followed by AVG pooling (Kim, 2014) and hierar-
chical word-level attention (Yang et al., 2016).

For tweet-level representations, we adopt sim-
ilar architectures, where the AVG, CNNs and at-
tention are performed on sentence level rather than
on the word-level representation of the bin. In this
scenario, we have also exploited the usage of se-
quential LSTMs to represent the tweets. When
comparing models with and without tweet-level
LSTMs, we report the strategy that yields the
best results, indicated by 3 and 7 in the tweet-
level LSTM (TL) columns of Table 2. We do not
present results for applying sequential LSTMs on
the word-level bin representation, because of slow
training on the long word sequences.
Benefit of Chronological LSTM: The bottom
part of Table 2 presents the results of the same
models followed by a chronological LSTM to cap-
ture the natural flow of the stream as illustrated
in Fig. 1. We report results as described in Sec-
tion 4, using the micro F1 score with the two eval-
uation strategies (bin-level and relaxed). We ob-
serve that when using the chronological LSTM,
the performance in terms of bin-level F1 score is
substantially improved for almost every model.
Note that the best model using the chronologi-
cal LSTM (Tweet-AVG) achieves 2.4% better F1

than the best performing model without the use of
chronological LSTM (Word-CNN-AVG). In most
cases there is also a consistent improvement for
both the precision and the recall metrics, which is

Macro Micro
Settings P R F1 P R F1

Burst 78.00 54.00 64.00 72.00 54.00 62.00
Meladianos et al. (2018) 76.00 75.00 75.00 73.00 74.00 73.00

Our binary classif. baseline 89.70 69.99 76.16 83.65 69.05 75.65

Table 1: Comparing our neural network binary classifi-
cation baseline model to state-of-the-art (P = precision,
R = recall).

Bin-level Relaxed
Model TL P R F1 TL P R F1

w
ith

ou
tc

hr
on

ol
.

L
ST

M

Word-tf-idf - 49.40 52.06 50.69 - 56.10 56.10 56.10
Word-AVG - 51.40 45.96 48.53 - 56.10 56.10 56.10

Word-CNN-AVG - 56.93 56.01 56.47 - 75.60 75.60 75.60
Word-attention - 52.92 58.71 55.66 - 86.59 86.59 86.59

Tweet-AVG 3 49.04 45.96 47.45 3 62.19 62.19 62.19
Tweet-attention 3 51.99 42.37 46.68 7 80.48 80.48 80.48

Tweet-CNN 7 58.88 51.17 54.75 7 70.73 70.73 70.73

w
ith

ch
ro

no
l.

L
ST

M

Word-AVG - 58.14 58.35 58.24 - 71.95 71.95 71.95
Word-CNN-AVG - 60.89 56.19 58.45 - 60.97 60.97 60.97
Word-attention - 52.99 42.90 47.42 - 60.97 60.97 60.97

Tweet-AVG 7 57.43 60.32 58.84 7 64.63 64.63 64.63
Tweet-attention 3 48.26 52.24 50.17 7 67.07 67.07 67.07

Tweet-CNN 7 65.33 49.73 56.47 7 60.97 60.97 60.97

Table 2: Comparison of our baseline methods in terms
of micro bin-level and relaxed F1 score with and with-
out chronological LSTM (see Fig. 1). The 3and 7 indi-
cate whether the model uses a tweet-level LSTM (TL).

thanks to the sequential nature of the upper level
LSTM capturing the flow of the text.
Limitations of Relaxed Evaluation: On the other
hand, using the relaxed evaluation strategy, we
observe that the best models are those without
the chronological LSTM layer. Yet, we consider
the relaxed evaluation strategy flawed for our sce-
nario, despite the fact that it has been used for
entity classification tasks (Bekoulis et al., 2018a;
Adel and Schütze, 2017). Indeed, it is not able to
properly capture sub-events which are character-
ized by duration: e.g., if a model assigns a differ-
ent label to each of the bins that together constitute
a single sub-event, then this sub-event counts as a
true positive based on the relaxed evaluation strat-
egy (similar to the evaluation proposed by Meladi-
anos et al. (2018) and followed in Table 1). Thus,
in this work, we propose to use the bin-level evalu-
ation, since it is a more natural way to measure the
duration of a sub-event in a supervised sequence
labeling setting. Note that due to the noisy
nature of Twitter streams, a tweet sequence span-
ning a particular sub-event is likely to contain also
tweets that are not related to the given sub-event: a
given bin inside the event may contain only a mi-
nority of tweets discussing the event. Therefore,
we consider the standard sequence labeling eval-
uation (requiring to have types as well as bound-
aries correct) to be not applicable in sub-event de-
tection.
Performance Comparison of the Top-3 Mod-
els: Figure 2 shows the performance of our three
best performing models in terms of bin-level F1

score on the validation set. The best performing
model is the Tweet-AVG model since it attains its
maximum performance even from the first train-
ing epochs. The Word-AVG model performs well



Figure 2: Bin-level F1 performance of the three best
performing models on the validation set with respect
to the number of epochs. The smoothed lines (obtained
by LOWESS smoothing) model the trends and the 95%
confidence intervals.

from the first epochs, showing similar behavior to
the Tweet-AVG model. This can be explained by
the similar nature of the two models. The word-
level CNN model attains maximum performance
compared to the other two models in later epochs.
Overall, we propose the use of the chronologi-
cal LSTM with the Tweet-AVG model since this
model does not rely on complex architectures and
it gives consistent results.

6 Conclusion

In this work, we frame the problem of sub-event
detection in Twitter streams as a sequence label-
ing task. Specifically, we (i) propose a binary
classification baseline model that outperforms
state-of-the-art approaches for sub-event detection
(presence/absence), (ii) establish a strong baseline
that additionally predicts sub-event types, and then
(iii) extend this baseline model with the idea of ex-
changing chronological information between se-
quential posts, and (iv) prove it to be beneficial in
almost all examined architectures.
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