
1

Learned Gradient Compression
for Distributed Deep Learning

Lusine Abrahamyan, Yiming Chen, Giannis Bekoulis, and Nikos Deligiannis, Member, IEEE

Abstract—Training deep neural networks on large datasets
containing high-dimensional data requires a large amount of com-
putation. A solution to this problem is data-parallel distributed
training, where a model is replicated into several computational
nodes that have access to different chunks of the data. This
approach, however, entails high communication rates and latency
because of the computed gradients that need to be shared among
nodes at every iteration. The problem becomes more pronounced
in the case that there is wireless communication between the
nodes (i.e., due to the limited network bandwidth). To address
this problem, various compression methods have been proposed
including sparsification, quantization, and entropy encoding of
the gradients. Existing methods leverage the intra-node infor-
mation redundancy, that is, they compress gradients at each
node independently. In contrast, we advocate that the gradients
across the nodes are correlated and propose methods to leverage
this inter-node redundancy to improve compression efficiency.
Depending on the node communication protocol (parameter server
or ring-allreduce), we propose two instances of the LGC approach
that we coin Learned Gradient Compression (LGC). Our methods
exploit an autoencoder (i.e., trained during the first stages of the
distributed training) to capture the common information that
exists in the gradients of the distributed nodes. To constrain
the nodes’ computational complexity, the autoencoder is realized
with a lightweight neural network. We have tested our LGC
methods on the image classification and semantic segmentation
tasks using different convolutional neural networks (ResNet50,
ResNet101, PSPNet) and multiple datasets (ImageNet, Cifar10,
CamVid). The ResNet101 model trained for image classification
on Cifar10 achieved significant compression rate reductions
with the accuracy of 93.57%, which is lower than the baseline
distributed training with uncompressed gradients only by 0.18%.
The rate of the model is reduced by 8095× and 8× compared to
the baseline and the state-of-the-art deep gradient compression
(DGC) method, respectively.

Index Terms—Deep learning, data-parallel distributed training,
gradient compression, autoencoders.

I. INTRODUCTION

Recent successful results in the field of artificial intel-
ligence (AI) are achieved with deep learning models that
contain a large number of parameters and are trained using
a massive amount of data. For example, FixResNeXt-101
32x48d [1], a state-of-the-art model for image classification,
contains approximately 800 million parameters, and BERT
(Bidirectional Encoder Representations from Transformers) [2],
a recent model for natural language processing, contains 110
million parameters. Training such deep networks in a single
machine (given a fixed set of hyperparameters) can take weeks.

L. Abrahamyan, Y. Chen, G. Bekoulis, and N. Deligiannis are with Vrije
Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium and also with
imec, Kapeldreef 75, B-3001 Leuven, Belgium. (e-mail: {alusine, ychen,
gbekouli,ndeligia}@etrovub.be).

An answer to this problem is to perform the training of such
networks in a number of computing nodes in parallel. Two
parallelization approaches have been exploited in the literature:
(1) model-parallel distributed training, where the different
nodes train different parts of the model; and (2) data-parallel
distributed training, where each node has a replica (i.e., a
copy) of the model and access to a chunk of the data. In both
distributed training approaches, there is a communication and
latency overhead due to the transmission of information from
the one node to the other. In the model-parallel distributed
training approach, the data that need to be transferred consist
of the activation values of a certain layer in the model. The
transmission overhead in this case is typically small. In the data-
parallel training approach, however, the calculated gradients
of a model that need to be transferred can reach hundreds
of megabytes (MBs) per iteration. In this paper, we focus on
data-parallel distributed training and propose a new framework
to reduce the overhead related to the gradient data transfer.

Most of the methods that aim to reduce the gradient
communication bandwidth consider that the nodes exchange
gradients in a synchronous manner. Nevertheless, the study
in [3] proposed Downpour Stochastic Gradient Descent, where
training is asynchronous in two ways: (i) model replicas (i.e.,
copies of the same model) update their gradients at different
time instances (asynchronously), and (ii) the master-node
gradient information is divided into shards, where each of the
shards runs independently. Performing data-parallel distributed
training asynchronously eliminates the need to synchronize
the weight updates between the nodes; however, asynchronous
training typically leads to a higher loss in the accuracy of the
trained model. The authors of [4] proposed Qsparse-local-SGD,
which can be applied to synchronous and hybrid (combining
both synchronous and asynchronous training) scenarios; in the
latter case, nodes are divided into groups. The gradient transfer
within a specific group is synchronous and asynchronous within
the different groups. The Qsparse-local-SGD method achieved
over 20× reduction in terms of the total number of bits
transmitted in the training of Resnet50 [5] on the ImageNet
[6] dataset, with an approximate 1% loss in the final accuracy.

Furthermore, a reduction in the total number of training
iterations can also reduce the number of gradient transfers
performed within the training and as a result, cause the decrease
in the total amount of transferred data. Reduction in the number
of the iterations can be reached by an increase in the batch size.
Given a fixed amount of memory in the graphical processing
unit (GPU), an increase of the batch is possible if the space
allocated for the model is decreased. Such a reduction is
possible by means of implying model compression methods.

2

A model can be compressed, employing quantization [7]–
[12], pruning [13]–[16], and knowledge distillation [17], [18].
Jacob et al. [8] quantized the pre-trained FP32 network to a
lower bit-depth precision using 8-bit integers for both weights
and activations. Han et al. [13] proposed to prune redundant
connections using a three-step method. First, they learn
important connections within a network, prune unimportant
connections, and finally retrain the network. The authors of [17]
introduced the knowledge distillation method, where knowledge
from a larger model is transferred to a smaller model. Typically,
the downside of these methods is an inevitable degradation
in performance. Moreover, model compression methods are
usually applied on the already pretrained networks; hence, most
of them cannot solve the problem of huge communication
bandwidth needed for the distributed training.

Several approaches have been proposed to address the
gradient communication problem, including gradient spar-
sification [4], [19], [20], quantization [4], [21], [22] and
entropy coding [23], [24] of the gradient tensors; these
approaches are proposed within the context of synchronous
data-parallel distributed training. The core idea of gradient
sparsification is to transfer a fraction of the gradient, depending
on some importance metric. Deep Gradient Compression [20],
for example, follows the gradient sparsification approaches,
achieving up to 99.9% gradient sparsification without loss in
accuracy. In the gradient quantization approaches, the gradients
are being quantized before transferring. The authors of [22], for
example, trained the ResNet-152 [5] network to full accuracy
on ImageNet [6] 1.8× faster than the variant with full-presicion
gradients. Another approach is to combine the aforementioned
techniques, as it has been done in the method presented in [4].

Despite their efficiency, these approaches only explore the
intra-node gradient redundancy by means of sparsification,
quantization and entropy coding. In this work, we propose to
exploit the correlation between the gradients of the distributed
nodes in order to achieve further compression gains. It is
worth mentioning that our approach can be combined with
gradient sparsification and quantization. An attempt to explore
the redundancies of gradients by different nodes was also
made in [24], [25]. The method described in [24] is based on
distributed source coding, realised by low-density parity check
(LDPC) codes, which leads to an impractically high decoding
latency and complexity. In contrast, our approach employs
lightweight autoencoders for the compression of gradients,
which substantially reduce the communication rate without
compromising the encoding and decoding speed. In [25],
the authors also utilized the correlation between the gradient
tensors. They introduced a new Cyclic Local Top-k selection
mechanism for the ring-allreduce communication pattern, where
a set of indices for the gradient selection is the same for all the
nodes. Compared with this approach, our LGC framework is
able to provide higher compression ratios because of the further
utilization of the correlation and introduction of autoencoder-
based distributed compressors. In summary, the contributions
of this work are:
• we study experimentally the statistical dependency among

gradients of distributed nodes using information-theoretic
metrics and show that there is a considerable rate reduction

Fig. 1. Illustration of the parameter server communication pattern. ∇ denotes
a locally computed gradient tensor.

Fig. 2. Illustration of the ring-allreduce communication pattern. ∇ is a locally
computed gradient tensor and ∇̂ is a part of the gradient tensor, which is
exchanged between the neighbors.

that can be achieved if these correlations are exploited.
• we propose a novel framework for performing distributed

compression of the gradients, coined Learned Gradient
Compression (LGC). Our framework uses lightweight
autoencoder models to compress gradients by leveraging
the correlation between them. We propose different
instances of our framework for the parameter server
and ring-allreduce distributed communication patterns.
To the best of our knowledge, this is the first attempt to
use autoencoders, which capture the correlation across
distributed signals, for compressing gradients.

• we experimentally evaluate our method against different
benchmarks–including uncompressed gradients (baseline
method), and the state-of-the-art DGC [20] and Scale-
Com [25] methods—and show that we systematically
achieve significant rate reductions for different tasks,
models and datasets.

The remainder of the paper reads as follows: Section II
presents different protocols for distributed training and dis-
cusses the related work. Section III analyses the correlation
of gradient tensors in data-parallel distributed training through
the lens of information theory. The result of the analysis
motivates the use of the proposed gradient compression
autoencoders, presented in Section IV. Section V describes
how the autoencoder models are used within the proposed LGC
framework. We present our experimental results in Section VI
and conclude our work in Section VII.

3

II. SETUP AND RELATED WORK

A. Setup

For the data-parallel distributed training, we consider two
of the most well-established protocols of distributed com-
munication, namely, the parameter server [26] and the ring-
allreduce [27], [28] protocols. In the parameter server scenario
(see its schema in Fig. 1), the nodes are divided into two types:
the worker nodes, which contain a replica of the neural network
to be trained and calculate the gradient tensor of it using the
available data, and the master node1, which receives the gradient
tensors from the worker nodes, performs a reduction operation
and sends back the updated gradient tensor to the worker nodes.
In the ring-allreduce protocol (see its schema in Fig. 2), there
is no master node and the calculation of the global gradient
tensor is performed through the exchange of the local gradient
tensors between neighboring nodes. In each node, the gradient
tensor is divided into K parts, where K is the number of nodes.
In the first phase of the communication, each node sends and
receives a part of those gradient tensors. The received values
are added to the corresponding values already available at the
node. The transfer operation lasts for K − 1 iterations. These
K−1 information exchanges are organized in a way that, after
each of them, each node holds a part of the final gradient tensor,
e.g., the gradient values at the same indices across all nodes.
Subsequently, for another K−1 iterations, the nodes exchange
those parts of the final gradient tensor among them. In the
ring-allreduce protocol, each of the K nodes communicates
with two of its neighbors 2× (K − 1) times. The bottleneck
in both approaches is the size of the gradient tensor, which is
huge in the case of very deep models with a lot of parameters;
hence, these gradient transfers can significantly decelerate the
training.

B. Related Work

Various solutions have been proposed to address the
problem of the huge communication bandwidth required for
distributed training. Bellow, we categorize the solutions into a
few major themes.

Sparsification: The study in [29] proposed to sparsify
the gradient tensor by replacing values below a certain
threshold with zeros. The method resulted in a 99% gradient
sparsification during the training of a fully-connected deep
neural network on MNIST [30], achieving an accuracy of
99.42%. Alternatively, Sparse Gradient Descent (Sparse
GD) [19] applied top-k gradient selection to obtain sparse
gradients. The study in [31] proposed a sparsification method
that randomly drops out coordinates of the stochastic gradient
vectors and amplifies the remaining coordinates to ensure that
the sparsified gradient is unbiased.

Quantization: The authors of [22] proposed a family
of algorithms for lossy gradient compression based on
quantization, called QSGD. They trained the ResNet-152 [5]

1Depending on the application scenario, one of the worker nodes can take
over the responsibility of the master node. This eliminates the required resource
allocation for a standalone master node in the system.

network to full accuracy on ImageNet [6], 1.8× faster than
the variant with full-precision gradients. Dithered quantization
followed by adaptive arithmetic encoding of the quantized
gradients was proposed in [23]. When training AlexNet [32]
on Cifar10 [33], the method reduced the communication
bits per node from 8531.5 bits to 422.8 bits, achieving
65.6% accuracy, which is lower by 2.6% compared with
training using the original (a.k.a., uncompressed) gradients.
In the context of federated learning, [34], [35] reported a
combination of top-k gradient sparsification in the downstream
communication (i.e., from the master to the workers) with
ternary gradient quantization in the upstream communication,
achieving 85.46% accuracy on Cifar10 using a modified
version of VGG [36] (coined VGG11). Furthermore, Amiri et
al. [37] proposed to quantize the updates being sent from the
central node to all of the devices by exploiting the knowledge
of the last global model estimate available at the devices as
side information.

Error correction: Error correction techniques, which
compensate for the errors introduced by the compression
of gradients, have also been proposed. The study in [38]
introduced EF-SGD, an error-feedback (EF) mechanism
applied to the training with SGD (on a single graphics
processing units (GPU)). The idea was to combine residuals of
the compression from the previous iteration with the current
gradient before performing an update of the parameters. The
authors of [39] applied the EF mechanism to data-parallel
distributed training. The so-called Dist-EF-SGD method
quantizes the gradient of each layer to 1 bit and combines it
with the residual of the compressed gradient of the previous
iteration. This way, it achieves a 32× reduction of the
communication cost, while retaining the same test accuracy
on ResNet50 [5] trained on the ImageNet [6] dataset, and
reducing the total time by 46% compared to the case that
uncompressed weights are used during training. Alternatively,
the study in [21] proposed an EF mechanism where the
gradients are quantized to 1 bit and the quantization errors are
added to the gradients of the next batch. The combination of
gradient compression via sparsification with error correction
has been studied in [20], [40]. The study in [40] proposed
MEM-SGD, a technique that keeps track of the accumulated
errors due to top-k gradient sparsification and adds them
back to the gradient estimator before each transmission.
MEM-SGD converges at the same rate as SGD on convex
problems, whilst reducing the communication overhead by
a factor equal to the problem dimensionality. The authors
of [20] proposed Deep Gradient Compression (DGC), in
which only important gradients (i.e., based on the magnitude
of the gradient) are sent per node at every iteration. The
rest of the gradients are accumulated at each node using
momentum correlation, a sort of error correction mechanism,
and sent when they pass the threshold of importance. DGC
achieves up to 99.9% sparsification of gradients without loss
of accuracy when training ResNet101 [5] on Cifar10 [33]. In
the field of federated learning, the authors of [41] proposed a
method called FetchSGD, where they moved momentum and
error accumulation from clients to the central aggregator. This

4

transition of the accumulation operation was possible because
of the use of the so-called Count Sketch randomized data
structure. The advantage of the Count Sketch is that it can
compress a vector by randomly projecting it several times to
lower-dimensional spaces, such that high-magnitude elements
can later be approximately recovered. Further, in [42], the
authors proposed the Artemis framework in which, using an
error correction mechanism, they compress both upstream and
downstream communication.

Gradients similarity: Few works in the field of distributed
training concentrate on the study of the correlation among the
gradients of the different nodes. The authors of [25] proposed
the Scalable Sparsified Gradient Compression (ScaleCom)
method, where they explored the similarity between the gradient
residuals within distributed training in combination with error-
correction techniques. Considering the cosine distance between
the gradient residuals at the different nodes, they showed that
the distance decreases fast over the iterations, i.e., the local
memory similarity increases fast and stays notable through
most of the training process. Based on this similarity, the
authors of [25] proposed a new Cyclic Local Top-k (CLT-k)
compressor for the ring-allreduce distributed training. Their
method works as follows: one of the workers sorts its error-
feedback gradient, obtains its local top-k indices and further, all
other workers follow the leading worker’s top-k index selection
for compressing their local error-feedback gradients. It is worth
mentioning that a similar selection process is also used in
our LGC framework for the ring-allreduce communication
pattern. However, because of the proposed autoencoder, our
framework can provide higher compression rates compared
with ScaleCom. Leveraging the similarities in the gradient
information transmitted by different workers has also been
proposed by Abdi and Fekri [24]. Their compression method
follows the distributed source coding [43]–[45] principles: The
gradients of the different nodes are modeled as noisy versions
of the true gradient, where the noise is assumed i.i.d. Gaussian
(this refers to the CEO problem [45] in information theory). The
technique applies asymmetric Wyner-Ziv coding [44], where
the gradients from a group of nodes are intra-encoded and
used as side information to decode the gradients from the
rest of the nodes. For the latter group of nodes, compression
is performed using nested scalar quantization followed by
syndrome encoding [46] realized by low-density parity check
(LDPC) codes. However, applying LDPC decoding of the
gradients per training iteration induces a significant decoding
complexity and latency, limiting the practical application of
the method. In this work, we introduce a new compression
framework that uses autoencoders to capture the correlation
across gradients of distributed nodes. Unlike the method
in [24], our approach (i) assumes that gradients share a
common information component and differ by an innovation
component; (ii) uses lightweight autoencoders that induce
limited computational complexity at the encoder and decoder
side.

To the best of our knowledge, our work is the first to
propose the use of autoencoder models for the compression
of gradients in distributed training, which also capture the

gradient correlations across nodes. Autoencoder models have
been proposed for image compression [47], [48] and image
compressed sensing [49]. These models, however, use deep
CNN and recurrent neural network (RNN) architectures for
compression (as opposed to our lightweight models), which
are not favorable in the distributed training setting where fast
encoding and decoding is paramount. Furthermore, while the
autoencoder architecture in [47] also considers the correlation
across images from distributed cameras, the model architecture,
the data at hand (images in [47] versus gradients in our case)
and the setting (distributed camera communication in [47]
versus distributed training in our work) are different than ours.

III. INFORMATION PLANE OF GRADIENTS WITHIN A
DISTRIBUTED TRAINING

In this section we demonstrate the importance of leveraging
the correlation (a.k.a., redundancy) of gradients in distributed
nodes in the reduction of the compression rate from an
information-theoretic point of view. To this end, we analyze the
statistical dependencies among the gradient tensors produced
by different computing nodes within distributed training using
information-theoretic measures; namely, the marginal and condi-
tional entropy, and the mutual information (MI). The calculation
of these measures relies on the estimation of the underlying
probability density function (pdf) of the observed variables.
Different approaches can be used to calculate the marginal
and conditional pdf of gradient tensors including histogram,
parametric, and non-parametric estimation. In this study, we
consider the basic method of calculating the histogram as we
are merely interested in corroborating that gradients across
distributed nodes are correlated.

We conduct experiments using deep neural networks trained
on two image transformation tasks, image classification, and
semantic segmentation. For the image classification task, we
train the Resnet50 [5] model on the Cifar10 [33] dataset and,
for the semantic segmentation task, we train the PSPNet [50]
model on the CamVid [51] dataset. In both cases, training is
performed on two distributed nodes using synchronous SGD.

Let g(i)l,1 and g(i)l,2 denote gradient vectors (vectorized tensors)
of distributed nodes, where l = 1, 2, . . . , L, indexes the
convolutional layer in the model, 1 or 2 identifies the computing
node that calculates the gradient, and i = 0, 1, . . . , N, denotes
the training iteration. Each gradient is discretized using
the uniform quantizer with 232-level (32 bit) accuracy. The
quantized gradients are then used to approximate the marginal
and the joint densities, respectively, p(i)gl,2 and p(i)gl,1,gl,2 , using the
histogram method. Using the estimated densities, we estimate
the marginal and conditional entropy, denoted by H(g

(i)
l,2) and

H(g
(i)
l,2 |g

(i)
l,1), respectively. The MI between the two gradient

vectors, at iteration i, is then calculated as

I(g
(i)
l,1 ;g

(i)
l,2)

= H(g
(i)
l,2)−H(g

(i)
l,2 |g

(i)
l,1)

= −
∑

p(i)gl,2 log2 p
(i)
gl,2

+
∑

p(i)gl,1,gl,2 log2
p
(i)
gl,1,gl,2

p
(i)
gl,1

.

(1)

5

0.0 20 k 40 k 60 k 80 k 100 k
Iterations

6

8

10

12

14

16

18

20
In

fo
rm

at
io

n
(b

its
)

layer 1 MI
layer 1 entropy
layer 15 MI
layer 15 entropy

layer 29 MI
layer 29 entropy
layer 45 MI
layer 45 entropy

(a)

0.0 10 k 20 k 30 k 40 k 50 k 60 k
Iterations

8

10

12

14

16

18

20

In
fo

rm
at

io
n

(b
its

)

layer 1 MI
layer 1 entropy
layer 25 MI
layer 25 entropy

layer 44 MI
layer 44 entropy
layer 60 MI
layer 60 entropy

(b)

Fig. 3. The mutual information (solid lines) and the marginal entropy (dotted
lines) between gradient tensors of the same layer on the different nodes,
through the training iterations, for distributed training of (a) the Resnet50 and
(b) the PSPNet models.

Figure 3 depicts the marginal entropy H(g
(i)
l,2) and the

MI I(g(i)l,1 ; g
(i)
l,2) for different pairs of layers in the models

throughout the training iterations. We observe that the MI
values are high; specifically, approximately 80% of the average
information content (i.e., the entropy) contained in the layer’s
gradient tensor at every iteration is common for both nodes.
This means that there is a significant amount of information
that can be obtained from one gradient tensor about the
other per iteration. We observe similar trends between the
marginal entropy and the MI across the iterations, which
indicates that this correlation can be leveraged independent of
the changes in the information content of the gradient tensor.
Methods that encode the gradients at each node independently
(intra-node encoding) do not leverage this correlation. In that
case, the lower rate bound is the sum of marginal entropies
of the gradients of the nodes, which is higher than the
minimum achievable rate bound for correlated sources [43],
that is, the joint entropy: H(g

(i)
l,1 , g

(i)
l,2) = H(g

(i)
l,1) +H(g

(i)
l,2)−

I(g
(i)
l,1 ; g

(i)
l,2) ≤ H(g

(i)
l,1) +H(g

(i)
l,2).

Figure 4 illustrates the mean marginal entropy(
1
N

∑N
i H(g

(i)
l,2)
)

and the mean MI
(

1
N

∑N
i I(g

(i)
l,1 ; g

(i)
l,2)
)

for all layers l = 1, 2, . . . , L, averaged over the iterations.

0 10 20 30 40 50
Layer index

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

In
fo

rm
at

io
n

(b
its

)

MI
entropy

(a)

0 10 20 30 40 50 60
Layer index

0

5

10

15

20

In
fo

rm
at

io
n

(b
its

)

MI
entropy

(b)

Fig. 4. The mean marginal entropy and the mean MI per layer, averaged over
the iterations, for (a) the Resnet50 trained on Cifar10 and (b) the PSPNet
trained on CamVid.

One can observe that the mean marginal entropy increases
with the layer index, which is due to the increase in the
number of parameters in corresponding layers. Interestingly,
the mean MI is systematically comparable with the mean
marginal entropy for almost every layer. The lowest amounts
of MI between the gradients of the two nodes–namely, the
higher discrepancy with the entropy–were obtained in the first
and the last layers. This is because the gradients of these
layers are influenced the most by the input training samples
and the ground truth labels in the mini-batch. We can also
notice some systematic peaks in the values of the entropy and
MI. These peaks can be explained based on the architecture
of each model. Both models contain residual connections,
where information between layers is combined through the
element-wise summation operation. Thus, the amount of
information should increase after the addition operation. This
could be also confirmed from the results. Specifically, we
observe that the layers with a higher amount of information
are those that come after residual connections.

Our empirical results suggest that the gradient information
per layer at each node consists of two parts, the common
information shared across all gradient vectors and the inno-
vation information that is specific for each node. Moreover,
the common information holds a substantial amount of the
gradients’ information. In other words, in distributed training,

6

there is a significant amount of redundant information –
currently being sent at each iteration from all the nodes–
which if eliminated can further reduce the communication
rates without affecting the performance of the trained model.
Within the proposed framework, we assume that the innovation
component can be captured by performing top-k selection (with
a sparsity rate of 0.001%) over the gradient tensors of each
node.

In what follows, we present two instances of our LGC
framework that leverage this information in the parameter
server and the ring-allreduce communication pattern.

IV. AUTOENCODERS FOR GRADIENT COMPRESSION

In this section, we introduce two autoencoder architectures
for performing lossy (i.e., a reconstructed signal differs from
the original one) distributed compression of gradients. We
design our architectures based on our empirical observations
in Section III. Specifically, our models aim at capturing the
fact that gradients at the same layers of the different nodes are
highly correlated. Two such autoencoder models are described,
one for the parameter server (see Section IV-A) communication
pattern and the other for the ring-allreduce (see Section IV-B).

A. Autoencoder Based on Decoupling of the Gradients for the
Parameter Server Communication Pattern

Consider a set of gradient tensors, each unfolded in the
form of a vector gk, k = 1, ...,K. These gradients correspond
to the same training iteration of synchronous SGD across K
nodes, where the index of the iteration is omitted for simplicity.
According to our modelling approach, each of the gradient
vectors can be expressed as:

gk = gcpk + gIk, (2)

where gcpk is the common part that is shared by the gradient
vectors and gIk is the innovation component that is unique to
each gradient vector. The proposed autoencoder model for the
compression and the reconstruction of the gradients consists
of one encoder, Ec, and K decoders, Dk

c , k = 1, ...,K. The
encoder encodes one of the gradients gi, with i ∈ (1, ...,K),
into a compressed common representation:

gc = Ec(gi). (3)

Each of the K decoders inputs the compressed common
representation, gc, and combines it with the innovation in-
formation of the k-th gradient, gIk, to obtain the corresponding
reconstructed gradient vector,

greck = Dk
c (g

c, gIk). (4)

During the training process of the autoencoder, in order to
obtain the compressed common representation gc from the
gradient vectors, all gradients are fed to the encoder Ec. The
following similarity loss (i.e., the Euclidean distance between
the compressed representations of the gradients) is minimized:

Lsim =

K∑
k=0

K∑
m=0, m 6=k

||(Ec(gk)− Ec(gm))||22. (5)

In order to reconstruct the original gradients from the com-
pressed ones, the following reconstruction loss is also applied
to the output of the decoders Dk

c :

Lrec =

K∑
k=0

||(gk − greck)||22. (6)

The final loss function therefore consists of two terms, the
reconstruction loss and the similarity loss, that is,

L = λ1Lrec + λ2Lsim. (7)

Within the data-parallel distributed training, the training of
the autoencoder [see Fig. 5(a)] is performed at the master
node as follows. The master node receives the gradient vectors
from the worker nodes and passes them sequentially to the
encoder Ec. The encoded representations are used to calculate
the similarity loss Lsim. Furthermore, one of the encoded
representations (chosen randomly at each iteration) is combined
with the innovation components, gIk, k = 1, . . . ,K, at the
corresponding decoders Dk

c to reconstruct the gradients and
compute the Lrec loss (see Fig. 6).

B. Autoencoder Based on Aggregation of the Gradients for the
Ring-Allreduce Communication Pattern

The final goal of one iteration of distributed training is to
obtain an aggregated gradient from the gradients of distributed
nodes and send it back to all nodes so that the parameters are
further updated. To this end, we design an architecture where, as
a first step, a separate compressed representation for each of the
gradients is obtained and then, in a next step, the compressed
representations are averaged. One aggregated gradient vector,
which approximates the average of the gradients of distributed
nodes, is then reconstructed from the averaged compressed
representations. In this case, the autoencoder consists of one
encoder Ec, which is responsible for the compression of the
gradient vectors, and one decoder Dc that is responsible for the
final aggregated gradient vector. For the group of the gradients,
gk, k = 1, ...,K, the compressed representations, gck, obtained
by the encoder Ec are given using:

gck = Ec(gk). (8)

The intermediate representation gavg , which is obtained as:

gavg =
1

K

K∑
k=1

Ec(gk), (9)

is fed to the decoder Dc, which reconstructs the final aggregated
gradient vector as:

grec = Dc(g
avg). (10)

In the training process, the following reconstruction loss is
applied on the final aggregated gradient to minimize the
distance between the output of the decoder and the average of
the gradient vectors:

Lrec = ||(grec −
1

K

K∑
k=1

gk)||22. (11)

7

Fig. 5. The architecture of the proposed autoencoders for the two different distributed communication scenarios: (a) in the parameter server scenario, gradients
are fed sequentially to the encoder and, at each decoder, the innovation gradients are concatenated with the intermediate output before the last convolutional
layer; (b) in the ring-allreduce scenario, the vectors are fed to the encoder sequentially, and after that, the outputs of the encoder form the averaged gradient,
which is passed to the decoder for the reconstruction. Note that the number of gradients, decoders and the reconstruction losses needs to be equal to the
number of distributed nodes.

Within the data-parallel distributed training, the training
of the autoencoder [see Fig. 5(b)] is performed as follows.
One node obtains the gradient vectors, gk, and sequentially
feeds them into the encoder Ec, which in turn constructs the
intermediate representation, gavg , and passes this representation
to the decoder Dc. The decoder reconstructs the gradient grec,
which is used to calculate the loss Lrec (see Fig. 7).

C. Distributed Autoencoders Architecture

In our distributed compression approach, the proposed
autoencoder networks (see Section IV-A and Section IV-B)
consist of convolutional and deconvolutional layers. The kernels
of the convolutional and deconvolutional layers are one-
dimensional (1D) since the inputs of the networks are vectors.
This approach reduces the number of network parameters
compared with the conventional 2D kernels by approximately
60%.

Regarding the autoencoder architecture that is based on
decoupling of the gradients (see Section IV-A), the encoder, Ec,
which takes as input the vector gk, comprises 5 convolutional
layers with 1D kernels and a non-linearity in the form of the
leaky-relu [52]. The decoder, Dc, takes as input the compressed
representation produced by the encoder and performs an
upsampling operation using 5 deconvolutional layers. Before
the final convolutional layer, the intermediate representation is
concatenated with the innovation component, gIk, which consists
of the top-magnitude values of gk and zeros elsewhere; more
details on how the innovation component is constructed are
provided in Section V.

Regarding the autoencoder that is based on the aggregation
of the gradients (see Section IV-B), the architecture of the
encoder, Ec, and the decoder, Dc, are the same with the only
difference that there is no concatenation operation and the
input of the decoder is the average, gavg, of the compressed
gradients.

V. DISTRIBUTED LEARNING FRAMEWORK

Assume a system with multiple GPUs, consisting of K
processing nodes. The goal is to train a model (with layers l =
1, . . . , L) in a data-parallel distributed manner (where replicas

of the model are located at each node) using synchronous SGD.
Without loss of generality, it can be considered that the model
is a fully convolutional neural network [32], [53]. At each
training iteration, a gradient tensor ∇k,l is produced for each
layer l = 1, . . . , L of the neural network and for each node
k = 1, . . . ,K. Each such gradient tensor is unfolded in the
form of a vector gk,l ∈ Rnl , where nl = khl · kwl · fl−1 · fl,
with khl , k

w
l denoting respectively the kernel height and the

kernel width at the layer l, fl−1 the number of filters in the
previous layer and fl the number of filters in the current layer.

A. Gradient Sparsification Process

Within the proposed LGC framework, in order to reduce
the amount of gradient information sent from each node, a
certain amount of values are selected from each vector, gk,l, in
two different ways depending on the communication pattern.
Specifically, under the parameter server communication pattern,
the framework extracts the α% of the values in gk,l with the
highest magnitude and constructs the vector g̃k,l ∈ Rµl , where
µl =

α
100 · nl. The top-magnitude gradient selection process is

repeated for all layers and concatenates the g̃k,l, l = 1, . . . , L,
vectors together to form the vector g̃k ∈ Rµ, with µ =

∑L
l=0 µl.

This process is performed independently at each node k =
1, . . . ,K with α fixed across the nodes (typically α = 0.1).
Alternatively, under the ring-allreduce communication pattern,
our framework selects a node k randomly for each iteration.
This selected node in turn extracts the α% of the values in gk,l
with the highest magnitude and constructs the vector g̃k,l ∈ Rµl .
As in the previous setting, a vector g̃k ∈ Rµ is created by
concatenation of the top-magnitude gradients of all layers.
The selected node then shares the indices of the extracted
gradient values to all remaining nodes in the network, which
in turn construct the corresponding vectors g̃k′ ∈ Rµ, where
k′ = 1, . . . ,K and k′ 6= k.

Hence, while in the parameter server communication pattern,
each node is free to select independently the important
gradients, in the ring-allreduce pattern all nodes select gradients
in the same positions as indicated by the selected node for each
iteration. The transferred indices are entropy encoded–using
the DEFLATE compression method [54]–and their rate is taken
into account in the total rate calculation (see Section VI).

8

Fig. 6. Training of the proposed autoencoder for the parameter server
communication pattern. g̃ is the gradient vector that is constructed using
the top-magnitude gradient values. Note that in the training phase of the
autoencoder, the innovation gradient vector g̃I is extracted on the master node
from the g̃ gradient vector.

Fig. 7. Training of the proposed autoencoder for ring-allreduce communication
pattern. Note that our framework selects randomly at each iteration the node
that is responsible for extracting the values with the highest magnitude in
order to construct the g̃ gradient vector.

In both patterns (i.e., parameter server and ring-allreduce),
the selected gradients g̃k are passed to an encoder, the architec-
ture of which is described in Section IV, which performs further
compression. Finally, the remaining non-selected gradients are
being accumulated using a momentum correlation similar to
the method described in [20].

B. Distributed Training Process

During the first iterations, the weights of a model change very
aggressively and thus, the calculated gradients are being rapidly
outdated. Any substitution or transformation of the gradients at
this stage can be harmful to the performance of the model; this
has also been stated in [20]. For this reason, we do not apply
the gradient sparsification process and compression at the first
iterations of the training.

After a number of iterations, the weights of the model are up-
dated using the gradient vector g̃k (which has been constructed
using the highest magnitude values, see Section V-A for more
details). In parallel, the autoencoder network is trained using the
gradient vectors at a particular node. This is either the master
node in the parameter server communication pattern (see Fig. 6)
or any selected node in the ring-allreduce pattern (see Fig. 7).
Note that there can be various criteria for selecting the node
that is responsible for training the compression network in the
ring-allreduce pattern, such as energy, computational capacity,
or bandwidth constraints. The training of the compression
network lasts for a number of iterations (typically, 200-300
iterations depending on the task, see Section VI-G for more
details) and then it can be used to compress the gradients. To

Algorithm 1 Compression and reconstruction of the gradient
with the LGC, for the parameter server communication pat-
tern, on the node k (which is produce compressed-common
representation)
Input :K nodes, minibatch size b, encoder Ec, decoder Dk

c ,
Loss function, Loss, optimizer SGD, # layers L

gacc ←− 0 for it = 0, 1, . . . do
for l = 0, . . . ,L do

gl ←− ∇Loss+ gacc
threshold←− min(top 0.1% of abs(gl))
mask ←− abs(gl) ≥ threshold
g̃l ←− mask � gl
gacc ←− gacc + (¬mask)� gl
thresholdinv ←− min(top 10% of abs(g̃l))
maskinv ←− abs(g̃l) ≥ thresholdinv
g̃Il ←− g̃l �maskinv

end
g̃k ←− concatenate(g̃l)
g̃Ik ←− concatenate(g̃Il)
g̃c ←− Ec(g̃k)
g̃rec ←− Dk

c (g̃
c, g̃Ik)

end

Algorithm 2 Compression and reconstruction of the gradient
with the LGC, for the ring-allreduce communication pattern,
on the node k
Input :K nodes, minibatch size b, encoder Ec, decoder Dc,

Loss function, Loss, optimizer SGD, # layers L
gacc ←− 0
for it = 0, 1, . . . do

for l = 0, . . . ,L do
gl ←− ∇Loss+ gacc
threshold←− min(top 0.1% of abs(gl))
mask ←− abs(gl) ≥ threshold
g̃l ←− mask � gl
gacc ←− gacc + (¬mask)� gl

end
g̃k ←− concatenate(g̃l)
g̃ck ←− Ec(g̃k)
g̃avg ←− 1

K

∑
k g̃

c
k(k = 1, . . . ,K)

g̃rec ←− Dc(g̃
avg)

end

this end, our approach treats the two communication patterns
differently.

1) LGC - Parameter Server Communication Pattern: In
the parameter server communication pattern, the weights of
the learned encoder are transferred to one of the worker
nodes. It is worth mentioning that in the parameter server
communication pattern (see Algorithm 1 for more details), the
trained encoder Ec of the proposed LGC framework at one
given worker node k compresses its (top-magnitude) gradient
vector g̃k to the representation g̃ck, which is in turn transmitted
to the master node. In parallel, all worker nodes—including
the node mentioned before—apply coarse gradient selection on
gradient vectors g̃k with a very aggressive sparsification rate of

9

0.001%, resulting in transmitting the vector g̃Ik ∈ R0.00001∗µ,
k = 1, . . . ,K. One can think of g̃Ik as the innovation part of g̃k,
which is specific to each worker node, and g̃ck as the common-
compressed information shared across all nodes. Therefore, by
having only one worker node sharing this information, we can
leverage our observations as detailed in Section III (i.e., the
the common and the innovation gradient information, see the
relevant section for more details).

At the master node, g̃c and g̃Ik are used to reconstruct the
gradient g̃reck with the help of the decoder Dk

c of the proposed
autoencoder (see Fig. 8), that is,

g̃reck = Dc(g̃
c, g̃Ik). (12)

The master node then obtains the aggregated gradient by
averaging the reconstructed gradients:

g̃rec =
1

K

K∑
k=1

g̃reck . (13)

The weight update in the training process is performed in
three consecutive stages. In the first stage, i.e., during the initial
iterations, the weights are updated using the original gradients:

wlt = wlt−1 + λ∇lt, (14)

where wlt is the weight of the layer l at iteration t. In the
second stage, during the training of the compression network,
the weights are updated using the top-magnitude gradients:

wlt = wlt−1 + λg̃lt. (15)

In the third stage, the weights are updated with the reconstructed
aggregated gradients:

wlt = wlt−1 + λg̃l,rect . (16)

2) LGC - Ring-Allreduce Communication Pattern: In the
ring-allreduce pattern, after the training of the autoencoder,
the weights of the encoder and the decoder are sent to all
other nodes; namely, the K−1 nodes, except for the node that
the training of the compression network is performed. This
communication takes place only once during training and the
associated rate, which is negligible, is counted in the total rate
(see Section VI).

In the ring-allreduce communication pattern (see Algo-
rithm 2 for more details), the top-magnitude gradient vector
g̃k at each node k = 1, . . . ,K, is passed to the encoder Ec of
the proposed autoencoder, and transformed to the compressed
representation:

g̃ck = Ec(g̃k). (17)

These compressed representations are exchanged between the
nodes, and after this exchange, each node obtains the averaged
compressed representation:

g̃avg =
1

K

K∑
k=1

g̃ck. (18)

Then, at each node, g̃avg is passed to the decoder part of the
proposed autoencoder, delivering the reconstructed aggregated
gradient:

g̃rec = Dc(g̃
avg). (19)

TABLE I
COMPARISON OF THE PROPOSED LGC FRAMEWORK WITH OTHER

METHODS OF DATA-PARALLEL DISTRIBUTED TRAINING. DGC AND SPARSE
GD REFER TO THE DEEP GRADIENT COMPRESSION AND SPARSE GD

METHODS, RESPECTIVELY.

LGC DGC Sparse GD

Sparse Gradients X X X

Locally Accumulated Gradients X X X

Momentum Correlation X X -

Same Hyperparameters for Distributed
and Non-Distributed Training X - X

Fixed Sparsification Amount
during Training X - X

Gradient Compression via Autoencoder X - -

Fig. 8. Distributed training within the parameter server communication pattern:
g̃c is compressed-common gradient vector, g̃I is an innovation gradient vector,
and g̃rec is a reconstructed gradient.

Finally, the reconstructed aggregated gradients are used to
update the weights of the model (see Fig. 9). In the ring-
allreduce communication pattern, the weight updates in the
training process are also performed in three stages as described
by the equations (14), (15), and (16).

In Table I, we compare the proposed methodology LGC with
other methods for data-parallel distributed training. As we ob-
serve, LGC relies on techniques, such as momentum correlation
and local gradient accumulation to improve the performance.
These techniques has also been used in other works (DGC [20]
and Sparse GD [19]). Unlike the aforementioned architectures,
our method exploits gradient compression of distributed nodes
to reduce the communication rate. Furthermore, it is worth
mentioning that, in case of LGC, switching from single-node
training to distributed training is smooth, as the framework
does not require any hyperparameter change in the training flow.
Moreover, in case of DGC, the sparsification rate is changing
during the warm-up iterations (i.e., the strategy of the warm-
up is a hyper-parameter introduced by DGC). In contrast, in
our case we adopt a fixed sparsification rate regardless of the
task, that is, no sparsification at the warm up iterations and
sparsification with the highest rate for the rest of the iterations.

VI. EXPERIMENTS

In this section, we present the evaluation of our LGC
framework on classification and image-to-image transformation
tasks. All experiments are performed on a single machine with
four GeForce RTX 2080 Ti GPUs and 128 GB of RAM,
by emulating more than one node on each GPU. The LGC
framework is built on top of Pytorch’s [55] distributed package.

10

Fig. 9. Distributed training within the ring-allreduce communication pattern:
g̃c is a compressed top-magnitude gradient vector, g̃avg is a compressed
averaged gradient, and g̃rec is a final gradient vector.

Furthermore, we want to stress that downlink communication
is not the focus of this work (like in [20], [56]–[58]), but it
can be inexpensive when the broadcast routine is implemented
with the ”tree” topology as in several MPI (Message Passing
Interface) implementations [59].

A. Experimental Setup

Regarding the image classification task, we consider the
Resnet50 convolutional neural network trained on the Ci-
far10 [33] and ImageNet [6] datasets, and ResNet101 [5]
on the Cifar10 [33] dataset. Regarding the image-to-image
transformation task, we consider the PSPNet [50] model trained
on the CamVid [51] semantic segmentation dataset.

The distributed training strategy within the LGC framework
is as follows: the model is initially trained without any gradient
modification for approximately 200 (depending on the task)
iterations. This is because in the first iterations of training, the
weights change fast and any transformation at the gradients
can reduce the performance of the model (see Section VI-F).
Then, the weights are updated using the top-magnitude values
of the gradients, and at the same time, the autoencoder is being
trained as described in Section V. This process lasts for another
200 iterations for the image-to-image transformation task and
300 iterations for the classification tasks. The autoencoder
is trained with the SGD optimizer using a learning rate of
0.001 and a batch-size of 1. For the remaining iterations—that
is, approximately, 89% and 83% of the total iterations for
the classification and the image-to-image transformation tasks,
respectively—the framework performs distributed training with
the compressed top-magnitude values of the gradients using
the trained autoencoder. Following other studies, e.g., [20], the
aforementioned process is applied to all layers of the model
except for the following two: (i) the first layer for which the
update of the weights is performed using the original gradients;
and (ii) the last layer of the network (fully-connected layer
in the case of the classification tasks and convolutional layer
in the case of image-to-image transformation task), where
the top-magnitude values of the gradient are selected without
further compression (i.e., the autoencoder is not used). In all
layers, where the top-magnitude gradient values are selected,
we set the sparsity level α to 0.1%.

0 25 50 75 100 125 150
Epochs

20

40

60

80

Ac
cu

ra
cy

(%
)

LGC (parameter-server)
LGC (ring-allreduce)
Baseline
DGC
Sparse GD

Fig. 10. Comparison of the learning curves in terms of the top1 accuracy of
the Resnet50 model on the image classification task between the two versions
of the LGC model (i.e., parameter server and ring-allreduce) and the rest of the
examined architectures. Note that the baseline model refers to the distributed
training with the uncompressed, non-modified gradients.

Regarding the hyperparameters used in the trainings, we
follow the exact same setup as in the original papers (see [5]
for the ResNet model and [50] for the PSPNet model). For
the experiments with DGC and Sparse GD, we follow the
strategies that were described at the corresponding papers of
DGC and Sparse GD. Specifically, for the DGC method, we
adopt a warm-up approach for the learning rate as described
in the work of Goyal et al. [60]. For the Sparse SGD method,
we follow the original setup presented in the papers of each
specific architecture (i.e., ResNet and PSPNet). This is because
in the Sparse GD paper, the authors of the work do not
explicitly specify the initialization and the learning rate. In all
experiments, we report the compression ratio (CR) defined as,

CR = size
(
Goriginal
k)/size

(
Gcompressed
k),

where Goriginal
k and Gcompressed

k are the uncompressed and
compressed gradients at the training node k, and the size(·)
function computes the size of the gradient tensor in Megabytes.
Two compression ratios are reported for the proposed LGC
framework under the parameter server pattern. The first one
refers to the worker node that shares the common-compressed
and the innovation gradient component and the second one
refers to all other nodes where only the innovation component
is being sent. In what follows, the Baseline refers to performing
distributed training of the model with the original, a.k.a.,
uncompressed gradients.

B. ImageNet Classification

In the first set of experiments, we conduct distributed training
of ResNet50 on ImageNet [6] and assess the achieved accuracy
and speedup versus the gradient compression ratio.

ImageNet is a large-scale image classification dataset with
over 1.2M training and 50K validation images belonging to
1000 classes. We used the following settings in our experiments
on ImageNet: the SGD optimizer with a momentum of 0.9, a
weight decay of 1e− 4, and an initial learning rate of 0.1 that
decays by 10 every 30 epochs. Furthermore, we adopt Inception
preprocessing with an image size of 224 × 224 pixels [61]

11

0 10 20 30 40 50
Epochs

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Ac

cu
ra

cy
(%

)

LGC (parameter-server)
LGC (ring-allreduce)
Baseline
DGC
Sparse GD

Fig. 11. Comparison of the learning curves in terms of the (pixel) accuracy
of the PSPNet model on the semantic segmentation task (CamVid dataset)
between the two versions of the LGC model (i.e., parameter server and ring-
allreduce) and the rest of the examined architectures. Note that the baseline
model refers to thedistributed training with the uncompressed, non-modified
gradients.

TABLE II
TOP 1 ACCURACY VERSUS THE COMPRESSION RATIO IN DISTRIBUTED

TRAINING OF RESNET50 ON IMAGENET. INFORMATION IS INDICATING THE
TOTAL AMOUNT OF INFORMATION BEING SENT DURING THE WHOLE

TRAINING. IN THE CASE OF PARAMETER SERVER, THE FIRST NUMBER IN
THE COMPRESSION RATIO IS INDICATING THE METRICS OF THE NODE THAT

IS SENDING BOTH THE COMPRESSED COMMON AND THE INNOVATION
COMPONENT, AND THE SECOND NUMBER IS FOR THE REST OF THE NODES.

Training
Method

Top 1
Accuracy

Compression
Ratio Information

Baseline 75.98% 1× 351TB
LGC (parameter server) 75.88% 386/2800× 0.4TB

LGC (ring-allreduce) 75.91% 202× 1.9TB
ScaleCom 75.98% 96× 3.6TB

DGC 76.01% 277× 1.2TB
Sparse GD 75.54% 277× 1.2TB

and a batch size of 256. The reported results are single-crop
performance evaluations on the ImageNet validation set.

For the experimental evaluation of our LGC framework, we
performed distributed training on eight nodes (by simulating
two nodes on each GPU). Table II depicts the classification
accuracy versus compression ratio as well as the total amount
of the gradient information (in TBs) sent from all nodes during
the whole training for the LGC framework and alternative
state-of-the-art distributed training methods, namely, DGC [20]
(our implementation), ScaleCom [25] and Sparse GD [19]
(our implementation). The results show that the proposed
framework is able to achieve 386× compression of the
gradients without loss of accuracy in the case of the parameter
server communication pattern and 202× in the case of ring-
allreduce, compared with the baseline of distributed training
with the uncompressed, non-modified gradients. Moreover, in
the case of the parameter server communication pattern our
results outperform the state-of-the-art ScaleCom and DGC
methods, where the achieved compressions are 96× and 277×,
respectively. In Table II, the reported total amount of gradient
information transferred during the entire training in the case
of the LGC, includes updates with the original and the top-k
gradients during the first two training phases, as described in

TABLE III
DURATION (IN SEC) OF ONE ITERATION OF THE DISTRIBUTED TRAINING

FOR EACH OF THE THREE PHASES OF GRADIENT UPDATES ON THE
DISTRIBUTED TRAINING OF RESNET50 ON IMAGENET WITH EIGHT NODES.

FULL UPDATE REFERS TO THE UPDATE WITH THE UNCOMPRESSED
GRADIENTS. TOP-K UPDATE REFERS TO THE UPDATE WITH THE TOP-K

VALUES OF THE GRADIENTS, AND ITERATIONS DURING WHICH THE
AUTOENCODER IS TRAINED. COMPRESSED UPDATE REFERS TO THE

UPDATES WITH THE PROPOSED AUTOENCODER.

Phase LGC
parameter server

LGC
ring-allreduce

Full update 1 sec 1 sec
Top-k update 1.6 sec 0.9 sec

Compressed update 0.6 sec 0.4 sec

Section V. The total amount of information sent is lower by
794× for the parameter server communication pattern and by
184× for the ring-allreduce compared with the baseline training.
Even though the gradient compression ratio in the ring-allreduce
pattern is lower than that in the parameter server pattern, the
gain in the speedup is much higher. For the parameter server
communication pattern, LGC achieved 1.7× speedup and for
the ring-allreduce, 2.56×. This is due to that the encoder
latency in ring-allreduce is lower than that of the parameter
server communication pattern; the encoder in the latter setting
performs a top-k selection for the construction of the innovation
gradient. Specifically, the average inference time at the encoder
is 0.007 ms and 0.01 ms for the ring-allreduce and the parameter
server pattern, respectively, and the average inference time at
the decoder is 1 ms in both patterns. Moreover in Table III we
are presenting the duration of one iteration for each type of
gradient update that we are using within a distributed training.
Particularly, the latency for the ring-allreduce pattern in the
stage of the updates with the top-k gradients and the stage of
updates with the compressed gradients is lower by 1.7× and
1.5×, respectively.

C. Cifar10 Classification

The Cifar10 [33] dataset consists of 50,000 training and
10,000 validation images (with resolution 32 × 32 pixels)
from 10 different classes. The distributed training of Resnet50
and Resnet101, on the Cifar10 dataset, is performed on 2
and 4 nodes, respectively. The training procedure and the
hyperparameter selection for the models follows that in [5].
Figure 10 depicts the evolution of the classification accuracy
with respect to the number of epochs for the ResNet50 model
trained on Cifar10 using the proposed LGC framework. We
compare the performance of LGC, under the parameter server
and ring-allreduce communication patterns, against the baseline,
DGC [20] and Sparse GD [19]. Furthermore, Table IV reports
the Resnet50 top-1 classification accuracy, the total amount
of gradient information sent from all nodes per iteration, and
the compression ratio for each framework. The results show
that our framework achieves comparable (for the ring-allreduce
communication pattern) or even higher classification accuracy
(for the parameter server communication pattern) compared to
the baseline approach while reducing by 5709× and 3193×

12

the gradient information per iteration in the parameter server
and the ring-allreduce communication patterns, respectively.

Furthermore, Table IV presents the performance of the
proposed LGC framework (in the parameter server and in
the ring-allreduce communication patterns) when training the
ResNet101 model on the Cifar10 dataset using four nodes.
Again, we compare LGC against the baseline, DGC [20]
and Sparse GD [19]. The results show that our approach
can drastically reduce the gradient rate compared to the
baseline while incurring a small loss in the model performance.
Specifically, in the parameter server setup, our approach reduces
the size of the gradient information sent at each iteration and
per node from 170MB to 0.021MB, while incurring a 0.18%
loss in accuracy compared to distributed training with the
uncompressed, non-modified gradients. It is also worth noting
that our approach reduces significantly, by almost an order of
magnitude in the parameter server communication pattern, the
gradient rate compared to the state-of-the-art DGC [20].

D. CamVid Semantic Segmentation

CamVid [51] is a semantic segmentation dataset consisting
of 32 different classes. It contains 701 images with a spatial
resolution of 720 × 960 pixels. On the CamVid dataset, we
performed training of the PSPNet 11 model on 2 nodes, with
a batch size of 12, using momentum SGD. The network
trained with random crops of size 473× 473 pixels, on which
augmentations in the form of scaling and rotation are applied.

Table IV reports the results obtained with training the PSPNet
model on two nodes to address the semantic segmentation task.
The results illustrate that our method reduces the size of the
gradient information sent from each node at each iteration by
a fraction of 450×–700×, depending on the communication
setup, without any reduction in terms of performance (i.e.,
pixel accuracy). In effect, the proposed method leads to the
same (for the parameter server setup) or even higher (for the
ring-allreduce setup) pixel accuracy compared to the baseline
method (i.e., a PSPNet model without distributed training).
Moreover, the compression ratio—and the pixel accuracy (in
case of the ring-allreduce setup)—of our LGC model is higher
than that obtained with DGC and Sparse GD. Fig. 11 depicts
the learning curves of the PSPNet for the various distributed
training methods (and the baseline). We notice that the learning
curves obtained with LGC and DGC are on par with that of the
baseline, whereas the learning curve obtained with the Sparse
GD method [19] is significantly lower.

E. Information Plane in the Large Scale Distributed Training

In order to extend the findings presented in Section III
(i.e., about the statistical dependencies among the gradient
tensors in the distributed training methodology), we conduct
two additional experiments in the more complex case that more
than two computing nodes are available. First, we analyze the
dependencies among the gradient tensors within the distributed
training context of the VGG11 model when 16 nodes are
available, and in the custom ConvNet5 model when 22 nodes
are available.

0.0 5 k 10 k 15 k 20 k 25 k
Iterations

0

2

4

6

8

10

12

14

In
fo

rm
at

io
n

(b
its

)

layer 1 MI
layer 1 entropy
layer 10 MI

layer 10 entropy
layer 15 MI
layer 15 entropy

(a)

0.0 2 k 4 k 6 k 8 k 10 k
Iterations

10.0

10.5

11.0

11.5

12.0

12.5

In
fo

rm
at

io
n

(b
its

)

layer 1 MI
layer 1 entropy
layer 3 MI
layer 3 entropy
layer 7 MI
layer 7 entropy

(b)

Fig. 12. The mutual information (solid lines) and the marginal entropy (dotted
lines) between gradient tensors of the same layer on the (a) 3rd and 11th
nodes of the VGG11 model, (b) 8th and 10th nodes of the ConvNet5 model,
through the training iterations of distributed training.

VGG11: To conduct our additional distributed training
experiment we use a modified version of the VGG16 [36]
neural network, namely VGG11, comprising 11 convolutional
layers. Each convolution is followed by a ReLU nonlinearity.
Similar to the original implementation of VGG16, we also adopt
a max-pooling operation as a method of spatial dimensionality
reduction. The distributed training was performed on 16 nodes
using the Food101 [62] dataset. Food-101 consists of 75, 750
training and 25, 250 testing images from 101 different classes.
We trained our model for 25K iterations with a cumulative
batch size of 128, learning rate of 0.001, using the SGD
optimizer. To analyze the statistical dependencies between
the gradient tensors, at each iteration of the training, we
construct pairs of gradients of different nodes and calculate
the mutual information and the entropy of each gradient
pair. Figure 12(a) illustrates the mutual information between
randomly picked pairs of gradients. As in the case of the
ResNet50 (see Section III), we observe that a large part of the
average information content (i.e., the entropy) contained in the
gradient tensor of the layer at each iteration is common for
both nodes.

ConvNet5: For our second experiment, we construct a
convolutional neural network with five convolutional layers,
namely ConvNet5. After each convolution, batch normalization

13

TABLE IV
PERFORMANCE COMPARISON OF THE LGC FRAMEWORK (FOR PARAMETERS SERVER (PS) AND RING-ALLREDUCE (RAR) COMMUNICATION PATTERNS)
WITH THE OTHER METHODS OF DISTRIBUTED TRAINING. INFO SIZE REFERS TO THE SIZE OF INFORMATION BEING SENT PER FORWARD PASS. RATIO
CORRESPONDS TO THE COMPRESSION RATIO. IN THE CASE OF PARAMETER SERVER, THE FIRST NUMBER IS INDICATING THE METRICS OF THE NODE

SENDING BOTH COMPRESSED COMMON REPRESENTATION AND INNOVATION, AND THE SECOND NUMBER IS FOR THE REST OF THE NODES. TOP1/PIXEL
ACC. REFERS TO THE TOP1 CLASSIFICATION ACCURACY AND THE PIXEL ACCURACY, CORRESPONDINGLY.

Training
Method ResNet50 on Cifar10 ResNet101 on Cifar10 PSPNet on CamVid

Top1 Info
size Ratio Top1 Info

size Ratio Pixel
Acc.

Info
size Ratio

Baseline 91.88% 102.2MB 1× 93.75% 170MB 1× 46.3% 120MB 1×
Sparse GD 91.82 0.102MB 1000× 92.75 0.17MB 1000× 41% 0.29MB 413×
DGC 93.2% 0.102MB 1000× 93.87% 0.17MB 1000× 46.5% 0.29MB 413×
LGC (RAR) 91.4% 0.032MB 3193× 93.07% 0.074MB 2297× 47.6% 0.261MB 459×
LGC (PS) 93.27 % 0.017/

0.012MB
5709/

8616×
93.57% 0.021/

0.01MB
8095/

17000×
46.3% 0.17/

0.16MB
693/ 722×

and ReLU nonlinearity are added. The model trained on the
Tiny ImageNet [63] dataset. It consists of 100, 000 training and
10, 000 validation images from 200 classes. The distributed
training is performed on 22 nodes for 14K iterations with
the cumulative batch size of 128, a learning rate of 0.001,
and the SGD optimizer. To calculate the mutual information
and the entropy, we followed the same procedure as for the
VGG11 model. Empirical results [see Fig. 12(b)] suggest that
also in this case the mutual information is high, indicating
that there is a considerable amount of information that can be
exploited among the gradient tensors. This is also the reason
that explains the benefit of our architecture compared to the
rest of the distributed training approaches.

F. Sparsification Strategy

To empirically validate the advantage of our choice of
sparsification strategy, presented in Section V, we conduct
an experimental comparison between our method and the
other methods widely used in distributed training. Specifically,
we compare three approaches: (i) the method of exponential
increase used in the DGC (e.g. exponentially increase the
gradient sparsity from a relatively small value to the final
value), (ii) the technique of applying fixed value sparsification
within the whole training (e.g. a fixed value of gradient sparsity
from the first iteration and till the last) used in [19], [22], [25],
(iii) the sparsification with the warmup used in our method (e.g.
no sparsification at the first iterations and fixed value gradient
sparsification for the rest of the iterations). The experiments
are performed on two types of neural networks: on the compact
neural network ConvNet5 (see the description in Section VI-E)
and a model with a large number of parameters, i.e, ResNet50.
The experimental results presented in the Fig. 13 illustrate
the advantage of our method. Notably, both in the case of a
fixed value and exponential sparsification, we can notice that
the loss is decreasing visibly slower, which can lead to the
poor convergence of the model. In contrast, in our case, by
performing updates with the original gradients within the first
iterations and switching to the sparse updates afterwards, we
can reach a faster decrease in the loss and better convergence.
Our extensive experimental results suggest that independent of

the model, 200 iterations for the updates with the original
gradients are enough to avoid any further mislead in the
optimization process caused by gradient sparsification.

G. Convergence of the Autoencoders

We also examined the convergence of our autoencoders
(one for the case of parameter server communication pattern
and one for the ring-allreduce) depending on the number of
distributed nodes and the primary model (i.e., the model being
trained in a distributed manner). We conduct experiments on the
VGG16 [36] model trained on the Tiny ImageNet dataset [63]
with 32 distributed nodes and on the ResNet50 [5] model on
the Cifar100 [33] dataset with 24 nodes.

The results presented in Fig. 14 illustrate the behaviour
of the reconstruction loss within the training iterations. For
the parameter server scenario, we have randomly selected the
reconstruction loss of the 5th and 32nd nodes in case of the
ResNet50 and VGG16 training correspondingly. For all cases,
we observe good convergence of the autoencoders. For the
parameter server scenario we have also examined the impact
of the similarity loss (see Section IV-A) on the reconstruction
error. The results presented in Fig. 14 suggest that the similarity
loss (i.e., λ2 = 0.5) helps to reconstruct the gradients better.

VII. CONCLUSION

In this paper, we have introduced a novel method for data-
parallel distributed training of deep neural networks. It was
shown empirically that the method is able to compress the
gradients by 99.99% on image classification tasks, without any
reduction in terms of the accuracy or rate of convergence. This
was made possible by exploring the correlations between the
gradients of different nodes within the scope of distributed
training and designing distributed autoencoders for gradient
compression. To the best of our knowledge, the compression
rate achieved on the image classification task is the highest
ever reported among the other methods on the same network
and the same dataset. Moreover, our LGC framework can
provide up to 794× reduction in the total number of bits,
being transferred within a distributed training of ResNet50 on

14

0 200 400 600 800 1000
Iterations

3.8

4.0

4.2

4.4

4.6
Lo

ss
fixed value sparsification
sparsification with warmup
exponential sparsification

(a)

0 200 400 600 800 1000
Iterations

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Lo
ss

fixed value sparsification
sparsification with warmup
exponential sparsification

(b)

Fig. 13. The loss of the (a) ConvNet5 and (b) ResNet50 within a distributed
training for the different types of sparsification strategies: (i) fixed value
sparsification refers to the case when sparse updates are applied from the first
iteration, (ii) exponential sparsification refers to the case when the percentage
of sparsification is increasing exponentially during the first iterations, (iii)
sparsification with warmup refers to the case when sparsification is being
applied only after the first iterations (e.g. no sparsification at the beginning of
the training).

ImageNet, compared with the baseline distributed training with
original uncompressed gradients.

REFERENCES

[1] D. Mahajan, R. Girshick, V. R. andK. He, M. Paluri, Y. Li, A. Bharambe,
, and L. van der Maaten, “Exploring the limits of weakly supervised
pretraining,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[2] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2019.

[3] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in Advances in Neural Information
Processing Systems (NIPS), 2012.

[4] D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-SGD:
Distributed sgd with quantization, sparsification, and local computations,”
2019. [Online]. Available: https://arxiv.org/pdf/1906.02367.pdf

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei., “ImageNet:
A large-scale hierarchical image database,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009.

(a)

(b)

Fig. 14. Reconstruction loss of the proposed autoencoders within a distributed
training of (a) VGG16 and (b) ResNet50, where λ2 is the coefficient of the
similarity loss [see (7)]. λ2 = 0 and λ2 = 0.5 refer to the cases of training
the autoencoder without and with the similarity loss.

[7] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
4820–4828.

[8] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[9] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[10] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision. Springer, 2016, pp. 525–542.

[11] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient
inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[12] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” 2017.

[13] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Advances in Neural
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc.,
2015, pp. 1135–1143. [Online]. Available: http://papers.nips.cc/paper/
5784-learning-both-weights-and-connections-for-efficient-neural-network.
pdf

[14] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

[15] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and E. Choi,
“Morphnet: Fast & simple resource-constrained structure learning of deep

15

networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 1586–1595.

[16] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for
model compression and acceleration on mobile devices,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018.

[17] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” Stat, vol. 1050, p. 9, 2015.

[18] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2006, pp. 535–541.

[19] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

[20] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

[21] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” in Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

[22] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems (NIPS), 2017, pp.
s 1707–1718.

[23] A. Abdi and F. Fekri, “Nested dithered quantization for communication
reduction in distributed training,” 2019. [Online]. Available: https:
//arxiv.org/abs/1904.01197

[24] ——, “Reducing communication overhead via CEO in distributed
training,” in IEEE International Workshop on Signal Processing Advances
in Wireless Communications (SPAWC). IEEE, 2019, pp. 1–5.

[25] C.-Y. Chen, J. Ni, S. Lu, X. Cui, P.-Y. Chen, X. Sun, N. Wang,
S. Venkataramani, V. V. Srinivasan, W. Zhang et al., “Scalecom: Scalable
sparsified gradient compression for communication-efficient distributed
training,” Advances in Neural Information Processing Systems, vol. 33,
2020.

[26] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient
distributed machine learning with the parameter server,” in Advances in
Neural Information Processing Systems (NIPS), 2014.

[27] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms for
clusters of workstations,” Journal of Parallel and Distributed Computing,
vol. 69, p. 117–124, 2009.

[28] R. Rabenseifner, “Optimization of collective reduction operations,” ICCS,
2004.

[29] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Empirical Methods in Natural Language Processing
(EMNLP), 2017.

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[31] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” in Advances in Neural
Information Processing Systems, 2018, pp. 1299–1309.

[32] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with
deep convolutional neural networks,” in Advances in Neural Information
Processing Systems (NIPS), 2012.

[33] A. S. Krizhevsky, “Learning multiple layers of features from tiny images,”
Technical Report, 2009.

[34] Google, “Federated learning: Collaborative machine learn-
ing without centralized training data,” in Google AI Blog,
2017. [Online]. Available: https://research.googleblog.com/2017/04/
federated-learning-collaborative.html

[35] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
Transactions on Neural Networks and Learning Systems, 2019.

[36] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.

[37] M. M. Amiri, D. Gunduz, S. R. Kulkarni, and H. V. Poor, “Feder-
ated learning with quantized global model updates,” arXiv preprint
arXiv:2006.10672, 2020.

[38] S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi, “Error feedback
fixes signsgd and other gradient compression schemes,” in Proceedings
of the International Conference on Machine Learning (ICML), 2019.

[39] S. Zheng, Z. Huang, and J. Kwok, “Communication-efficient distributed
blockwise momentum sgd with error-feedback,” in Advances in Neural
Information Processing Systems, 2019, pp. 11 446–11 456.

[40] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,”
in Advances in Neural Information Processing Systems, 2018, pp. 4447–
4458.

[41] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman,
J. Gonzalez, and R. Arora, “FetchSGD: Communication-efficient feder-
ated learning with sketching,” in Proceedings of the 37th International
Conference on Machine Learning, 2020, pp. 8253–8265.

[42] C. Philippenko and A. Dieuleveut, “Artemis: tight convergence guarantees
for bidirectional compression in federated learning,” arXiv preprint
arXiv:2006.14591, 2020.

[43] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,” IEEE Transactions on Information Theory, vol. 19, no. 4, pp.
471–480, 1973.

[44] A. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Transactions on Information
Theory, vol. 22, no. 1, pp. 1–10, 1976.

[45] T. Berger, Z. Zhang, and H. Viswanathan, “The ceo problem [multitermi-
nal source coding],” IEEE Transactions on Information Theory, vol. 42,
no. 3, pp. 887–902, 1996.

[46] S. S. Pradhan and K. Ramchandran, “Distributed source coding using
syndromes (DISCUS): Design and construction,” IEEE Transactions on
Information Theory, vol. 49, no. 3, pp. 626–643, 2003.

[47] E. Diao, J. Ding, and V. Tarokh, “Drasic: Distributed recurrent autoen-
coder for scalable image compression,” arXiv preprint arXiv:1903.09887,
2019.

[48] R. Zarcone, D. Paiton, A. Anderson, J. Engel, H. P. Wong, and
B. Olshausen, “Joint source-channel coding with neural networks for
analog data compression and storage,” in 2018 Data Compression
Conference. IEEE, 2018, pp. 147–156.

[49] Y. Wu, M. Rosca, and T. Lillicrap, “Deep compressed sensing,” in
International Conference on Machine Learning (ICML), 2019.

[50] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing net-
work,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[51] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes
in video: A highdefinition ground truth database,” Pattern Recognition
Letters, 2009.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into recti-
fiers:surpassing human-level performance on imagenet classification,”
in International Conference on Computational Vision (ICCV), 2015.

[53] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, 1989.

[54] P. W. Katz, “String searcher, and compressor using same,” US Patent,
no. 5051745, 1991.

[55] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[56] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in neural information processing systems, 2017, pp. 1509–
1519.

[57] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,” in
Advances in Neural Information Processing Systems, 2018, pp. 5973–
5983.

[58] D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-sgd:
Distributed sgd with quantization, sparsification and local computations,”
in Advances in Neural Information Processing Systems, 2019, pp. 14 695–
14 706.

[59] M. J. Rashti, J. Green, P. Balaji, A. Afsahi, and W. Gropp, “Multi-core
and network aware mpi topology functions,” in European MPI Users’
Group Meeting. Springer, 2011, pp. 50–60.

[60] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd:training
imagenet in 1 hour,” in arXiv:1706.02677, 2017.

[61] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
2017.

[62] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101 – mining
discriminative components with random forests,” in European Conference
on Computer Vision, 2014.

[63] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” 2015.

