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Abstract— We propose developing an integrated system to
keep autonomous unmanned aircraft safely separated and
behave as expected in conjunction with manned traffic. The
main goal is to achieve safe manned-unmanned vehicle teaming
to improve system performance, have each (robot/human)
teammate learn from each other in various aircraft oper-
ations, and reduce the manning needs of manned aircraft.
The proposed system anticipates and reacts to other aircraft
using natural language instructions and can serve as a co-
pilot or operate entirely autonomously. We point out the main
technical challenges where improvements on current state-
of-the-art are needed to enable Visual Flight Rules to fully
autonomous aerial operations, bringing insights to these critical
areas. Furthermore, we present an interactive demonstration in
a prototypical scenario with one AI pilot and one human pilot
sharing the same terminal airspace, interacting with each other
using language, and landing safely on the same runway. We also
show a demonstration of a vision-only aircraft detection system.
[Video]1

I. INTRODUCTION

Advanced Aerial Mobility (AAM) is an inclusive term that
covers urban (UAM), regional (RAM), intraregional (IAM),
and suburban air mobility (SAM) solutions [1]. All of these
proposed solutions have one thing in common: They all
envision a future where autonomous or semi-autonomous
aerial vehicles are seamlessly integrated into the current
airspace system. AAM solutions open doors to significant
socio-economic benefits while at the same time presenting
challenges in the seamless integration of these systems with
human-operated aircraft and controlling agencies.

Today, manned and unmanned vehicles are separated,
limiting the utility and flexibility of operations and reducing
efficiency. Human operated aircraft, follow one of the two
rules for operation: Visual Flight Rules (VFR) or Instrument
Flight Rules (IFR). The choice of flying under VFR or
IFR is typically a function of weather conditions. Under
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VFR, an aircraft is flown just like driving a car within
the FAA established rules of the road. IFR flying, on the
other hand, is typically associated with flying aircraft under
degraded weather conditions where separation is provided
by the ATC. While a pursuit of integrating AAM can start
either under IFR or VFR, automated-VFR operations often
have better scalability than automated-IFR operations [2].
Another option involves UTM solution [1], which in its
current iteration only focuses on small unmanned aerial
aircraft operating close to the ground (less than 700 ft) in
uncontrolled airspace.

Mastering visual flight rules (VFR) operations for au-
tonomous aircraft has significant operational advantages at
unimproved sites, as well as in achievable traffic density
compared to instrument flight rules (IFR) or completely sep-
arated operations between manned and unmanned systems.
For (semi-)autonomous aircraft to operate in tandem with
human pilots and ATC controllers under VFR, technological
advancements in certain key areas are required, specifically:

1) Unmanned aircraft should be able to guarantee self-
separation even in a tightly-spaced terminal airspace
environment;

2) Unmanned vehicles should be able to interpret high-
level instructions by ATC to meet the expectations of
a normal traffic flow;

3) Autonomous aircraft need to understand the expected
and unexpected behavior of other aircraft;

4) Communications by other pilots and ATC need to be
parsed and valid, corresponding responses should be
produced; and

5) Other aircraft need to be detected and estimated, as
well as their future trajectories, need to be predicted.

Many of these challenges have parallels in the self-
driving industry, and the technological improvements there
can be leveraged to produce domain-specific solutions for
AAM. While this is promising, VFR-like AAM integration
introduces newer challenges while pushing boundaries on the
current state of technology.

II. TECHNICAL CHALLENGES

This section brings the key areas of development where
improvements on current state-of-the-art are needed to enable
VFR-like autonomous aerial operations. Also, we bring some
solutions considering the technical challenges pointed out.
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A. Aircraft Detection and Tracking

See-and-Avoid is one of the key tenets of VFR operation.
The ability to spot other aircraft or aerial hazards like
birds, balloons, gliders, etc., and execute maneuvers so as
to mitigate a collision hazard is critical to successfully
deploying AAM solutions in the NAS. Detecting aircraft at
long ranges comes with a lot of challenges. Some of these
are outlined as follows:

• Low SnR: Aircraft or other flying objects at long ranges
appear very small and typically have very low signal-
to-noise (SnR) ratios (see Fig. 1)

• Poor performance on small objects: The state-of-
the-art in object detection keeps changing ever so fre-
quently, and the standard benchmarks such as COCO [3]
are always being beaten from time to time as more
complex models are created. However, the performance
of these detectors on small objects (< 322 px2) is pretty
poor as they have low average precision and recall. In
the context of our work, the performance is even worse
since most of our data consists of small objects.

• Computational constraints: The SOTA detectors are
typically very complex in terms of the number of
learnable parameters and they usually work on low
to moderate image resolutions. Since our context is
primarily small objects, we need to operate on high-res
2K images. Such images cannot be processed without
downsampling by modern detectors.

Fig. 1. Visualization of the detected aircraft bounding boxes from the data
onboard a general aviation aircraft. At long ranges, the SnR is really poor,
and our algorithms are trained to detect aircraft even in low SnR situations.

B. Intent Prediction

Reasoning about the potential set of future trajectories
that other aircraft can take is critical to ensure that the best
actions are taken that also minimize risk. Typical prediction
methods use short horizons and fail to capture the long-term
intent of other aircraft. The majority of trajectory prediction
work has been explored in the pedestrian and autonomous
vehicle domains. Within AAM, goal points such as airports,
pilots, ATC communications, and rules of way (such as FAR
§91.113) are often known. The use of this explicit source of
information as well as implicit sources like weather can help
decipher the intent of other aircraft and increase the length
of reliable predictions.

The lack of datasets and baseline methods makes it
difficult to conduct meaningful research. Towards this end,

we have been collecting traffic data from transponders at
select controlled and uncontrolled airports to understand and
train models for intent prediction. To capture the influence
of weather on pilot decisions, the weather data was also
collected by parsing Meteorological Aerodrome Reports
(METARs) to gather the relevant sections from the full
weather report. We recently published the first chunk of
the trajectory data TrajAir along with a baseline method
christened TrajAirNet to predict aircraft trajectories trained
on the collected data (see Fig. 2) [4].

C. Safe and Socially-Compliant Navigation

As the FAR rules only specify a rough guideline, au-
tonomous vehicles must be equipped with the capability to
make flexible decisions to comply with the traffic norm of
arbitrary situations. The idea of social navigation is to learn
to follow the observed traffic patterns in a socially-compliant
manner. Generating actions that are not only safe but also
socially compliant while following rules is thus critical in
generating behavior that is acceptable to human pilots co-
habiting the same airspace. We use variants of Monte Carlo
Tree Search algorithms that combine learned behavior with
logic specifications like Signal Temporal Logic to enable safe
and socially compliant navigation (see Fig. 3).

D. Guaranteeing safety

The safety system ensures that the future trajectory of the
aircraft is always safe and uses projected distance maximiza-
tion to ensure collision-free flight. The system performs a
minimally invasive modification to the plans made by the
planning/inference engine to ensure that these plans will not
violate safety invariants. These safety invariants are primarily
focused on avoiding collisions with other agents and risky
maneuvers. The system assumes linear velocity vectors for
other agents while interpolating for the future. The system is
also designed with runtime performance objectives in mind
and ensures safe behavior on the fly.

E. Automated speech recognition and production

It is critical to establish clear communication between a
human operator/pilot and an AI system in our target problem
domain. Specific to the aviation domain is the challenge
of understanding and decoding aviation-specific terminology
that is different from everyday speech constructions. Other
challenges such as radio background noise, incomplete in-
structions, and radio phraseology also need to be addressed.

We propose developing a bi-directional communication
mechanism for human-AI collaboration, focusing on clarity
instead of naturalness to accomplish an acceptable per-
formance level to produce a language covering the con-
trolled vocabulary used in airspace operations. We employed
learning approaches for the AI system to understand com-
plex concepts, e.g., learning from demonstrations, and, to
language understanding, developed a language generation
system, which can summarize visually perceived informa-
tion [5]. This language generation capability can also clarify
potential ambiguity when receiving commands from a human



Fig. 2. The figure [4] shows the dataset and its collection setup at the Pittsburgh-Butler Regional Airport (KBTP) — a non-towered GA airport that
serves as a primary location for the dataset. Lighter colour indicates lower altitude. a) Shown is a snippet of the processed dataset with aircraft trajectories
showing clear lobes for traffic patterns for both runways. b) The left traffic pattern and nomenclature for the runways at the airport. c) Picture of the
data-collection setup.

Fig. 3. Figure shows the proposed planning setup for a single agent. The offline policy is trained using aGenerative Adversarial Imitation Learning
algorithm that learns system behavior from the recorded trajectories from KBTP airport. Online, this behavior is executed using a Monte Carlo Tree
Search algorithm that uses multiple roll-outs to model possible future states of the human agent. The roll-outs are constrained using Signal Temporal Logic
specifications that ensure that the actions follow the rules established by the FAA.

operator/pilot. To build a language representation model
customized for aviation, we will leverage a large corpus
of aviation relevant documents such as manuals to train a
model, and, to use such unlabeled data, we employed a
transformer-based BERT [6] variant to pre-train from the
unlabeled text.

F. High-fidelity Simulators

For safety-critical domains, accurate high-fidelity simula-
tors are required to test algorithms before real-world testing.
Given the lack of simulators in the public domain, we
designed our simulator christened XPlaneROS. With X-Plane
11 as the high-fidelity flight simulator and ROSplane [7] as
the autopilot, we obtain realistic aircraft models and visuals
of similar aircraft (see Fig. 4). The X-Plane Connect Toolbox
interfaces between X-Plane and Robot Operating System
(ROS) topics. Based on the high-level commands input by
the planner, ROSPlane generates the actuator commands for

ailerons, rudder, elevator, and throttle, which are in turn
sent to X-Plane through XPlaneConnect. ROSplane uses a
cascaded control structure and has the ability to follow way-
points with Dubin’s Paths. XPlaneROS provides additional
capabilities to follow a select set of motion primitives. There
have also been some extensions to ROSplane, like employing
a proper takeoff, additional control loops for vertical velocity
rates, and a rudimentary autonomous landing sequence.

III. INTERACTIVE DEMONSTRATION SUMMARY

For the interactive demonstration, we propose a scenario
with one AI pilot and one human-pilot landing at the same
runway in a non-towered airfield with runways 08 and 26.
The goal of the AI system is to execute a low approach over
the Runway 26, use a natural language process algorithm
to understand the human intent and coordinate with the
human pilot to achieve the joint objective (see Fig. 5). The
interactive demonstration has the following stages:



Fig. 4. The figure shows the high-fidelity simulator setup that enables Human-AI interaction. Figure a) shows a top-down view with one human agent
(magenta) interacting and one AI agent (lime) while trying to land on the same runway. The most likely branch of the MCTS forward propagation tree for
both the agents is shown in cyan. White lines show the reference trajectories. Figure b) shows the physical simulator setup with an immersive environment
for the human pilot. Figure c) shows a screengrab of the visual rendering of the simulator using the X-Plane 11 flight simulator backend.

Fig. 5. Scenario depiction of the interactive demonstration.

1) The human pilot is erroneously heading to land on
runway 08 and informs their intention on a broadcast
message.

2) The AI pilot generates a safe plan by predicting the
human pilot’s intention from the language by listening
to the human pilot’s broadcast message.

3) The AI pilot correctly calculates that the preferred
runway is 26 and generates speech to broadcast its
goal of landing on runway 26 to the human pilot.

4) The human pilot decided to change to runway 26 and
inform this new intention on a new broadcast message.

5) The AI pilot generates the new plan changing to
runway 26. Once more, the AI pilot generates speech
to broadcast its new goal to the human pilot.

6) Both the AI and the human pilots, knowing the position
of each other, coordinate the landing on runway 26.

A separate demonstration of vision-only long-range air-
craft detection is also showcased using real-world data.

IV. CONCLUSIONS

We believe that the current understanding of integrating
unmanned aircraft within the National Airspace System
(NAS) needs a more human-pilot-centered approach. Pilots
and aircraft already operating in the national airspace are
essential stakeholders in the larger discourse.

Technological developments enabling close-proximity safe
and seamless operation of manned and unmanned aircraft
in a shared airspace need an understanding of the rules
and conventions already in place. The NAS is a dynamic
environment with in-built flexibility and protocols to handle
traffic volumes and emergencies. Our core understanding is
that rather than having the current NAS adapt to changing
autonomy needs, we need to move towards identifying
technological requirements that enable unmanned systems to
operate along with humans collaboratively. We hope to build
true AI pilots indistinguishable from human pilots to allow
seamless integration within the current NAS.
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