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Abstract. A direct relationship between gross ecosystem
productivity (GEP) estimated by the eddy covariance (EC)
method and Moderate Resolution Imaging Spectroradiome-
ter (MODIS) vegetation indices (VIs) has been observed in
many temperate and tropical ecosystems. However, in Aus-
tralian evergreen forests, and particularly sclerophyll and
temperate woodlands, MODIS VIs do not capture seasonal-
ity of GEP. In this study, we re-evaluate the connection be-
tween satellite and flux tower data at four contrasting Aus-
tralian ecosystems, through comparisons of GEP and four
measures of photosynthetic potential, derived via parameter-
ization of the light response curve: ecosystem light use effi-
ciency (LUE), photosynthetic capacity (Pc), GEP at satura-
tion (GEPgy), and quantum yield (o), with MODIS vegeta-
tion satellite products, including VIs, gross primary produc-
tivity (GPPyop), leaf area index (LAlvop), and fraction of
photosynthetic active radiation (fPARyop). We found that
satellite-derived biophysical products constitute a measure-
ment of ecosystem structure (e.g. leaf area index — quantity
of leaves) and function (e.g. leaf level photosynthetic assim-
ilation capacity — quality of leaves), rather than GEP. Our re-
sults show that in primarily meteorological-driven (e.g. pho-
tosynthetic active radiation, air temperature, and/or precip-

itation) and relatively aseasonal ecosystems (e.g. evergreen
wet sclerophyll forests), there were no statistically signifi-
cant relationships between GEP and satellite-derived mea-
sures of greenness. In contrast, for phenology-driven ecosys-
tems (e.g. tropical savannas), changes in the vegetation sta-
tus drove GEP, and tower-based measurements of photosyn-
thetic activity were best represented by VIs. We observed
the highest correlations between MODIS products and GEP
in locations where key meteorological variables and vege-
tation phenology were synchronous (e.g. semi-arid Acacia
woodlands) and low correlation at locations where they were
asynchronous (e.g. Mediterranean ecosystems). However, we
found a statistical significant relationship between the sea-
sonal measures of photosynthetic potential (Pc and LUE) and
VIs, where each ecosystem aligns along a continuum; we
emphasize here that knowledge of the conditions in which
flux tower measurements and VIs or other remote sensing
products converge greatly advances our understanding of the
mechanisms driving the carbon cycle (phenology and climate
drivers) and provides an ecological basis for interpretation of
satellite-derived measures of greenness.
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1 Introduction

Eddy flux towers constitute a powerful tool to measure and
study carbon, energy, and water fluxes. Even though the
number of eddy covariance (EC) sites has been steadily in-
creasing (Baldocchi, 2014; Baldocchi et al., 2001), instru-
mentation, personnel costs, and equipment maintenance limit
the establishment of new sites. This is demonstrated by the
distribution of flux towers around the world and in partic-
ular the under-representation of tropical and semi-arid lo-
cations in the Southern Hemisphere (Australia, Africa, and
South America) (http:/fluxnet.ornl.gov/maps-graphics and
Beringer et al., 2007). The first EC tower was established in
1990 at Harvard Forest (Wofsy et al., 1993) followed by five
other sites in 1993 (Baldocchi, 2003). In Australia, only two
locations, Howard Springs (AU-How; Hutley et al., 2000)
and Tumbarumba (AU-Tum; Leuning et al., 2005), have a
record that extends more than 10 years.

Many applications rely on large-scale, remotely sensed
(RS) representations of vegetation dynamics (greenness) to
(1) upscale water and carbon fluxes from the limited tower
footprint (radius < 10 km) representative of eddy covariance
measurements, (2) scale fluxes in time and extend a longer
time series from limited tower data, (3) fill gaps due to qual-
ity control in the flux measurements, (4) study continental
phenology to be validated at flux tower sites, and (5) param-
eterize land surface (LSMs) and agricultural models to be
tested at EC locations. Past studies have focused on the re-
lationship between the Moderate Resolution Imaging Spec-
troradiometer (MODIS) VIs, such as the enhanced vegetation
index (EVI), and tower-based measurements of gross ecosys-
tem productivity (GEP) (Gamon et al., 2013; Huete et al.,
2006, 2008; Maeda et al., 2014; Sims et al., 2006; Wang
et al.,, 2004). In these studies, satellite-derived vegetation
indices (VIs) represented a community property of chloro-
phyll content, leaf area index (LAI), and fractional vegetation
cover. A simple linear regression between seasonal (monthly
or 16-day) EVI and GEP has previously provided a good co-
efficient of determination (R?) for different ecosystems:

GEP = by + b; x EVI, (1

where bg and b are the fitted coefficients. Huete et al. (2006)
reported an R? of 0.5 for Eq. (1) in tropical forests and con-
verted pastures over the Amazon basin, and an R? of 0.74 in
dry to humid tropical forest sites in Southeast Asia (Huete et
al., 2008). Over the North Australian mesic and xeric tropical
savannas, R? ranged from 0.52 at a wooded grassland (Alice
Springs, AU-ASM) to 0.89 in woodlands (Howard Springs,
AU-How) (Ma et al., 2013).

Similar relationships to Eq. (1) have been explored using
monthly maximal net ecosystem exchange (NEEq,x):

NEEmax = bo + b1 x EVL 2)

This regression showed an improved fit in forests (R? = 0.83
for deciduous and R2=0.72 for coniferous forests) com-
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pared to the GEP-EVI model (R? =0.81 for deciduous and
R?% =0.69 for evergreen forests) (Olofsson et al., 2008).

Other approaches to link carbon fluxes to RS products in-
clude radiation-greenness (GR) models, where both a me-
teorological driver, represented by the photosynthetic active
radiation (PAR), and a vegetation phenology driver, repre-
sented by EVI or by the normalized difference vegetation
index (NDVI), are implicitly included in the model (Ma
et al., 2014; Peng and Gitelson, 2012). By definition, the
GEP/PAR ratio is commonly referred to as ecosystem light
use efficiency (LUE), where

LUE = by + b; x EVL 3)

However, the EVI vs. LUE relationship has shown lower R?
values (0.76) compared to the EVI vs. GEP regression (0.92)
for a group of North American ecosystems that included ev-
ergreen needleleaf and deciduous forests, grasslands, and sa-
vannas (Sims et al., 2006). Hill et al. (2006) also reported an
R? of ~0.2 for the NDVI vs. LUE relationship for the Aus-
tralian sclerophyll forest of Tumbarumba (AU-Tum); how-
ever, this result was not statistically significant (p >0.05). To
better represent GEP in rainfall-driven semi-arid ecosystems,
Sjostrom et al. (2011) increased the level of complexity of
the GR model by scaling down observations of PAR using
the evaporative fraction (EF) term from EC measurements (a
proxy for water availability); thus GEP was calculated as

GEP = EVI x PAR x EF, @)

where EF is the ratio between latent heat flux (LE) and the
surface turbulent fluxes (H 4+ LE), and H is defined as the
sensible heat flux, EF = LE/(H +LE). The model increased
the predictive power of the GR model in some ecosystems;
however, it was not applicable at regional scales due to its
reliance upon supporting tower measurements.

Temperature-greenness (GT) models use the MODIS land
surface temperature product (LST) and VIs to calculate GEP
as in Sims et al. (2008). The GT GEP model for nine North
American temperate EC sites was calculated as

GEP = EVIcaled x LSTscateq X m, ()

where m is a function of mean annual LST and plant func-
tional type (different formulation provided for evergreen and
deciduous vegetation), LSTscaleq 1S the minimum of two
equations (LST/30) and (2.5 — (0.05 x LST)), and EVIgcgleq
is EVI — 0.10. A similar GT model, used by Wu et al. (2011),
showed high correlation in deciduous forests (R? =~0.90)
and lower R? values in non-forest areas (R =0.27 to 0.91)
and evergreen forests (RZ =0.28 to 0.91).

Other more complex derivations, including the C-Fix
model (Veroustraete et al., 2002) and the MODIS gross
primary productivity product (GPPmop), rely on biome-
specific relationships that include (1) vegetation phenol-
ogy represented by MODIS-derived fraction of absorbed
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PAR that a plant canopy absorbs for photosynthesis and
growth (fPARmop); and (2) air temperature (7)), water
vapour pressure deficit (VPD), and PAR as climate drivers
(Running et al., 2000). When applied to Australian ecosys-
tems, the GPPyop (collection 4) was able to estimate the
amplitude of the GEP annual cycle in an temperate ever-
green wet sclerophyll forest (Eucalyptus-dominated); how-
ever, it was out-of-phase (Leuning et al., 2005). For a trop-
ical savanna (AU-How), GPPyop (collection 5) overesti-
mated dry-season GEP (Kanniah et al., 2009). Even though
GPPyop (collection 4.8) at AU-How accurately represented
seasonality in productivity, low estimates of PAR and other
model input variables were compensated by abnormally high
fPARMoD values (Kanniah et al., 2009) — a clear indication
of obtaining a good result for the wrong reasons.

Besides the difficulties inherent in determining GEP in di-
verse ecosystems, all of the complex models (e.g. GPPymop
and GT model) require in situ measurements of water fluxes,
PAR, and/or biome classification information to calibrate or
derive some variables, and consequently, regression coeffi-
cients do not necessarily extend to ecosystem types other
than those for which the derivation was obtained. Our first
objective was to revisit the GEP vs. EVI and GEP vs.
GPPymop regressions at different sites to gain a better un-
derstanding of ecosystem behaviour, rather than simply to
determine the “best performing model”. We look at partic-
ularly challenging land cover classes: seasonal wet—dry and
xeric tropical savannas, Mediterranean environments charac-
terized by hot and dry summers (mallee), and temperate ev-
ergreen sclerophyll forests. The selected locations are part
of the OzFlux eddy covariance network and represent sites
where previous studies have shown satellite-derived GEP
models to be unable to replicate in situ measurements.

Our second objective was to derive, using the light re-
sponse curve, different ground-based measures of vegetation
photosynthetic potential: quantum yield (o), photosynthetic
capacity (Pc), GEP at saturation light (GEPgy), and ecosys-
tem light use efficiency (LUE), in an attempt to separate the
vegetation structure and function (phenology) from the cli-
matic drivers of productivity. We explored the seasonality of
the four measures of photosynthetic potential (¢ , Pc, LUE,
GEPgy), and aimed to determine whether EVI was able to
replicate absolute value and their annual cycle rather than
photosynthetic activity (GEP), based on linear regressions.
Similarly, we included other MODIS biophysical datasets
(NDVI, LAlvop, and fPARMoEp) in our analysis in an effort
to understand how to interpret different satellite measures of
greenness and how these products can inform modellers and
ecologists about vegetation phenology. In contrast to biome-
specific classification approaches, we treated the relationship
between greenness and photosynthetic potential to be a con-
tinuum, and therefore, we explored multiple site regressions.

Our third objective was to combine satellite-derived me-
teorology (radiation, precipitation, and temperature) and bi-
ological drivers (vegetation phenology) to determine site-
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Figure 1. Location of four OzFlux eddy covariance tower sites in-
cluded in this analysis: AU-How: Howard Springs (at Aw), AU-
ASM: Alice Springs mulga (at BSh and BWh boundary), AU-Cpr:
Calperum—Chowilla (at Bwk), and AU-Tum: Tumbarumba (at Cfa
and Cfb boundary). Koppen—Geiger climate classification as pub-
lished by Kottek et al. (2006) and Rubel and Kottek (2010), where
Aw is equatorial winter dry climate, BSh is arid steppe, BWh is hot
arid desert, BWk is cold arid desert, Cfb is warm temperate fully
humid warm summer, Cfa is warm temperate fully humid hot sum-
mer, and Cwa is warm temperate winter dry hot summer. Other cli-
mate classes are equatorial fully humid (Af) and monsoonal climate
(Am), arid summer dry and cold desert (Bsk), and warm temperate
hot summer (Csa) and warm summer (Csb) steppes.

specific and multi-biome GEP values using multiple regres-
sion models. In this study, we evaluated the advantages of
introducing both types of variables; we investigated whether
the regressions hold across biomes, and whether productiv-
ity processes are driven by phenology, light, water availabil-
ity, and/or temperature; and we infer which of these variables
govern the GEP seasonal cycle for each particular ecosystem.
These results advance our understanding of driving mech-
anisms of the carbon cycle (climate, biological adaptation,
or a combination of both) and temporal and spatial scaling,
and they provide an ecological basis for the interpretation of
satellite-derived measures of greenness and phenology prod-
ucts.

2 Methods
2.1 Study sites

The OzFlux infrastructure network is operated by a collabo-
rative research group and was set up to provide the Australian
and global ecosystem modelling communities with CO, and
H,O flux and meteorological data (Beringer et al., 2016). We
selected four contrasting long-term eddy flux (EC) sites from
the OzFlux network (Fig. 1 and Table 1) for this study.

In northern Australia, the Howard Springs (AU-How) eddy
flux tower is located in the Black Jungle Conservation Re-
serve, an open woodland savanna dominated by an under-
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Table 1. OzFlux sites presented in this study — location and additional information.

1D Name Measurement period  Elevation Lat Long Vegetation Biome u*tresh  u*min u*max
Start End (ma.s.l.) () (°)  height (m) ms™)  (@ms™)  (@msh
AU_How  Howard Springs 2001 2015 64 —125 1312 15  Open woodland savanna 0.122 0.000 0.253
AU_ASM  Alice Springs mulga 2010 2013 606 —223 1332 6 Mulga 0.105 0.000 0.215
AU_Tum  Tumbarumba 2001 2014 1200 =357 1482 40  Wet sclerophyll forest 0.173 0.000 0.421
AU_Cpr Calperum—Chowilla 2010 2012 379  —-340 1406 5 Mallee 0.176 0.086 0.265

storey of annual grasses and two overstorey tree species: Eu-
calyptus miniata and Eucalyptus tentrodonata (Hutley et al.,
2011; Kanniah et al., 2011). In the middle of the continent,
among the xeric tropical savannas, the Alice Springs mulga
site (AU-ASM) is located in a semi-arid mulga woodland
dominated by Acacia aneura and different annual and peren-
nial grasses including Mitchell grass (gen. Astrebla) and
Spinifex (gen. Triodia) (Cleverly et al., 2013; Eamus et al.,
2013). Classified as a Mediterranean environment and char-
acterized by hot and dry summers, the Calperum—Chowilla
flux tower (AU-Cpr) is located at the fringes of the River
Murray floodplains, a mallee site (multi-stemmed Eucalyp-
tus socialis and E. dumosa open woodland) (Meyer et al.,
2015). The evergreen Tumbarumba (AU-Tum) site is located
in Bago State Forest, NSW, and classified as temperate ev-
ergreen wet sclerophyll (hard-indigestible leaves) forest. It is
dominated by 40 m tall Eucalyptus delegatensis trees (Leun-
ing et al., 2005; van Niel et al., 2012).

Fluxes at all towers were measured by the EC method
with an open-path system. Simultaneously, an array of dif-
ferent sensors measured meteorological data including air
temperature (7,i;), relative humidity (RH), incoming and re-
flected shortwave radiation (SWgown and SWyp), and incom-
ing and reflected longwave radiation (LW gown and LWyp).
Refer to each site reference for complete information regard-
ing ecosystem and measurement techniques.

2.2 Eddy covariance data

We used Level 3 OzFlux data that include an initial OzFlux
standard quality control (QC) (Isaac et al., 2016). All data
were subject to the same quality assurance (QA) proce-
dures and calculations, providing methodological consis-
tency among sites and reducing the uncertainty of the calcu-
lated fluxes. We performed additional quality checks and re-
moval of outliers, and data were corrected for low turbulence
periods (see Sect. 2.2.1). Ecosystem respiration (Reco) and
GEP were calculated from EC measurements of net ecosys-
tem exchange (NEE) as presented in Sect. 2.2.2. Finally, we
derived different measures of ecosystem vegetation photo-
synthetic potential (Sect. 2.2.3).
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2.2.1 Eddy covariance and meteorological
measurements

Incoming and outgoing radiation, both shortwave (SWgown
and SWyp) and longwave (LWgow, and LW ), were mea-
sured using a CNRI net radiometer instrument (Campbell
Scientific). All sensors were placed above the canopy at the
same height or higher than the EC system. As there were no
measurements of PAR radiation available at AU-ASM, AU-
Tum, and AU-Cpr, we assumed PAR =2 x SW (Papaioan-
nou et al., 1993; Szeicz, 1974), where PAR is measured as
the flux of photons (umol m~2 s_l) and SWyown as the heat
flux density (W m~2). We understood this as an approxima-
tion because PAR radiation (0.4-0.7 nm) is a spectral subset
of SWqown (0.3-3 nm).

At AU-Tum, the NEE is calculated as the sum of the tur-
bulent flux measured by eddy covariance (Fc) plus changes
in the amount of CO» in the canopy air space (storage flux,
Sco,), where NEE = Fc + Sco,. At all other sites, given the
sparse vegetation cover and the smaller control volume over
the vegetation that is lower in height (< 15 m), F¢ is assumed
to be representative of NEE.

Hourly fluxes measured during rainy periods, when the
sonic anemometer and the open-path infrared gas analyser
(IRGA) do not function correctly, were identified and re-
moved from the time series. We also removed isolated obser-
vations (between missing values). We identified any residual
spikes from the hourly NEE data using the method proposed
by Papale et al. (2006) and modified by Barr et al. (2009).
For each hour (7), the measure of change in NEE (d;) from
the previous (i — 1) and next (i 4 1) time step is calculated as

d; = (NEE; — NEE;_,) — (NEE, | — NEE,). (6)

A spike is identified if the change is outside a given range:

My — z x median |d; — M| —di >
0.6745

Mot z x median |d; — M| 7
d 0.6745 ’

where Mg is the median of the differences (d;), £0.6745 are
the quartiles for a standard normal distribution, and the con-
stant z was conservatively set to 5 (Restrepo-Coupe et al.,
2013).

www.biogeosciences.net/13/5587/2016/
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2.2.2 Ecosystem respiration (Req,) and gross ecosystem
productivity (GEP)

Night-time hourly NEE values were corrected for periods of
low turbulent mixing by removing them from the time series
data. Low turbulent missing periods were determined when
friction velocity (u4 in m s~1) was below a threshold value
(uthresh) as described in Restrepo-Coupe et al. (2013). Ta-
ble 1 presents site-specific uhresh Values and the correspond-
ing upper and lower confidence bounds.

Night-time NEE was assumed to be representative of
ecosystem respiration (Reco), and it was calculated by fitting
Reco to a second-order Fourier regression based on the day
of the year (DOY) as in Richardson and Hollinger (2005):

Reco = fo + 51 sin(Dpi) + ¢1 cos(Dpi) + s2 sin(2Dpi)
+ ¢ cos(2Dpi) + e, ®)

where fo, e, 51, 1, $2, and ¢y are the fitted coefficients and
Dpi =DOY x 360/365 in radians. This method calculates
Reco with minimal use of environmental covariates. In or-
der to determine the consistency of the Fourier regression
method and the low friction velocity (u.) filter on the mod-
elled Rec, (directly dependent on night-time NEE values), we
compared the results presented here to Rec, values based on
the intercept of the relation (rectangular hyperbola) between
NEE and SWyown (for no incoming radiation, SWgown = 0)
(Suyker and Verma, 2001) (Supplement Fig. S1).

Gross ecosystem exchange (GEE) was calculated as the
difference between NEE and Re., (GEE = NEE+R.,). We
defined gross ecosystem productivity (GEP) as negative GEE
(positive values of GEP flux indicate carbon uptake). For a
16-day moving window, we fitted two rectangular hyperbo-
las on the relationship between incoming PAR and GEP ob-
servations (separating morning and afternoon values) as in
Johnson and Goody (2011) and based on the Michaelis and
Menten formulation (1913):

GEP — o X GEPgy;; x PAR 7 ©)

GEPgy + (o x PAR)

where « is the ecosystem apparent quantum yield for CO;
uptake (the initial slope), and GEPgy is GEP at saturating
light (the asymptote of the regression) (Falge et al., 2001)
(Fig. 2). Our intention was to compare 16-day MODIS data
to observations rather than to model a complete time series.
We therefore filled infrequent GEP missing values only if
there were 30 h of measurements in a 16-day period.

We obtained similar seasonal patterns and good agree-
ment using different methods for calculating GEP and Reco
(Fig. S1). We observed no statistically significant seasonal
differences between calculating Rec, as the intercept of the
light response curve (Falge et al., 2001), and NEE not subject
tO Uythresh correction (Reco LRC), and calculating Reco using
the Fourier regression method (slope ~ 0.87 and R? =0.94
linear regression between Reco LRC and Reco). This compari-
son increased our confidence in using either method to derive
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Figure 2. Rectangular hyperbola fitted to 16 days worth of hourly
gross ecosystem productivity (GEP, umolCO, m2s 1) vs. pho-
tosynthetic active radiation (PAR, pmol m~2 s~ 1) data measured
at Howard Springs eddy covariance tower (black line). From the
rectangular hyperbola: quantum yield (@, pmolCO» pmol_l) (blue
dashed line) and GEP at saturation (GEPga¢, umolCO m—2 s_l)
(blue dotted line). Photosynthetic capacity (Pc, umolCO; m2s71)
(black dashed line) was calculated as the 16-day mean GEP at mean
annual daytime PAR (PAR) £100 pmolm_2 s~1 (grey area) and
mean annual VPD (VPD) £2 standard deviations. Light use effi-
ciency (LUE, pmolCO, pmol_l) was defined as the ratio between
daily GEP and PAR, the slope of the linear regression (blue line).

the GEP and R, fluxes from the EC data, their absolute val-
ues, and the seasonality presented here.

GEP and GPP (true photosynthesis minus photorespira-
tion; Wohlfahrt and Gu, 2015) have been used interchange-
ably in the literature. However, GPP in this study was distin-
guished from GEP; thus as GEP does not include CO» recy-
cling at leaf level (i.e. re-assimilation of dark respiration) or
below the plane of the EC system (i.e. within canopy volume)
(Stoy et al., 2006), differences may be important when com-
paring flux-tower observations of GEP to the MODIS GPP
product (see next section).

2.2.3 Four measures of ecosystem photosynthetic
potential: o, LUE, GEPgy¢, and Pc

Measures of photosynthetic potential constitute an attempt to
separate the inherent vegetation properties that contribute to
photosynthetic activity (GEP) from the effects of the meteo-
rological influences on productivity using the parameteriza-
tion of the 16-day light response equation. The variables «,
LUE, GEPq,, and Pc were intended to represent an ecosys-
tem property, a descriptor of the vegetation phenology simi-
lar to leaf area index (LAI) or above ground biomass (AGB).
We calculated 16-day mean « and GEPgy,, which are the two
coefficients that define the GEP vs. PAR rectangular hyper-
bola (Eq. 5) as a measure of the vegetation structure and
function (Fig. 2). Both « (umol CO, mmol~!) and GEPg,

Biogeosciences, 13, 5587-5608, 2016



5592 N. Restrepo-Coupe et al.: MODIS vegetation products as proxies of photosynthetic potential

(umol CO; m~2 s~ 1) values are known to vary with vegeta-
tion type, temperature, water availability, and CO, concen-
tration. The GEPg, represents the ecosystem response at sat-
urating levels of PAR, usually constrained by high vapour
pressure deficit (VPD), air temperature (7Ty;;), water avail-
ability, and foliar N, among other variables (Collatz et al.,
1991; Ehleringer et al., 1997; Tezara et al., 1999). By con-
trast, o is measured at low light levels, when diffuse radi-
ation is high (cloudy periods, sunset, and sunrise). Ecosys-
tem light use efficiency (LUE) was defined as the mean daily
GEP/PAR ratio. Therefore, LUE includes the effect of day
length, the radiation environment (diffuse vs. direct), water
availability, and other physical factors.

We used the relationships between tower-measured GEP,
PAR, and VPD to characterize the photosynthetic ca-
pacity of the ecosystem (Pc), where Pc was defined as
the average GEP for incoming radiation at light levels
that are non-saturating — values between the annual day-
time mean PAR =+ 100 umol m~2s~! (940, 1045, 788, and
843 umol m~2 s~! at AU-How, AU-ASM, AU-Tum, and AU-
Cpr, respectively), and VPD ranges between annual daytime
mean =+ 2 standard deviations (Fig. 2) (Hutyra et al., 2007;
Restrepo-Coupe et al., 2013). Pc was interpreted as a mea-
sure of the built capacity without taking into account the day-
to-day changes in available light, photoperiod, and extreme
VPD and PAR values. The derivation of Pc did not take into
account other variables such as T,;; or soil water content.

2.3 Remote sensing data

2.3.1 Moderate Resolution Imaging Spectroradiometer
(MODIS)

We retrieved MODIS reflectances, VIs, and other products
from the USGS repository covering the four eddy flux loca-
tions. Data were subject to quality assurance (QA) filtering,
and pixels sampled during cloudy conditions and pixels adja-
cent to cloudy pixels were rejected (for a complete list of QA
rules see Supplement Table S1). Other QA datasets and/or
fields related to the above products that were not included in
the original metadata were not examined as part of the qual-
ity filtering process.

At each site we extracted either a 1km window (or a
1.25km window depending on MODIS product resolution
— see Table 2) centred on the location of the flux tower. The
mean and standard deviation of all pixels were assumed to be
representative of the ecosystem. The derivative data collec-
tion included the following MODIS data (also see Table 2).

MCD43A1 The 8-day 500 m (collection 5) nadir bidirec-
tional reflectance distribution function (BRDF) adjusted
reflectance (NBAR) product was used to derive the en-
hanced vegetation index (EVIsza30) and the normalized
vegetation index (NDVIsza30) at fixed solar zenith an-
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gle of 30° (available for 2003 to 2013):

NIRszA30 — RszA30
NDVIgzaz0 = —— 20 z (10)

NIRszA30 + Rsza3o0
G x (NIRsza30 — RszA30) an
NIRsza30 + (C1 x Rsza30) — (C2 x Bszazo) + L’

EVlszaz =

where Rsza30, NIRszA30, and Bsza3g are the red, near-
infrared, and blue band BRDF-corrected reflectances,
and coefficients G =2.5, C1=6, C2=7.5,and L =1
(Huete et al., 1994). Both VIs are measures of greenness
and have been designed to monitor vegetation, in par-
ticular photosynthetic potential and phenology (Huete
et al., 1994; Running et al., 1994). However, the EVI
has been optimized to minimize the effects of soil back-
ground, and to reduce the impact of residual atmo-
spheric effects.

We labelled the NBAR VIs as EVIszazo and
NDVIsza30 to differentiate them from the MOD13 VI
product (EVI and NDVI), and emphasize that the val-
ues presented here include a BRDF correction that aims
to remove the influence of sun-sensor geometry on the
reflectance signal (Schaaf et al., 2002).

MOD15A2 The leaf area index (LAlmop), and fraction
of photosynthetically active radiation (fPARMmop) ab-
sorbed by vegetation from atmospherically corrected
surface reflectance products (Knyazikhin et al., 1999)
were recorded. Data were filtered to remove outliers
present in the fPARMmop and LAlpop time series us-
ing Eq. (3). A threshold value of 6 for the z coefficient
was calibrated to remove 8-day variations of £50 % on
fPARMOD, and £=3—4 units in LAlyop.

MOD17A2 The 8-day gross primary production (GPPyop)
and net photosynthesis (PsnNet) (collection 5.1) are cal-
culated. The GPPyjop is calculated using the formu-
lation proposed by Running et al. (2000) and relies
on satellite-derived shortwave downward solar radiation
(SWaown)s fPARMoOD, maximum light-use-efficiency
(émax) obtained from a biome-properties look-up ta-
ble, and maximum daily VPD (VPDp,x) and minimum
daily air temperature (7Tmin) from forcing meteorology:

GPPMOD = Emax X 0.45 x SWdown X fPARMOD
X f(VPDax) X £(Timin), (12)

where only the highest quality data were selected for the
analysis.

MOD11A2 Daytime land surface temperature (LSTgay) 8-
day time series was included in the analysis in order
to study the effect of Tj;;, another important ecosystem
carbon flux driver. Thus, LST or skin temperature (tem-
perature at the interface between the surface and the at-
mosphere) has been proven to be highly correlated to
Tir (Shen and Leptoukh, 2011).
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Table 2. Remote sensing data sources, cell size, sample size (eddy covariance tower site at the centre pixel), and time interval.

Product Description Data source  Cell size  Sample size Interval
LAImop Leaf area index MODI15A2 1000 m 1x1 8-day
fPARMOD Fraction of absorbed PAR MODI15A2 1000 m 1x1 8-day
LSTgay Daytime land surface temperature MODI11A2 1000 m 1x1 8-day
GPPyiop Gross primary production MOD17A2 1000 m 1x1 8-day
EVIsza3o NBAR enhanced vegetation index MCD43A1  500m 2x2 8-day
NDVIsza3o NBAR normalized difference vegetation index MCD43A1  500m 2x2 8-day
TRMM Mean monthly precipitation TRMM 0.25° 1x1 Monthly
SWCERES Shortwave radiation CERES 1° 1x1 Monthly

2.3.2 Satellite measures of precipitation (TRMM) and
incoming solar radiation (CERES)

This study incorporated monthly 0.25° resolution precipita-
tion data (1998-2013) in units of millimetres per month from
the Tropical Rainfall Measuring Mission (TRMM) data prod-
uct (3B43-v7) derived by combining TRMM satellite data,
GOES-PI satellite data, and a global network of gauge data
(Huffman et al., 2007). We used 1.0° resolution monthly sur-
face shortwave flux down (all sky) in watts per square me-
tre from the Clouds and the Earth’s Radiant Energy System
(CERES) experiment (Gesch et al., 1999). The CERES En-
ergy Balanced And Filled top of the atmosphere (EBAF)
Surface_Ed2.8 product provided fluxes at surface, consis-
tent with top of the atmosphere fluxes (CERES EBAF-TOA)
(Kato et al., 2012). No quality control was performed on the
rain (Preciprrmm) or shortwave (SWcgrgs) satellite-derived
time series. We used satellite-derived meteorological vari-
ables instead of in situ measurements as the independent vari-
able in GEP models (see Sect. 2.5); thus, our findings (e.g.
regressions) can be extrapolated to regional and continental
scales.

2.4 Mean values

All analyses were done on 16-day data; therefore, 8-day
MODIS products were resampled to the match the selected
temporal resolution. We interpolated lower frequency satel-
lite remote sensing time series (e.g. CERES and TRMM)), us-
ing a linear regression from the original dataset to 16-days,
where the original value corresponds to the centre of the
month defined as day 15, and the newly interpolated value
will be representative of the middle of the 16-day period.
Mean fluxes and variables from the eddy covariance are
reported on a 30 min or hourly basis. Daily averages were
calculated if at least 45 out of 48, or 21 out of 24 data points
were available for the day. Bi-weekly values were calculated
if at least 4 out of the 16 days were available. For analy-
sis and presentation purposes, we averaged all existing 16-
day values of EC and RS data to produce a single-year, sea-
sonal cycle. We understand measures of photosynthetic po-
tential to be dependent on the selection of the aggregation
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period. However, the 16-day interval has been shown to be
representative of important ecological processes, in particu-
lar, leaf appearance to full expansion (Jurik, 1986; Varone
and Gratani, 2009), greenup of soil biological crusts in re-
sponse to precipitation events (Cleverly et al., 2016a), and
reported ecosystem-level changes in ecosystem water use ef-
ficiency (Shi et al., 2014).

2.5 Evaluation of synchronicity between remote
sensing and flux tower data

We fitted type II (orthogonal) linear regressions that ac-
count for uncertainty in both variables (satellite and EC).
We obtained an array of very simple models of productiv-
ity and photosynthetic potential. For example, GEPrs, where
GEPRrs = bo + b1 x RS, by and by were site-specific coef-
ficients, and RS are satellite-derived products (EVI, fPAR,
etc.). We compared the different models to the observations
(GEP vs. GEPgy1, GEP vs. GEPNpyr1, etc.) using Taylor sin-
gle diagrams (Taylor, 2001), where the radial distances from
the origin are the normalized standard deviation, and the az-
imuthal position is the correlation coefficient between the
GEPRrs and GEP or any other measure of ecosystem pho-
tosynthetic potential (Fig. S2).

We determined at each site which combination of carbon
flux and MODIS index showed good agreement based on
statistical descriptors: coefficient of determination, p value,
root-mean-square error (RMSE), standard deviation (SD)
of the observation and model, and the Akaike’s infor-
mation criterion (AIC). Thus, we analysed site-specific
and cross-site multiple regression models to compare dif-
ferent biological (greenness) and environmental controls
(precipitation, temperature, and radiation) on productiv-
ity. In each ecosystem, GEP was modelled as a lin-
ear regression using a single independent variable, two
variables, and bivariate models that included an interac-
tion term. For example, (1) GEP = by + b; x EVIsza3o,
(2) GEP= b+ by x EVIsza30 + b2 x SWcgres, and (3)
GEP =bo+b1 x EVIsza30+ba x SWcEREs+h3 X EVIszazo
x SWcgrgs, Where by, by, by, and b3 were fitted coeffi-
cients by the non-linear mixed-effects estimation method.
Additional models derived from the all-site regressions were

Biogeosciences, 13, 5587-5608, 2016
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Figure 3. Savanna (AU-How), wet sclerophyll (AU-Tum), mulga (AU-ASM), and mallee (AU-Cpr) ecosystems, OzFlux sites annual cycle
(16-day composites) of (a) precipitation (Precip; mm monthfl) (grey bars) and photosynthetic active radiation (PAR; pmol m—2 dfl) (blue
line), and (b) vapour pressure deficit (VPD; kPa) (black line) and air temperature (7,;; °C) (blue line). Grey boxes indicate Southern

Hemisphere spring and summer September to March.

compared to the site-specific results. We inferred ecosystem
adaptation responses to climate (e.g. light harvest adaptation,
water limitation, among other phenological responses) from
the bivariate models. This analysis is useful for the inter-
pretation of satellite-derived phenology metrics and under-
standing the biophysical significance of different measures
of greenness when incorporated into land surface models as
representative of vegetation status (Case et al., 2014).

3 Results
3.1 Seasonality of in situ measurements

In this section we describe the seasonality of in situ meteo-
rological measurements to better understand ecosystem car-
bon fluxes, and to contextualize the differences in vegetation
responses to climate. In particular, we contrast seasonal pat-
terns of air temperature (7,i;), precipitation, and VPD across
sites, and compare observations of the annual cycle of pho-
tosynthetic activity (productivity) and potential (biophysical
drivers of productivity) for each ecosystem.

With the exception of AU-How, all sites showed strong
seasonality in Ty (Fig. 3). However, the timing of mean daily
T,ir minimum and maximum, and the amplitude of the annual
values, varied according to site. The smallest range in Ty
(5 °C) occurred at the northern tropical savanna (AU-How),
and the largest amplitude (15 °C) occurred at the southern
temperate locations (AU-Cpr and AU-Tum). The annual cy-
cle of VPD followed Ty at all locations except AU-How
where summer and autumn rains (February—March) led to
a increase in atmospheric water content (Fig. 3). Precipi-
tation at AU-How was higher and more seasonal than at
any other site, with a mean monthly rainfall of 152mm
(1824 mm yr~!) and ranging from 1 to 396 mm month~!. In-
coming radiation at the tropical savanna site (AU-How) did
not show clear seasonality (Fig. 3). In this tropical savanna
(latitude 12.49° S) the summer solstice, where top of the at-
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mosphere (TOA) radiation is highest, coincides with mon-
soonal cloudiness, resulting in reduced surface radiation. By
contrast, at temperate sites like AU-Cpr and AU-Tum, the
difference in mean daily PAR between summer and winter
was ~ 460 umol m—2 s~!. Rainfall was aseasonal at AU-Tum
(~78 mmmonth~!) and was very low at the semi-arid sites
of AU-Cpr and AU-ASM, with mean precipitation values of
34 and 37 mm month ™! respectively.

Productivity in the four ecosystems ranged from a high at
AU-How and AU-Tum (Fig. 4) (peak 16-day multi-year av-
erage GEP of 8.4 and 7.7 gCm~2d~! respectively) to a low
at AU-Cpr and AU-ASM (peak 16-day annual average GEP
average of 2.4 and 3.4gCm~2d~! respectively) (Fig. 4).
There was a clear seasonal cycle in photosynthetic activ-
ity with maxima in the summer at AU-How and AU-Tum
(November—March) and in the autumn (March—April) at AU-
ASM and AU-Cpr. The peaks were broader at AU-Tum than
at AU-How and at AU-ASM (Fig. 4). An additional short-
lived increase in GEP was apparent at AU-ASM in the spring
(October) before the summer wet period (Fig. 4a). Figures S3
and S4 show the diel cycles of VPD, GEP, and other mete-
orological and flux variables in example summer (January)
and winter months (July).

Vegetation phenology, as indicated by the seasonal cycle
of photosynthetic potential (Pc, LUE, «, and GEPgy), di-
verged from photosynthetic activity (GEP) at the southern
locations of AU-Tum and AU-Cpr as shown by the differ-
ences in the timing of maximum and minimum GEP com-
pared to vegetation phenology (Figs. 4 and S5). At the trop-
ical savanna site (AU-How), ecosystem quantum yield (o)
increased gradually in the spring (September), reaching a
maximum during the summer month of January in synchrony
with GEP. In the sclerophyll forest (AU-Tum), o remained at
a constant value of ~ 1.4 gCMJ~! until the middle of the au-
tumn (April-May) when it reached a value of 1.76 gC MJ~!.
Maximum GEPg, occurred during the summer at this site
(~36gCm~2d™"), and gradually decreased by the start of
the autumn with a winter minimum (20 gCm~=2d~!). At AU-
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Figure 4. Savanna (AU-How), wet sclerophyll (AU-Tum), mulga (AU-ASM), and mallee (AU-Cpr) ecosystems, OzFlux sites annual cycle
(16-day composites) of eddy-flux-derived (a) gross ecosystem productivity (GEP; gC m~2d~!) (black line) and MODIS gross primary
productivity (GPPypop) product (light blue line); (b) GEP at saturation light (GEPgat; gC m~2d~1) (black line) and ecosystem quantum
yield (o; gCMJ ) (light blue line); (¢) photosynthetic capacity (Pc; gC m~2 d_l) (black line) and the ratio of GEP over PAR (black line),
the light use efficiency (LUE; gCMJ ) (light blue line). At the bottom two panels, satellite-derived data of (d) MODIS enhanced vegetation
index at fixed solar zenith angle of 30° (EVIgza30) (black line) and the normalized difference vegetation index (NDVIgza30) (light blue
line); () MODIS leaf area index (LAIpop) (black line) and MODIS fraction of the absorbed photosynthetic active radiation (fPARyop)
(light blue line). Grey boxes indicate Southern Hemisphere spring and summer September to March. The black dashed vertical line indicates

the timing of maximum GEP.

Tum, the GEPg, and o were out-of-phase (Fig. 4) and al-
though seasonality was limited in GEPg, and «, neither of
them matched seasonal fluctuations in VPD (cf. Figs. 3 and
4). Similar to GEPgy, LUE decreased during the summer
months and experienced a winter maximum opposite to the
annual cycle of GEP. Given the high degree of seasonality of
GEP at AU-Tum, it is interesting that the photosynthetic po-
tential was comparatively less seasonal and asynchronous to
productivity. Figure S5 shows the relationships between the
different measures of ecosystem performance, indicating that
they are not always linear.

3.2 Seasonality of satellite products

In the tropical savanna (AU-How) the annual cycles of RS
products synchronously reached an early summer maximum
in January, and high values extended throughout the autumn
(Fig. 4d and e). By contrast at AU-Cpr, both NDVIgza30 and
EVIsza30 peaked in autumn—winter, coinciding with the low-
est GEP values (Fig. 4p and s). EVIgza30 and NDVIgza30 at
AU-ASM captured the autumn peak in GEP with a maximum
in March; however, a spring VI minimum (November) was
not observable in GEP. At the two semi-arid sites (AU-ASM
and AU-Cpr), fPARpMop was relatively aseasonal, and the
amplitude of the annual cycle was ~ 0.09, with a 0.25-0.34
range at AU-Cpr and lower values between 0.17 and 0.26
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at AU-ASM (Fig. 40). LAImop at AU-Cpr reached a maxi-
mum of 0.50 during the autumn (March) and a spring mini-
mum (September) of 0.39. At AU-ASM, the LAInop prod-
uct ranged from 0.17 (December) to 0.27 (April) (Fig. 4t).
Most RS products (e.g. EVIszazo and LAlyop) showed no
clear seasonality at AU-Tum (Fig. 5i and j).

fPARMmop vs. NDVIsza3o were highly correlated at all
sites (R2 >0.7, p<0.01), with the exception of the sclero-
phyll forest (AU-Tum) where NDVIgz30 remained constant
in the 0.68-0.83 range (R2=0.01) (Fig. S6). At the scle-
rophyll forest site (AU-Tum), the NDVIgza3¢ reached val-
ues close to saturation. Similar to fPARyop vs. NDVIsza3o,
EVIsza30 vs. NDVIgza30 was highly correlated (R? =0.96,
all-site regression). However, the timing of minimum and
maximum between NDVIgza3p and EVIsza3g differed at
AU-Cpr and AU-How (Figs. 4 and 5d and s).

3.3 Relationship between MODIS EVI and GPP and in
situ measures of ecosystem photosynthetic activity
(GEP)

In this study we used a simple linear model to predict GEP
from EVIsza30 and GPPyop. We observed three patterns.
First, in the tropical savanna site (AU-How) there was a
highly significant correlation between photosynthetic activ-
ity and EVIsza30, where EVIgza3p explained 82 % of GEP

Biogeosciences, 13, 5587-5608, 2016
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Figure 5. Top row: linear regression between 16- and 8-day time series of measured gross ecosystem productivity (GEP; gC m~2d 1)
(top row) and the MODIS fixed solar zenith angle of 30° enhanced vegetation index (EVIgza30) at (a) Howard Springs (AU-How) open
woodland savanna, (b) Alice Springs mulga (AU-ASM), (¢) Tumbarumba (AU-Tum) wet sclerophyll forest eddy, and (d) Chowilla mallee
(AU-Cpr) covariance site. Lower row: regression between GEP and MODIS gross primary productivity (GPPyop) (e) AU-How, (f) AU-Tum,

(g) AU-ASM, and (h) AU-Cpr.

(Fig. 5a). Similarly at AU-ASM, productivity was statisti-
cally related to EVIsza3o (R? =0.86, p <0.01). However,
GPPyop only explained 49 % of GEP at AU-How and 48 %
at AU-ASM (Fig. 5e and g).

A second pattern was observed in the sclerophyll forest
site (AU-Tum), where the relationship between GEP and
EVIsza30 was not statistically significant (R?<0.01 and
p =0.93, Fig. 5b). At AU-Tum there was a clear seasonal
cycle in GEP (low in winter and high during the summer)
that was not captured by the small amplitude of the satellite-
derived data (Fig. 3). Of the four ecosystems examined,
AU-Tum was the only site where GPPyop showed an im-
provement (higher predictive value of GEP) compared to
EVIsza30. However, as reported in previous works (Leun-
ing et al., 2005), the GPPymop product was unable to capture
the seasonality of the sclerophyll forest as it underestimated
the observed summer peak in GEP which corresponded to a
second minimum in GPPyop.

Finally, at the semi-arid site (AU-Cpr), we observed R?
values significantly different from 0 but a small R? value
of 0.34 and 0.24 (p <0.01) for GEP vs. EVIsza30 and GEP
vs. GPPyvop, respectively. This demonstrated the low predic-
tive power of both satellite products to determine seasonal
GEP values in this Mediterranean ecosystem. In particular
the GEPgy; and GPPyop models tended to underestimate
productivity at low levels (Fig. 5d and h).

The relationship between productivity and EVIsza30 was
complex across the different Australian ecosystems (Fig. 5).
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The semi-arid site of AU-Cpr and the sclerophyll forest of
AU-Tum are particularly interesting because of the inabil-
ity of EVIgza3g to seasonally replicate GEP (Fig. 5). An
additional analysis that considers the amplitude and phase
of the annual cycle (based on all available 16-day observa-
tions) was conducted using Taylor plots (Fig. S7). This anal-
ysis showed that EVIgza30 was in-phase and able to predict
the range of productivity values at AU-How and AU-ASM,
while at the AU-Cpr site the EVIsza30 captured the ampli-
tude of seasonal GEP; however, the linear model was out-of-
phase. At AU-Tum, the EVIgza30-based model consistently
preceded in situ observations (asynchronous) and exagger-
ated GEP seasonality (ratio between the standard deviation
of the model and observations was 4.98).

3.4 Relationship between EVIgza 3 and measures of
photosynthetic potential (¢, LUE, GEPg,¢, and Pc)

In this section we reconsider our understanding of EVIgza3o
by relating it to different measures of photosynthetic poten-
tial (o, LUE, GEPgy, and Pc) across the four sites (Fig. 6).
Similar to Sect. 3.3, we used a very simple linear model in
which EVIgza30 was expected to predict «, LUE, GEPgy,
and Pc. In the regression models for photosynthetic potential
the R? values were similar to the GEP models for AU-How
and AU-ASM (cf. Fig. 6¢ and g). However, EVIgza30 vs. «
at AU-How R? was relatively low (R?<0.4, p<0.01). At the
AU-Cpr site, the EVIsza30-based model was able to improve
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Figure 6. Relationships between 16-day mean values of (a) light use efficiency (LUE; gCMJ_l), (b) photosynthetic capacity (Pc;
gC m~2 dfl), (c) ecosystem quantum yield («; gCMJ 71), and (d) GEP at saturation light (GEPgy; gC m—2 dfl), and MODIS fixed solar
zenith angle of 30° enhanced vegetation index (EVIgza30). Four key Australian ecosystem sites, from left to right (columns): AU-How
savanna, AU-ASM mulga, wet sclerophyll forest of AU-Tum, and AU-Cpr mallee.

the timing and amplitude of the annual cycle when used to
calculate LUE, Pc, and GEPgy instead of GEP (Fig. 6 and
S7).

At the sclerophyll forest site (AU-Tum) the EVIgza39 was
able to predict vegetation phenology rather than productiv-
ity. For example we observed that Pc (but not «) was sig-
nificantly related to EVIgzaso (R?> =0.16, p<0.01; Fig. 6
and Table S4). Even though the regressions between LUE,
GEPg,, and Pc against EVIgza3p showed higher correlation
(R%* ~0.13, p<0.01) than the GEP vs. EVIgza3( relation-
ship (R? =0.04, p =0.25) at AU-Tum, R? values were still
low. The low R? can be explained by the small dynamic
range of both seasonal measures of photosynthetic potential
and EVIgza3o (cf. Figs. 4 and 6).

3.5 Satellite products compared to flux-tower-based
measures of ecosystem potential

In this section we explore other MODIS products (LAlvop,
fPARMoD, and NDVIgza30) to determine whether the pre-
dictive power of EVIgza30 as a measure of photosynthetic
potential (e.g. Pc) can be generalized across other satellite-
derived biophysical parameters. We aimed to determine, for
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each location, which of the MODIS products capture the sea-
sonality and phenology of vegetation, thereby gaining some
insight into the significance of the different VIs and other
satellite-derived ecosystem drivers. At AU-How and AU-
ASM the MODIS LAImop, fPARMoD, and VIs showed a
larger or similar correlations to LUE and Pc in comparison
to GEP (Table S4, Fig. 7a and b and i and j, respectively).
At AU-How, AU-ASM, and AU-Cpr, based on our analy-
sis using Taylor plots, most RS products were in-phase with
the various measures’ phenology (R*>0.8 and low RMSE)
(Figs. 7, S2 and Table 4). However, there was a tendency for
most RS indices to underestimate the seasonality of the LUE
annual cycle at all sites (i.e., standard deviation was smaller
for LUERg than the observed, Fig. 7). With the exception of
AU-Tum, all products were able to capture seasonal changes
in Pc (Figs. 6 and 7).

Similar to EVIgza30, most of the MODIS indices, and in
particular fPARymop and LAIvop, showed strong linear rela-
tionships with LUE and Pc at the Mediterranean ecosystem
AU-Cpr, where the introduction of phenology represented an
important improvement over the RS-derived models (Figs. 6
and 7). Similarly, comparable to EVIsza30, other MODIS
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Figure 7. Taylor diagrams showing model results for Howard Springs (AU-How), Tumbarumba (AU-Tum), Alice Springs (AU-ASM), and
Calperum—Chowilla (AU-Cpr) based on site-specific and all-sites linear regressions between gross ecosystem productivity (GEP), light use
efficiency (LUE), photosynthetic capacity (Pc), and ecosystem quantum yield («) and different remote sensing products MODIS fixed solar
zenith angle of 30° enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI), gross primary productivity product
(GPP), daytime land surface temperature (LST), leaf area index (LAI), and fraction of the absorbed photosynthetic active radiation (fPAR).
All-site relationships are labelled with an asterisk (e.g. EVI*). EVI and NDVI labels are used instead of EVIgza30 and NDVIgza3g for

displaying purposes. Missing sites indicate that the model overestimates the seasonality of observations — the model normalized standard
deviation is > 2.

products were unable to replicate GEP at AU-Tum (Fig. 7). 3.6 Multi-biome-derived linear relationships between
However, the small amplitude of seasonality in LUE and VIs and photosynthetic potential (phenology) and
Pc were well characterized by LUERg and Pcrg, including activity (productivity)

a winter maximum similar to that in LUE (Fig. 4), despite

underestimating the annual seasonal cycle in the sclerophyll Our objective was to investigate whether one relation fits all

forest (Figs. 4 and 7e-h). flux sites, and which RS products and equations would en-

able us to extend our analysis from these four key Australian
ecosystems to a continental scale. The all-site relationship
for MODIS EVISZA30, NDVISZA3(), LAIMOD, and fPARMOD
products (in that order) shows the best agreement (phase and
amplitude) to seasonality of LUE and Pc (Fig. 7). Correla-
tions increased for relationships built using data for all the

Biogeosciences, 13, 5587-5608, 2016 www.biogeosciences.net/13/5587/2016/



N. Restrepo-Coupe et al.: MODIS vegetation products as proxies of photosynthetic potential

ecosystems instead of the site-specific equations, with the ex-
ception of the AU-ASM site (Table 3 and Figs. 7 and 8).

Improvements in how satellite products can model biolog-
ical drivers (photosynthetic potential) instead of productiv-
ity per se, are clearly seen at the evergreen temperate for-
est of AU-Tum. At AU-Tum the relationship between GEP
and any of the satellite products was not statistically signif-
icant (R2<0.1), with the exception of LSTgay (Figs. 5 and
7). However, skin temperature (LSTgay) is a meteorological
driver rather than a direct measure of productivity, and the
low all-site LSTg,y vs. GEP correlation was an indication of
this (R? =0.66, p =0.03; Fig. 8).

The wet sclerophyll forest introduced the greatest uncer-
tainties to the linear models across all sites (Fig. 8). For
example, regressions involving EVIgza3p were exponential;
therefore, significantly increasing GEP and LUE translated
into slightly higher EVIgza30 values, a behaviour mostly
driven by the observations at AU-Tum. In particular, the
relationships between LUE and fPARyop and LUE and
NDVIsza30 at AU-Tum were problematic as fPARyop and
NDVIsza30 appeared to “saturate” at 0.9 and 0.8, respec-
tively (Fig. 8).

EVIsza30 explained 81 % of Pc seasonality based on an
all-site regression (Table S4). Similarly, NDVIgza30 showed
a high coefficient of determination (0.70 for GEPnpvr, 0.75
for LUENDvI, and 0.79 for Penpyr) (Table S4). The null hy-
pothesis of no correlation was rejected (p <0.01) for all re-
gressions between MODIS VIs, LAlyop, and fPARMoD Vs.
photosynthetic potential (phenology) and activity (productiv-
ity) (Table S4). However, statistical significance of GEP vs.
GEPRrs was driven by the AU-ASM and AU-How ecosys-
tems.

Multiple linear regression models used to predict GEP
by combining satellite-derived meteorology and biologic pa-
rameters (Table 3) showed large correlations when both
drivers were introduced (weather and vegetation phenology),
with the exception of the AU-Tum site where SWcERES
and LSTq,y explained 60 and 58 % of GEP, respectively,
and the AU-ASM and AU-How sites where EVIgza30 and
NDVIsza30 explained ~ 84 and ~ 80 % of the variations
in GEP, respectively. In particular, at the AU-How site, no
significant improvement to the GEP model was obtained
when combining MODIS VIs with any meteorological vari-
able (R? remains similarly high: R? ~0.82). By contrast,
at the AU-ASM site, EVIgza30, satellite-derived incoming
shortwave (SWcgrgs), and the interaction of both signifi-
cantly increased model correlation with an R? of 0.88 and
a lower AIC (Akaike’s information criterion as a measure of
model quality) when compared to models relying only on
EVIszazo (RZ =0.85, AIC =64) or SWcgres (R2 =0.02,
AIC=209) (Table 3). Similar results were obtained for
those regressions driven by EVIsza3o and precipitation at
this rainfall-pulse-driven site (R2 =0.88, AIC=42). At the
AU-Cpr site, temperature-greenness models were highly
correlated to GEP (R2>O.64); however, the best results
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(higher R? and lower AIC) were obtained for radiation-
greenness models, explaining 71 % (EVIsza30— SWCERES
and NDVIsza30— SWcergs) of GEP. For a complete version
of Table 3 that includes all available variable combinations,
see Table S3.

4 Discussion

4.1 Derivation of measures of photosynthetic potential
at tropical savannas, sclerophyll forests, and
semi-arid ecosystems

In this study we were able to separate the biological (vege-
tation phenological signal) from the climatic drivers of pro-
ductivity using eddy covariance carbon exchange data. Us-
ing the parameterization of the light response curve, we de-
rived different measures of vegetation photosynthetic po-
tential (o, LUE, GEPgy, and Pc) (Balzarolo et al., 2015;
Wohlfahrt et al., 2010). At seasonal timescales (e.g. 16-days,
monthly), our analysis looks at the biotic drivers of produc-
tivity; whereas at shorter timescales (e.g. hourly, daily), pho-
tosynthetic potential can be limited or enhanced by meteo-
rological controls, thus linked to resource scarcity (i.e. high
VPD or water constraints), or availability (e.g. increase radia-
tion or access to soil water), and correspondent ecosystem re-
sponses (e.g. stomatal closure, CO, fertilization) will deter-
mine GEP (Ainsworth and Long, 2005; Doughty et al., 2014;
Fatichi et al., 2014). The variables «, LUE, GEPgy, and Pc
have different biophysical meanings; therefore, we were able
to establish physiological explanations for describing why
and which RS products and environmental variables relate
to them in each ecosystem. For example, GEPg, measured at
high levels of PAR is prone to be influenced by various en-
vironmental factors (VPD, Ty, and soil water availability),
and therefore may be a good indicator of canopy stress.

As observed at AU-How, GEPg, was highly and nega-
tively correlated to periods of low precipitation and nega-
tively correlated with VPD (Table S4). Seasonal values of
GEPg, at the semi-arid sites (AU-Cpr and AU-ASM) did
not show a direct relationship with VPD or precipitation.
This does not mean that there is no effect of atmospheric
demand or soil moisture content on carbon fluxes at shorter
timescales (hourly or daily) (Cleverly et al., 2016b; Eamus
et al., 2013). Compared to GEPg,, we expected « to be less
dependent on VPD and to better reflect vegetation phenol-
ogy, as « represents the canopy photosynthetic response at
low levels of PAR characteristic of cloud cover (diffuse light)
during early morning or late afternoon periods (Kanniah et
al., 2012, 2013). However, among all measures of phenology,
o showed one of the lowest site-specific correlations when
compared to any of the RS products presented in this study.
Our results show that LUE and Pc showed the best correla-
tions to VIs; this is confirmation that this research deals less
with the instantaneous responses (GEPg,; and «) and rather
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Table 3. Linear regressions obtained by a non-linear mixed-effects regression model for gross ecosystem productivity (GEP, gC m~2d~!) vs. combinations of 16-day average MODIS
products: fixed solar zenith angle of 30° enhanced vegetation index (EVIsza3p), daytime and land surface temperature (LSTgay, °C), fixed solar zenith angle of 30° normalized
difference vegetation index (NDVIgza3(), precipitation from the Tropical Rainfall Measuring Mission (PrecipTryvy, mm month~!) data product from 1998 to 2013 (NASA, 2014b),
and surface shortwave incident radiation from the Clouds and the Earth’s Radiant Energy System (SWCERES, Wm~2) data product from 2000 to 2013 (NASA, 2014a). Model runs
for AU-How: Howard Springs, AU-ASM: Alice Springs mulga, AU-Cpr: Calperum—Chowilla, and AU-Tum: Tumbarumba, and all available data (data include all sites). Bold fonts
highlight values mentioned in the text.

Regression model AU_How AU_ASM AU_Tum

Coeff [a, b, ¢, d] cI RZ  AIC | Coeff[a, b, c,d] cI R?  AIC | Coeff[a, b, c,d] cI Rz AIC
GEP=a EVI+b [21.94, —2.65] [0.96, 0.28] 0.82 263 | [26.01, —2.48] [1.69, 0.2] 64 15.52,0.90] [5.55,2.01] 0.03 740
GEP =a NDVI [15.03, —4. 70, 0.35] 0.78 275 [14.34, —3.10] 80 9.05, —7.28] [5.23,3.79] 0.07 733
GEP=a LSTyyy +b [—0.22,70.91] 2,7.70] 028 676 | [—0.02,7.59] 218 | [0.26, —68.09] [0.015, 4.45] 0.58 656
GEP =a Preciprrmm + b [0.01, 3.03] [0.001, 0.11] 0.53 627 | [0.01,0.38] 182 | [-0.017,7.54] [0.005, 0.31] 0.03 799
GEP =a SWCEREs +/ [-0.012, 7.30] 006, 1.48] 0.02 781 [0.005, —0.30] [0.002, 0.59] 209 [0.026, 1.025] [0.001, 0.26] 0.60 635
GEP=a EVI+b LSTqay + ¢ LSTqay EVI+d [—29.96, 127.38, 0.09, —0.34] 8.42, 66.60, 0.06,0.22] 0.82 268 [—11.51,76.94,0.03, —0.16]  [7.81, 67.35,0.03, 0.22] 66 [—2.64, 1.38, 0.08] 21, 10.71, 0.04] 0.64 583
GEP =a EVI+b SWcEgRrgs+ ¢ SWcEres EVI+d [—3.57, 24.15, 0.003, —0.004] .45,11.26,0.01,0.05]  0.82 266 | [2.48, —21.70 —0.02, 0.19] [0.99, 8.68, 0.004, 0.03] 54 [7.75, —19.41, —0.05, 0.21] [3.25,8.84,0.017,0.05]  0.70 553
GEP =a SWcgres+ b SWcERrgs EVI+¢ [3.63, —0.03, 0.097] 3,0.003, 0.004] 0.82 263 | [—0.008, —0.01, 0. [0.18, 0.001, 0.006] 56 [0.69, —0.014, 0.12] [0.29, 0.006, 0.016] 0.69 554
GEP =a EVI+ b PreciprrmmM + ¢ Preciprrvm EVI+d - [—2.13,18.93, 0.01, —0.02] .34, 1.28,0.004,0.01]  0.84 253 | [—1.32,15.09, —0.019,0.18]  [0.25, 2.19, 0.005, 0.04] 42 [1.63, 15.31, 0.002, —0.04] [3.78,10.29 6] 004 732
GEP =a NDVI+b _Lw.—,,_mw+ c rm.ﬁ_ﬁ\ EVI+d [—57.78, 118, 0.17, —0.33] [23.79, 48.54,0.08,0.16]  0.79 279 [—24.42,79.28,0.07, —0.21]  [9.19, 36, 0.03, 0.12] 75 [231, —416.25, —0.83, 1.51] [105.9, 145.1,0.37,0.50] 0.68 566
GEP =a NDVI + b SWcEREs + ¢ SWegres NDVI+d - [—9.6, 23.6, 0.02, —0.03] 76, 9.06, 0.02, 0.04] 079 277 [1.38 ,0.006, 0.02] 62 | [13.58, —17.68, —0.12,0.198] [6.53,8.95,0.032,0.04] 071 542
GEP =a SWcEgRgs + b SWcErRgs NDVI+¢ [2.63, —0.0. )7] 79, 0.004, 0.003] 0.78 277 [0.19, 0.001, 0.004] 64 [0.72, —0.056, 0.11] [0.29, 0.01, 0.014] 071 542
Regression model AU_Cpr All

Coeff [a, b, ¢, d] CI R? AIC | Coeff [a, b, c,d] C1 AIC
GEP=a EVI+b [12.74, —0.71] [2.05, 0.38] 0.36 49 [22.47, —2.19] [0.51, 0.1] 1323
GEP =a NDVI 97, 0.24] 29, 0.46] 0.09 70 [12.62, —2.74] [0.27, 0.12] 1276
GEP =a LSTgyay + b 7,-3.27] 06, 1.74] 0.12 69 [—0.095, 32.57] 2279
GEP =a Preciprrmm + b [0.0006, 1.66] 003, 0.097] 0.02 73 [0.009, 3.60] 2340
GEP =a SWCEREs +/ [0.003, 1.14] 0008, 0.14] 0.12 67 [0.007, 2.81] E.oo_o 2329
GEP=a EVI+b LSTqay + ¢ LSTgay EVI+d [22.6, —145.8, —0.08, 0.53] .4, 51.44, 0.03, 0.17] 0.63 30 [-5.60, 17.51, 2] [2.98, 13. xq 0.01 1322
GEP =a EVI+b SWcgRrgs+ ¢ SWcEres EVI+d [1.87, —4.52, —0.01, 0.095] .83, 4.41, 0.005, 0.025]  0.62 26 [-0.31, 4.95, —0.009, 0.079]  [0.35, 1.45, 0.001, 0.007] 1154
GEP =a SWcgres+ b SWcERrgs EVI+¢ [1.023, —0.01, 0.07] .097, 0.001, 0.008] 0.62 23 [0.92, —0.014, 0.1] [0.13,0.001, 0.002] 1179
GEP =a EVI+ b Preciprrmm + ¢ Preciprrmm EVI+d - [0.21, 6.96, —0.03, 0.2] 69, 3.57, 0.015, 0.08] 052 43 [—2.35,22.48,0.008, —0.02]  [0.14, 0.64, 0.003, 0.009] 1312
GEP =a NDVI +b LSTgyy+ ¢ LSTgay EVI+d [34.5, —119.1, —0.12, 0.43] [10.8, 29.76, 0.036,0.1]  0.60 34 [0.43, —27.31, —0.01,0.14]  [3.17,7.05, 0.01, 0.024] 1226
GEP=a NDVI+b SWcERgs + ¢ SWegrgs NDVI+d - [2.74, —5.59, —0.02, 0.07] .88, 2.32, 0.005, 0.014]  0.60 30 [-0.75, 2.8, —0.01, 0.05] [0.37, 0.75, 0.001, 0.003] 1013
GEP =a SWcEgRgs +» SWcErRgs NDVI+¢ ,0.04] 12, 0.002, 0.005] 0.57 30 [0.64, —0.016, 0.058] 1052

.net/13/5587/2016/

10geosciences

.

www.b!

13, 5587-5608, 2016

10geosciences,

B



N. Restrepo-Coupe et al.:

MODIS vegetation products as proxies of photosynthetic potential

5601

30 —————— —
— Pc=64EVI_,,  -8.5 Pc=35NDVI_, -9.5 Pc=2.8GPP, -0.69
. R?*=0.81 R?=0.8 R?=0.52
© RMSE=2.7 3+ * RMSE=2.8
o 20
S
% 10 f
N R ry
(&)
o 0 (a) it .
0 0.2 04 0.6 0.1 0.4 0.7 1 0 4 8 12
EVI NDVI GPP.__(gC m?d%)
SZA30 SZA30 MOD
30
fem) Pc=3:8LAl _ +0.75 @ Savanna
Lo) R?=0.65 Mulga
~ RMSE=3.9% * * Schlerophyll LI 4
b 304 allee T
S PC=261PAR, . 5.+
2.
O R?=0.74 ¢ 9
=) RMSE=3.2%, o P
N . L)
3) : *
o | e
e
0 3 6 9 0.1 0.4 0.7 1
LAL, o fPARMOD

Figure 8. Relationships between 16-day mean values of photosynthetic capacity (Pc; gC m~2d~") and different RS products: (a) MODIS
fixed solar zenith angle of 30° enhanced vegetation index (EVIgza3(), (b) normalized difference vegetation index (NDVIgza30), (¢) MODIS
gross primary productivity (GPPyop; gC m—2 d=1), (d) leaf area index (LAIviop), and (e) fraction of the absorbed photosynthetic active
radiation (fPARyjop). Four key Australian ecosystem sites are included in the analysis: AU-How savanna (blue circles), AU-ASM mulga
(yellow square markers), AU-Cpr mallee (red triangles), and wet sclerophyll forest of AU-Tum (green diamonds).

focuses on the mid-term, 16-day seasonal descriptors of veg-
etation phenology (Pc and LUE).

The influence of other environmental factors apart from
PAR and VPD, such as soil water content and Tj;, is diffi-
cult to isolate from the derivation of vegetation descriptors
as there may be a high degree of cross-correlation between
the different variables (e.g. VPD vs. Ty;). Moreover, to what
degree it is feasible to untangle the relations between cli-
mate and vegetation is complex and not well understood, as
the feedback processes are essential in ecosystem function
(leaf flush, wood allocation, among other vegetation strate-
gies respond to available resources), species competition, and
herbivory cycles (Delpierre et al., 2015). Our results show
that VIs were highly related to Pc, which is interpreted as a
phenology descriptor that does not consider the day-to-day
changes in available light or photoperiod or the vegetation
response to high and low VPD and PAR values. By con-
trast, implicit in the derivation of LUE were the day length
and anomalous climatic conditions. This finding has impor-
tant implications when using EC data for the validation of
satellite-derived phenology (Restrepo Coupe et al., 2015).

4.2 Seasonality and comparisons between satellite
products and flux-tower-based measurements of
carbon flux: photosynthetic activity (productivity)
and potential (phenology)

Previous satellite-derived models of productivity usually ap-

ply to locations where the seasonality of GEP is synchronous
with climatic and vegetation phenology drivers (Mahadevan

www.biogeosciences.net/13/5587/2016/

et al., 2008; Sims et al., 2008; Wu et al., 2010; Xiao et al.,
2004), such as in temperate deciduous forests, where tem-
perature and incoming radiation coincide with changes in
ecosystem structure and function (e.g. autumn sub-zero tem-
peratures may initiate leaf abscission; Vitasse et al., 2014).
In our analysis, productivity was only synchronous with all
measures of photosynthetic potential at the savanna site (AU-
How), where clouds and heavy rainfall in the summer wet
season resulted in low VPD, reduced TOA (aseasonal PAR),
and minimal fluctuations in T,;;. At AU-How, we observed a
consistently large correlation between MODIS VIs and pro-
ductivity and no improvement in GEP when accounting for
meteorology. Moreover, the highly significant EVIgza3g vs.
GEP relationship at AU-How could be generalized to other
satellite-derived biophysical products.

Arid and semi-arid vegetation dominate ~75 % of the
Australian continent, and in these ecosystems a character-
istic mix of grasses (understorey) and woody plants (over-
storey) contributes to total annual GEP at different times of
the year. More importantly, the phenology of grasses and
trees is driven by, or responds differently to, various climatic
drivers (e.g. trees greening up after spring rainfalls while
grasses remain dormant (Cleverly et al., 2016a; Ma et al.,
2013; Shi et al., 2014). The changing seasonal contributions
to the reflectance signal and to GEP are generally related to
soil water content thresholds. Our study presents two semi-
arid Acacia and Eucalyptus woodlands, where we found that
models relating VIs with photosynthetic potential (phenol-
ogy), rather than activity (productivity), improved the predic-
tive power of RS greenness indices (AU-Cpr) or showed sim-
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ilar statistical descriptors (AU-ASM). At the woodland Aca-
cia site, LAlyop and fPARpop overestimated the periods of
low capacity (associated with browndown phases) (Ma et al.,
2013). This can be better understood if we account for small
but non-negligible photosynthetic activity in Acacia after the
summer rains have ended (Cleverly et al., 2013; Eamus et al.,
2013). At this particular site (AU-ASM), the high LAlvop
and VIs observed during dormancy may not be interpreted as
high photosynthetic potential. Satellite data, and even some
ground-based measurements of LAlyiop, cannot differenti-
ate between the different fractional components: photosyn-
thetic active vegetation (fPAV), and non-photosynthetic veg-
etation (fNPV). Future work requires phenocams or biomass
studies in which fPV and fNPV may be spectrally or mechan-
ically separated.

In low productivity ecosystems (AU-ASM and AU-Cpr),
satellite and EC data/noise ratio may have a considerable ef-
fect on the site-specific regressions (e.g. sun geometry influ-
ence on VIs seasonal values, and EC uncertainties). How-
ever, differences between AU-ASM and AU-Cpr regressions
(e.g. EVIsza30 was highly correlated to GEP only at AU-
ASM), and the fact that the VI product has been corrected
for BRDF effects, increases our confidence in the analysis
presented here. Moreover, the lower VIs vs. GEP correla-
tion values obtained at AU-Cpr compared to AU-ASM could
be attributed to mallee site productivity being more depen-
dent on meteorological drivers than photosynthetic potential,
or GEP being driven by climate (e.g. autumn precipitation —
when Pc remains constant) or by vegetation phenology (e.g.
summer LAI and canopy chlorophyll content, among others)
at different times of the year.

Similar to Mediterranean ecosystems (AU-Cpr), in wet
sclerophyll forests (AU-Tum) without signs of water limita-
tion, the VIs were unable to replicate seasonality in GEP. In
particular, the dominant species of sclerophyll forests, Euca-
lyptus, Acacia, and Banksia, show very little seasonal vari-
ation in canopy structure as seen in aseasonal LAI obser-
vations (Zolfaghar, 2013), and leaf longevity (Eamus et al.,
2006). Leaf quantity (e.g. LAI) and quality (e.g. leaf level
photosynthetic assimilation capacity) are two key parameters
in driving photosynthetic potential; when these are aseasonal,
asynchronous, or lagged, they may confound the interpreta-
tion of seasonal measures of greening. Thus, the observed
increasing predictive power of VIs as a measure of photo-
synthetic potential (e.g. EVIsza3g vs. Pc, R%=0.16 at AU-
Tum) may not be comparable to similar relationships at sites
where vegetation phenology showed a larger dynamic range
(e.g. EVIsza30 vs. Pc, R? =0.79 at AU-How).

4.3 Considerations for the selection of RS data to be
used on GEP models and phenology validation

studies

This study reports high correlations for Pc vs. EVIsza3o
(R? =0.81) and Pc vs. NDVIsza30 (R2 = 0.80). The fact that
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a brighter soil background results in lower NDVI values than
with a dark soil background for the same quantity of partial
vegetation cover (Huete, 1988; Huete and Tucker, 1991) may
have a positive effect on the all-site Pc vs. NDVIgza30 re-
gressions (increase R?). However, darkened soils following
precipitation also raise NDVI values for incomplete canopies
(Gao et al., 2000), and may similarly suggest higher veg-
etation or soil biological crust activity. On the other hand,
soil brightness and moisture may have a negative effect on
the confidence interval of the x intercept for the proposed
relationships (e.g. Pc vs. NDVIgza39, for NDVIgzazp ~ 0).
Moreover, at certain times the AU-ASM and AU-Cpr sites
were at the low end of the vegetation activity range, and
the observed RS signal may have been dominated by soil
water content rather than by photosynthetic potential. Fur-
thermore, caution is needed when using fPARyop and other
products as we observed a threshold value above which in
situ changes were undetectable (e.g. MODIS fPAR>0.9,
NDVIgza30 > 0.8). This might have been due to the NDVI
saturating at high biomass (Huete et al., 2002; Santin-Janin
et al., 2009).

Temperature-greenness models of GEP (Sims et al., 2008;
Xiao et al., 2004) take into account the meteorological and
biophysical drivers that determine productivity. Neverthe-
less, correlations between photosynthetic characteristics and
LSTqay were weaker than for VIs. Moreover, if the season-
ality of GEP is driven by local climatology, as in the case of
AU-Tum where GEP was statistically correlated to LSTgay,
our intent is to understand the relation between vegetation
characteristics and RS products rather than indiscriminately
use any satellite-derived index to describe phenology or pho-
tosynthetic potential. Our study demonstrates that multiple
linear regression models that combine satellite-derived me-
teorology and biological parameters to describe GEP fit bet-
ter when both drivers are introduced rather than when only
one factor drives the relation (a single meteorology or green-
ness variable). However, two exceptions to this rule were
observed: (1) at AU-Tum where SWcgrgs was able to ex-
plain 60 % of GEP, and (2) in the tropical savanna at AU-
How where EVIgza3g was able to explain ~ 82 % of the
variation in GEP, and where we did not obtain any sig-
nificant improvement to the GEP model when combining
MODIS VIs and any meteorological variable (R?> remains
similarly high: R?>0.82). In summary, in evergreen scle-
rophyll forests, even when GEP is highly seasonal, GEP is
driven by meteorology as seen by the fact that most of the
measures of photosynthetic potential showed small seasonal
changes, similar to different MODIS products. By contrast,
at sites where most of the GEP seasonality was driven by
vegetation status (Pc as a proxy) rather than the meteoro-
logical inputs (PAR, air temperature, and precipitation), or
where meteorology and phenology were synchronous, VIs
were strongly correlated to both GEP and Pc (e.g. tropical
savanna). This was in agreement with the expectation than
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RS products constitute a measurement of ecosystem photo-
synthetic potential rather than productivity per se.

Our analysis shows how MODIS greenness indices were
able to estimate different measures of ecosystem photosyn-
thetic potential across biomes. At only one site (AU-Tum)
was there very little seasonal variation in EVIgza3p, com-
pared to other evergreen ecosystems. Both the strong cor-
relations among VIs and Pc from in situ EC carbon flux
measurements at the remaining sites (AU-How, AU-ASM,
and AU-Cpr), and the positioning of each ecosystem along
a continuum of MODIS-derived variables representing veg-
etation phenology, confirm the usefulness of satellite prod-
ucts as being representative of vegetation structure and func-
tion. This research confirms the viability of remote-sensing-
derived phenology to be validated and, more importantly, un-
derstood, using eddy-flux measurements of Pc. However, an
increase in effort in determining seasonal patterns of car-
bon allocation (partition between leaves and wood), under-
storey and overstorey responses, and leaf carbon assimila-
tion and chlorophyll content over time may be required to
obtain a more meaningful understanding of RS indices and
their biophysical significance. Moreover, the reader should
be aware that rapid changes in vegetation phenology (e.g.
o and GEPgy) caused by short-term environmental stresses
(e.g. Tyir, humidity, soil water deficit, or waterlogging) may
not be accurately estimated by RS products, and may require
the employment of in situ high-frequency optical measure-
ments (e.g. phenocams), land surface vegetation models, or
direct EC measurements.

For this study we included all available 16-day data cor-
responding individually to more than 10 years at AU-How
and AU-Tum, and 2 to 3 years at AU-Cpr and AU-ASM. The
long-term sampling implies that we were likely to be captur-
ing a large range in mean ecosystem behaviour. RS products
may over- or under-represent the canopy response to periods
of extreme temperature and precipitation, although the time
series in this study included years that were warmer than nor-
mal and heatwaves, e.g. 2012-2013 (BOM, 2012, 2013; van
Gorsel et al., 2016) and years that were wetter than normal,
e.g. 2011 (Fasullo et al., 2013; Poulter et al., 2014), which
led to GEP that is larger than normal at AU-ASM and AU-
Cpr (Cleverly et al., 2013; Eamus et al., 2013; Koerber et al.,
2016). It is beyond the scope of this work to evaluate the
inter-annual variability of the vegetation responses to dis-
turbance (e.g. insect infestation or fire) or extreme climatic
events (e.g. flooding or long-term drought). Improvements to
satellite-derived phenology can be related to an increasing
number of EC sites and samples, thereby emphasizing the
importance of long-term time measurements and sampling
of diverse ecosystems.
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5 Conclusions

Satellite vegetation products have been widely used to scale
carbon fluxes from eddy covariance (EC) towers to regions
and continents. However, in some key Australian ecosys-
tems, MODIS gross primary productivity (GPP) product
and vegetation indices (VIs) do not track seasonality of
gross ecosystem productivity (GEP). In particular, we found
that EVIgza3o was unable to represent GEP at the temper-
ate evergreen sclerophyll forest of Tumbarumba (AU-Tum)
and at the Mediterranean ecosystem (mallee) of Calperum—
Chowilla (AU-Cpr). This result extends across satellite prod-
ucts overall: MODIS GPPyiop, LAImop, fPARMoD, and
other VIs.

We aimed for a greater understanding of the mechanistic
controls on seasonal GEP, and proposed the parameterization
of the light response curve from EC fluxes as a novel tool to
obtain ground-based seasonal estimates of ecosystem pho-
tosynthetic potential (light use efficiency (LUE), photosyn-
thetic capacity (Pc), GEP at saturation (GEPg,), and quan-
tum yield («)). Photosynthetic potential refers to the pres-
ence of photosynthetic infrastructure in the form of ecosys-
tem structure (e.g. leaf area index — quantity of leaves) and
function (e.g. leaf level photosynthetic assimilation capac-
ity — quality of leaves) independent of the meteorological
and environmental conditions that drive GEP. Based on ba-
sic linear regressions, we demonstrated that MODIS-derived
biophysical products (e.g. VIs) were a proxy for ecosystem
photosynthetic potential rather than GEP. We reported statis-
tically significant regressions between VIs (e.g. NDVIgza3o
and EVIsza30) and long-term measures of phenology (e.g.
LUE and Pc), in contrast to ecosystem descriptors subject
to short-term responses to environmental conditions (e.g.
GEPg, and «). Our results should extend to other methods
and measures of greenness, including VIs and chromatic in-
dices from phenocams and in situ spectrometers.

We found that the linear regressions between MODIS bio-
physical products and photosynthetic potential converged on
a single function across very diverse biome types, which im-
plies that these relationships may persist over very large ar-
eas, thus improving our ability to extrapolate in situ phe-
nology and seasonality to continental scales, across longer
temporal scales, and enabling us to identify rapid changes
due to extreme events or spatial variations at ecotones. We
further found that saturation of fPARyMop and NDVIszaszo
restricted their usefulness, except in comparatively low
biomass ecosystems (savannas and arid and semi-arid savan-
nas and woodlands).

We quantified how much GEP seasonality could be ex-
plained by different variables: radiation (SWgown), temper-
ature (T,r), precipitation (Precip), or phenology (VIs as
proxy). Our analysis showed that the relationship between
RS products and GEP was only clear when productivity was
driven by either (1) ecosystem phenology and climate, syn-
chronously driving GEP, as was observed at Alice Springs
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mulga woodland (AU-ASM), and similar to many temperate
deciduous locations, or (2) solely the vegetation photosyn-
thetic potential, as observed at the tropical savanna site of
Howard Springs (AU-How). At AU-How, radiation and tem-
perature were constant throughout the year, although ecosys-
tem photosynthetic activity (GEP) and potential (e.g. Pc and
LUE) fluctuated with the highly seasonal understorey. How-
ever, RS products do not follow GEP when (3) phenology is
asynchronous with key meteorological drivers such that GEP
is driven by one or the other at different times of the year, as
we observed at AU-Cpr; or when (4) GEP is driven by mete-
orology (SWaown, Tair, S0il water availability, VPD, or differ-
ent combinations), and photosynthetic potential is aseasonal,
as observed at AU-Tum. At AU-Tum, changes in productiv-
ity were driven by SWgown, while the ecosystem biophysical
properties remained relatively constant throughout the year,
represented by the small amplitude of the annual cycles in Pc
and LUE (true evergreen forest). An understanding of why
satellite vs. flux tower estimates of GEP relationships hold,
or do not hold, greatly contributes to our comprehension of
carbon cycle mechanisms and scaling factors that are at play
(e.g. climate and phenology, among others).

6 Data availability

EC data can be freely accessed at http://www.ozflux.org.au/.
MODIS satellite reflectance values, vegetation in-
dices, and other products can be downloaded from
the USGS depository at http://e4ftl01.cr.usgs.gov/.
TRMM  satellite-derived  precipitation can be ac-
cessed at  http://mirador.gsfc.nasa.gov/cgi-bin/mirador/
presentNavigation.pl ?tree=project&project=TRMM.

Global shortwave radiation can be downloaded from
http://ceres.larc.nasa.gov/order_data.php. MATLAB code is
available upon request (nataliacoupe @ gmail.com).

The Supplement related to this article is available online
at doi:10.5194/bg-13-5587-2016-supplement.
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