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Figure S1. Seasonal cycle averaged from 1980 to 2013 at 9 measurement sites (GLOBALVIEW-CO2, 2013) (blue) compared to LPX v1.4

(red). The standard deviations are indicated with error bars or shading respectively. The seasonal cycle is computed with the TM2 transport

model and simulated net surface-atmosphere fluxes from LPX v1.4 and the Bern3D ocean model (Battaglia and Joos, 2017). The seasonal

cycle is dominated by fluxes from the land, in particular, the northern hemisphere.
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Figure S2. Growth in the amplitude of atmospheric CO2 for four measurement sites (GLOBALVIEW-CO2, 2013) (blue) compared to LPX

v1.4 (red). A linear fit indicated by dashed lines is included. The growth in the amplitude of the seasonal cycle is computed with the TM2

transport model and simulated net surface-atmosphere fluxes from LPX v1.4 and the Bern3D ocean model (Battaglia and Joos, 2017). The

seasonal cycle is dominated by fluxes from the land, in particular, the northern hemisphere.
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Figure S3. Comparison of annual NPP of LPX v1.4 with Multi-Biome NPP measurements sites (Olson et al., 2013) indicated with circles.

The simulation results are averaged over the period of 1931-1997.
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Figure S4. Annual NPP averaged from 1931 to 1997 of LPX v1.4 (red dots) and the model member in Mnet,net with the lowest MSE in

this metric (blue dots) against Multi-Biome NPP (Olson et al., 2013) estimates. The colored lines show a linear regression with the 95%

confidence interval shaded.
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Figure S5. Comparison of annual NPP of LPX v1.4 with FLUXNET NPP measurements sites (Luyssaert et al., 2009, 2007) indicated with

circles. The simulation results are averaged over the period of 1931-1997.
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Figure S6. Annual NPP averaged from 1931 to 1997 of LPX v1.4 (red) and the model member in Mnet,net with the lowest MSE in this

metric (blue) against FLUXNET NPP (Luyssaert et al., 2009, 2007) estimates. The colored lines show a linear regression with the 95%

confidence interval shaded.
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LPX v1.4 FAPAR

SeaWiFS FAPAR on 1x1 grid
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Figure S7. Fraction of absorbed photosynthetically active radiation (FAPAR) as simulated by LPX v1.4 (top panel) compared to a satellite-

derived product (Gobron et al., 2006) (middle panel) and the difference of the two products (bottom panel). Shown is the average from

09.1997 to 06.2006, which has a correlation of R2=0.65. For the calculation of the MSE averaged monthly fields were used.
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LPX v1.4 evapotranspiration

LandFluxEVAL evapotranspiration
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Figure S8. Evapotranspiration averaged from 1985 to 2005 as simulated by LPX v1.4 (top panel) compared to the LandFLUX-EVAL data

product (Mueller et al., 2013) (middle panel) and the difference of the two products (bottom panel). The correlation of the two products is

R2=0.96.
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LPX v1.4 soil carbon

Carvalhais et. al soil carbon on 1x1 grid
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Figure S9. Soil carbon averaged from 1982 to 2005 as simulated by LPX v1.4 (top panel) compared to a dataset based on observations

(Carvalhais et al., 2014) (middle panel) and the difference of the two products (bottom panel). The correlation of the two product is R2=0.58.

For the calculation of the MSE the map is divided into low and high latitudes regions.
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LPX v1.4 total carbon

Carvalhais et. al total carbon on 1x1 grid
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Figure S10. Total carbon (soil carbon and vegetation carbon) averaged from 1982 to 2005 as simulated by LPX v1.4 (top panel) compared to

a dataset based on observations (Carvalhais et al., 2014) (middle panel) and the difference of the two products (bottom panel). The correlation

of the two product is R2=0.59.
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Figure S11. Vegetation carbon simulated by LPX v1.4 compared to local biomass measurements (circles) (Keith et al., 2009). The simulation

results are averaged over the period of 1950-2000.
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Figure S12. Vegetation carbon averaged from 1950 to 2000 of LPX v1.4 (red) and the model member in Mnet,net with the lowest MSE in

this metric (blue) against Keith et al. (2009) biomass estimates. The correlation would be enhanced when sites with zero simulated biomass

were excluded (no effect on MSErel). The solid lines show a linear regression with the 95% confidence interval shaded.
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Figure S13. Vegetation carbon simulated by LPX v1.4 compared to local biomass measurements (circles) (Luyssaert et al., 2009, 2007). The

simulation results are averaged over the period of 1931-2007.

0 2500 5000 7500 10000 12500 15000 17500 20000
Vegetation carbon simulated [gC m2 yr 1]

0

2500

5000

7500

10000

12500

15000

17500

20000

Ve
ge

ta
tio

n 
ca

rb
on

 L
uy

ss
ae

rt 
et

. a
l. 

[g
C 

m
2  y

r
1 ] Ens. member w/ lowest Biomass Luyssaert MSE (MSErel=1.05, R2 = 0.22)

LPX v1.4 (MSErel=1.40, R2 = 0.22)

Figure S14. Vegetation carbon averaged from 1931 to 2007 of LPX v1.4 (red) and the model member in Mnet,net with the lowest MSE in

this metric (blue) against Luyssaert et al. (2009, 2007) biomass estimates. The correlation would be enhanced when sites with zero simulated

biomass were excluded (no effect on MSErel). The solid lines show a linear regression with the 95% confidence interval shaded.
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