Supplement to: Remote sensing of ecosystem light use efficiency with MODIS-based PRI

A. Goerner^{a,*}, M. Reichstein^a, E. Tomelleri^a, N. Hanan^b, S. Rambal^c, D. Papale^d, D. Dragoni^e, C. Schmullius^f

^aMax Planck Institute for Biogeochemistry, 07745 Jena, Germany ^bNatural Resources Ecology Lab, Colorado State University, USA ^cCEFE-CNRS, 34293 Montpellier cedex 5, France

^dDepartment of Forest Science and Environment, University of Tuscia, 01100 Viterbo, Italy

^eDepartment of Geography, Indiana University, Bloomington, Indiana, USA ^fFriedrich-Schiller-University Jena, 07743 Jena, Germany

Fig. 1. Incoming photosynthetically active radiation at the FR-Pue site on a cloud free and a cloudy day, along with the curve that represents the diurnal course of PAR on a cloud free day for that particular site and time of year. Those curves were used to identify cloudfree days for all sites.

* Corresponding author *Email address:* anna.goerner@bgc-jena.mpg.de (A. Goerner). *URL:* http://www.bgc-jena.mpg.de/bgc-mdi/ (A. Goerner).

Preprint submitted to Elsevier

Fig. 2. Attempted correction for surface reflectance anisotropy with POLDER/ PARASOL BRDF parameters (6×6 km) for 2002 at FR-Pue without explicit consideration of atmospheric effects. While the correction influences the reflectance of the individual bands that are used to compute PRI, these effects cancel each other out in the vegetation index itself.

Fig. 3. Surface reflectance corrected for anisotropy with MODIS BRDF parameters versus surface reflection assuming an isotropic surface for 2000-2005 at FR-Pue. In both cases a correction for atmospheric effects has been performed using 6S with the same input, so the difference is only due to applying the BRDF correction with 6S. The relatively small changes in reflectance (2.0-3.5%) result in rather large differences in PRI (13-31%).

Fig. 4. LUE modelled from PRI (black), from MOD17 parameters (red), and from optimised MOD17 parameters (blue) versus ecosystem LUE calculated from fluxes and MODIS faPAR. Shown are only points for which a near-nadir PRI observation exists for the respective study site. Significance codes: p value ≤ 0.001 : *** ; p value ≤ 0.01 : **

	čt.	int.	0	n.s.	n.s.	n.s.	n.s.	0	0	0	0	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	n.s.	0	n.s.	n.s.	n.s.								
	MOD17 o	sl.	0.04	D.S.	0.S.	0.S.	0.S.	0.53	0.52	0.39	0.61	0.54	0.2	0.17	0.19	0.16	0.23	0.29	0.49	0.27	0.23	0.29	0.S.	0.41	0.8.	0.8.	0.S.								
MODIS faPAR		5	0.04	n.s.	n.s.	n.s.	n.s.	0.48	0.46	0.34	0.6	0.46	0.1	0.1	0.09	0.05	0.14	0.39	0.45	0.37	0.45	0.43	n.s.	0.28	n.s.	n.s.	n.s.								
	0D17	nt.	D.S.	D.S.	D.S.	D.S.	D.S.	0.01	0.S.	0.S.	10.0	0.01	D.S.	D.S.	D.S.	D.S.	0.S.	10.0	D.S.	D.S.	D.S.	D.S.			0.S.		0.S.								
		sl.	n.s. 1	n.s. 1	n.s. 1	n.s. 1	n.s. 1	0.19 (n.s. 1	n.s. 1	0.29	0.19 (n.s.	n.s. 1	n.s. 1	n.s. 1	n.s. 1	0.12	n.s.	n.s. 1	n.s.	n.s. 1	0.34 (0.51	n.s.	0.44 (n.s. 1								
	Μ	12	n.s. 1	n.s. 1	n.s. 1	n.s. 1	n.s. 1	0.05	n.s. 1	n.s. 1	0.12	0.05 (n.s.	n.s. 1	n.s. 1	n.s. 1	n.s. 1	0.04	n.s.	n.s. 1	n.s.	n.s. 1	0.09	0.24 (n.s.	0.14	n.s. 1								
		int.	n.s.	n.s.	n.s.	n.s.	n.s.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	n.s.	n.s.	n.s.	n.s.	n.s.						n.s.	n.s.		n.s.	n.s.	n.s.	n.s.	
Cyclopes faPAR	PRI 12	sl.	n.s.	n.s.	n.s.	n.s.	n.s.	0.31	0.37	0.39	0.32	0.22	0.54	0.56	0.47	0.58	0.34	n.s.	n.s.	n.s.	n.s.	n.s.						n.s.	n.s.		n.s.	n.s.	n.s.	n.s.	
	ц	r^2	n.s.	n.s.	n.s.	n.s.	n.s.	0.32	0.39	0.41	0.35	0.24	0.53	0.63	0.5	0.62	0.41	n.s.	n.s.	n.s.	n.s.	n.s.						n.s.	n.s.		n.s.	n.s.	n.s.	n.s.	
		int.	n.s.	0.01	n.s.	n.s.	n.s.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	n.s.	n.s.	n.s.	n.s.	n.s.						n.s.	n.s.		n.s.	n.s.	n.s.	n.s.	
	RI 10	sl.	n.s.	0.04	n.s.	n.s.	n.s.	0.26	0.3	0.28	0.26	0.21	0.44	0.46	0.4	0.43	0.3	n.s.	n.s.	n.s.	n.s.	n.s.						n.s.	n.s.		n.s.	n.s.	n.s.	n.s.	
	_	r^2	n.s.	0.37	n.s.	n.s.	n.s.	0.38	0.41	0.38	0.42	0.33	0.48	0.62	0.48	0.53	0.37	n.s.	n.s.	n.s.	n.s.	n.s.						n.s.	n.s.		n.s.	n.s.	n.s.	n.s.	
		int.	n.s.	n.s.	n.s.	n.s.	n.s.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	n.s.	n.s.	n.s.	n.s.	n.s.						n.s.	n.s.		n.s.	n.s.	n.s.	n.s.	
	PRI 1 PRI 4	sl.	n.s.	n.s.	n.s.	n.s.	n.s.	0.3	0.4	0.36	0.34	0.22	0.57	0.5	0.47	0.55	0.33	n.s.	n.s.	n.s.	n.s.	n.s.						n.s.	n.s.		n.s.	n.s.	n.s.	n.s.	
		r^2	n.s.	n.s.	n.s.	n.s.	n.s.	0.32	0.42	0.36	0.36	0.22	0.57	0.63	0.57	0.65	0.45	n.s.	n.s.	n.s.	n.s.	n.s.						n.s.	n.s.		n.s.	n.s.	n.s.	n.s.	
		int.	0.01	0	0.01	n.s.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.02	0.01	0.01	n.s.	0.01	0.02						n.s.	n.s.		n.s.	n.s.	n.s.	n.s.	
		sl.	0.24	0.45	0.22	n.s.	0.26	0.35	0.37	0.32	0.34	0.24	0.19	0.13	0.21	0.15	0.17	0.38	0.49	n.s.	0.34	0.33						n.s.	n.s.		n.s.	n.s.	n.s.	n.s.	
		r^2	0.3	0.75	0.66	n.s.	0.44	0.36	0.47	0.38	0.42	0.27	0.2	0.18	0.3	0.21	0.2	0.42	0.6	n.s.	0.39	0.49						n.s.	n.s.		n.s.	n.s.	n.s.	n.s.	
		int.	0.01	n.s.	n.s.	n.s.	n.s.	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	n.s.	n.s.	n.s.	n.s.	n.s.	0.03	0.02	n.s.	0.03	0.02	n.s.	0.02	0.02	n.s.	n.s.	0.02	n.s.	
	PRI 12	sl.	0.05	n.s.	n.s.	n.s.	n.s.	0.42	0.53	0.47	0.43	0.36	0.62	0.62	0.51	0.68	0.55	n.s.	n.s.	n.s.	n.s.	n.s.	0.2	0.31	n.s.	0.23	0.24	n.s.	0.11	0.2	n.s.	n.s.	0.15	n.s.	
	_	r^2	0.05	n.s.	n.s.	n.s.	n.s.	0.44	0.54	0.48	0.45	0.39	0.6	0.64	0.52	0.67	0.56	n.s.	n.s.	n.s.	n.s.	n.s.	0.21	0.35	n.s.	0.27	0.26	n.s.	0.05	0.11	n.s.	n.s.	0.05	n.s.	
	PRI 10	int.	0.01	n.s.	n.s.	n.s.	n.s.	0.02	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	n.s.	n.s.	n.s.	n.s.	n.s.	0.03	0.02	n.s.	0.03	0.03	n.s.	0.03	0.03	n.s.	n.s.	0.02	n.s.	
SeaWiFS faPAR		sl.	0.05	n.s.	n.s.	n.s.	n.s.	0.42	0.5	0.42	0.42	0.39	0.58	0.53	0.49	0.59	0.57	n.s.	n.s.	n.s.	n.s.	n.s.	0.19	0.31	n.s.	0.25	0.22	n.s.	0.08	0.07	n.s.	n.s.	0.14	n.s.	
		r^2	0.06	n.s.	n.s.	n.s.	n.s.	0.43	0.52	0.43	0.45	0.41	0.56	0.57	0.5	0.6	0.59	n.s.	n.s.	n.s.	n.s.	n.s.	0.2	0.34	n.s.	0.28	0.25	n.s.	0.06	0.08	n.s.	n.s.	0.06	n.s.	
	PRI 4	int.	n.s.	n.s.	n.s.	n.s.	n.s.	0.02	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	n.s.	n.s.	n.s.	n.s.	n.s.	0.03	0.02	n.s.	0.03	0.03	n.s.	0.02	0.02	n.s.	n.s.	0.02	n.s.	
		sl.	n.s.	n.s.	n.s.	n.s.	n.s.	0.41	0.54	0.42	0.41	0.34	0.64	0.63	0.53	0.71	0.55	n.s.	n.s.	n.s.	n.s.	n.s.	0.2	0.25	n.s.	0.19	0.22	n.s.	0.12	0.19	n.s.	n.s.	0.16	n.s.	
		r^2	n.s.	n.s.	n.s.	n.s.	n.s.	0.43	0.56	0.44	0.44	0.37	0.63	0.67	0.56	0.7	0.57	n.s.	n.s.	n.s.	n.s.	n.s.	0.21	0.31	n.s.	0.24	0.25	n.s.	0.06	0.12	n.s.	n.s.	0.06	n.s.	
	-	int.	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.03	0.03	n.s.	0.03	0.03	n.s.	0.03	n.s.	n.s.	n.s.	0.02	n.s.	
	PRI	sl.	0.47	0.6	0.61	0.26	0.46	0.42	0.52	0.43	0.48	0.32	0.19	0.14	0.09	0.3	0.14	0.34	0.42	0.28	0.23	0.41	0.1	0.14	n.s.	0.09	0.1	n.s.	0.06	n.s.	n.s.	n.s.	0.13	n.s.	
		r2	0.52	0.69	0.76	0.31	0.53	0.44	0.54	0.45	0.5	0.35	0.18	0.14	0.09	0.31	0.14	0.36	0.45	0.31	0.26	0.53	0.1	0.19	n.s.	0.16	0.14	n.s.	0.06	n.s.	n.s.	n.s.	0.06	n.s.	
	PRI 10 PRI 12	int.	0.01	n.s.	n.s.	n.s.	n.s.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	n.s.	n.s.	n.s.	0.01	0.01	0.01	0.01	0.01	0.01	n.s.	n.s.	0.01	0.01	n.s.	0.01	
		sl.	0.05	n.s.	n.s.	n.s.	n.s.	0.36	0.47	0.27	0.35	0.35	0.39	0.51	0.47	0.23	0.38	0.03	0.11	n.s.	n.s.	n.s.	0.2	0.31	0.17	0.17	0.18	-0.0	n.s.	n.s.	-0.0	-0.1	n.s.	-0.1	
		r^2	0.05	n.s.	n.s.	n.s.	n.s.	0.38	0.49	0.29	0.37	0.38	0.39	0.55	0.48	0.24	0.41	0.03	0.15	n.s.	n.s.	n.s.	0.2	0.37	0.22	0.23	0.21	0.04	n.s.	n.s.	0.04	0.04	n.s.	0.04	
		int.	0.01	0.01	n.s.	n.s.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	n.s.	n.s.	n.s.	n.s.	0.01	0.01	n.s.	0.01	0.01	0.01	0.01	n.s.	0.01	0.01	0.01	0.01	
		sl.	0.07	0.13	n.s.	n.s.	0.06	0.28	0.34	0.21	0.25	0.27	0.3	0.39	0.33	0.18	0.29	0.05	n.s.	n.s.	n.s.	n.s.	0.14	0.26	n.s.	0.14	0.11	-0.04	0.05	n.s.	-0.04	-0.05	0.07	-0.05	
MODIS faPAR		r2	0.07	0.35	n.s.	n.s.	0.12	0.36	0.46	0.28	0.32	0.39	0.34	0.5	0.4	0.21	0.39	0.05	n.s.	n.s.	n.s.	n.s.	0.16	0.33	n.s.	0.2	0.14	0.01	0.02	n.s.	0.01	0.02	0.02	0.02	
	PRI 4	int.	n.s.	n.s.	n.s.	n.s.	n.s.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	n.s.	n.s.	n.s.	n.s.	n.s.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	n.s.	0.01	0.01	0.01	0.01	
		sl.	n.s.	n.s.	n.s.	n.s.	n.s.	0.36	0.47	0.26	0.34	0.35	0.4	0.49	0.47	0.25	0.38	n.s.	n.s.	n.s.	n.s.	n.s.	0.18	0.21	0.12	0.12	0.13	-0.08	0.05	n.s.	-0.08	-0.11	0.07	-0.11	
		r^2	n.s.	n.s.	n.s.	n.s.	n.s.	0.37	0.49	0.27	0.37	0.38	0.4	0.56	0.52	0.26	0.42	n.s.	n.s.	n.s.	n.s.	n.s.	0.2	0.33	0.23	0.25	0.21	0.04	0.01	n.s.	0.04	0.04	0.01	0.04	
	PRI 1	int.	0	0	0	0.01	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	n.s.	n.s.	0.01	0.01	n.s.	0.01	
		sl.	0.44	0.7	0.65	0.16	0.5	0.43	0.54	0.33	0.43	0.43	0.2	0.16	0.23	0.12	0.26	0.42	0.67	0.35	0.33	0.43	0.08	0.11	0.06	0.08	0.05	-0.1	n.s.	n.s.	-0.1	-0.16	n.s.	-0.16	
		r^2	0.49	0.78	0.78	0.18	0.57	0.45	0.57	0.34	0.45	0.45	0.19	0.18	0.23	0.12	0.25	0.46	0.71	0.39	0.36	0.5	0.1	0.2	0.18	0.2	0.1	0.04	n.s.	n.s.	0.04	0.05	n.s.	0.05	
	INDN	int.	0	0	0	n.s.	0	10.0	10.0	n.s.	10.0	0.01	10.0	0.01	0.01	0.01	10.0	0.01	0	10.0	10.0	10.0	10.0	n.s.	10.0	0.01	0.01		_		_				
		sl.	0.39	0.65	0.48	n.s.	0.55	0.07	0.11	n.s.	0.05	0.1	0.09	0.18	0.05	0.04	0.09	0.46	0.62	0.35	0.35	0.47	0.06	n.s.	0.05	0.08	0.04								
		5	0.41	0.82	0.59	n.s.	0.63	0.07	0.15	n.s.	0.05	0.1	0.09	0.22	0.07	0.05	0.09	0.48	0.66	0.4	0.41	0.55	0.07	n.s.	0.14	0.11	0.1								
		VZA	0-40	0-10	10-20	20-30	30-40	0-40	0-10	10-20	20-30	30-40	0-40	0-10	10-20	20-30	30-40	0-40	0-10	10-20	20-30	30-40	0-40	0-10	10-20	20-30	30-40								
		Site	ZA-Km					FR-Pue					IT-Cpz					US-MMS					US-Me2					FR-Pue	tT-Cpz	US-Me2	combined	FR-Pue	IT-Cpz	ombined	
		fodel 5	te spec. 2					1					I										_					vergreen 1	-	_	с С	ak 1	-	-	
1		2	8																									e				Ó			I.

Table 1. \mathbb{R}^2 , slope and intercept of the regression line between modelled LUE and observed LUE. 'n.s.' means that the \mathbb{R}^2 between both LUEs is not significant at the 5% level.