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ABSTRACT
Most flash-based solid-state drives (SSDs) employ an on-board Dy-
namic Random Access Memory (DRAM) to cache hot data at the
SSD page granularity. This can significantly reduce the number of
flush operations to the underlying arrays of SSDs given that there
is sufficient locality in the applications’ I/O access pattern. We ob-
serve, however, that in most I/O workloads over SSDs the buffered
data of small sized requests are more likely to be re-accessed than
those of larger requests, which also require more DRAM space for
caching their data.

To improve the efficiency of the DRAM cache inside SSDs, this
paper presents a request granularity-based cache management
scheme, calledReq-block. The proposedmechanismmanages cached
data according to the size of write requests and supports multi-level
linked lists for sifting the cached data blocks (termed as request
blocks), by taking both their size and hotness into account. Com-
prehensive evaluation shows that our proposal improves cache
hits by up to 90.5%, and decreases I/O latency by 14.3% on aver-
age, compared to existing state-of-the-art SSD cache management
schemes.

CCS CONCEPTS
• Computer systems organization→ Secondary storage orga-
nization.
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1 INTRODUCTION
NAND-based solid-state drivers (SSDs) show better performance
on random access, power consumption, and massive parallelism
compared with hard drives (HDDs) [1, 2]. Especially, with the drop
of per-GB cost, SSDs are gradually replacing HDDs and have been
widely used in digital devices, data centers, and high-performance
computers [3, 4].

Due to their compact structure, however, the limit of program/erase
cycles (P/Es) of high-density SSDs decreases greatly (e.g. SSDs with
quadruple level cell support 500 P/Es), and thus impacts the en-
durance of SSDs [5] [6]. For achieving better overall performance,
a faster but smaller capacity Dynamic Random Access Memory
(DRAM) is equipped inside SSD devices [7]. Consequently, we can
avoid flushing write data to the underlying flash cells by absorbing
them in the DRAM cache, which in turn enhances the lifetime of
the device [8].

Figure 1 shows the typical architecture of modern NAND-based
solid-state drives [10]. The DRAM cache is generally deployed be-
tween the host interface logic (HIL) and the flash array. Besides
storing the mapping table to support address translation, the DRAM
cache is commonly used to buffer (hot) write data of user applica-
tions [12]. As seen in the figure, when a write request is delivered
to the SSD from the HIL interface, the flash translation layer (FTL)
services the request by buffering the data in the cache so that the la-
tency of the write operation can be significantly shortened [11, 14].

Once the DRAM cache becomes full with buffered data, the cache
management schemes need to evict in-cache data pages and flush
them to flash array for making room for newly written data. Most
traditional cache management approaches inside SSDs, such as
LRU, CFLRU and their variations [9], manage the cached data at
the page granularity that corresponds to the basic read/write unit
of the flash array.

https://doi.org/10.1145/3545008.3545081
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Figure 1: Architectural overview of a modern NAND-based
solid-state drive [10]. A read/write request (not sync) is being
served while its data is obtained/buffered from/into the data
cache.

In order to better enhance cache use efficiency, certain advanced
cache management schemes have been proposed to match the fea-
tures of modern flash memory [11]. Considering that the garbage
collection (GC) process of flash memory is performed at the unit
of a block that consists of multiple SSD pages, SSD block-level
cache management approaches including FAB [19], BPLRU [15],
and PUD-LRU [21] have been proposed to better exploit spatial
locality.

The SSD page-based or SSD block-based cache management
schemes evict the buffered data by referring to the degree of tempo-
ral or spatial locality, while the features of I/O requests in workloads
are neglected [11]. After analyzing a large number of I/O work-
loads of real-world applications, we observed that the cached data
pages associated with small sized I/O requests are more likely to
be accessed again, in contrast to those associated with larger size
requests.

Therefore, we propose a novel cache management algorithm
(called Req-block) that deals with the cached data at the granularity
of write requests, and each cached item is named as a request
block (having one or more data pages). Specifically, our scheme
supports multi-level linked lists for sifting the cached request blocks,
by taking both the size and the hotness of write requests into
consideration. This boosts cache hits and improves I/O performance
of SSDs. In summary, this paper makes the following contributions:

• We introduce a request-granularity based cache management
scheme for SSD devices. Considering that small sized requests’
data are more likely to be accessed compared to those with larger
sizes in the DRAM cache, our approach manages the cached data
pages at the granularity of write requests, which we call request
blocks. The proposed scheme makes different cache adjustments
for the cached request blocks based on the size of the write
requests. In particular, it preferentially keeps small request blocks
in the DRAM cache when making space for newly written data.
• We maintain three-level linked lists for sifting the cached request
blocks, to support cache replacement. Specifically, newly written
data will be organized into a request block and inserted into the
lowest level list. A request block will be upgraded to higher level
linked list if it has been hit, or it will be split first and only the
hit part of the request block is upgraded. In the eviction process,
the scheme selects a victim from the tail request blocks of three
linked lists by comparing their request size and access history.

• We evaluate the proposed method by replaying several I/O traces
of real-world applications. Experimental results demonstrate that
our method improves cache hits by 23.5% on average and de-
creases I/O response time by up to 73.9% in contrast to LRU and
other state-of-the-art cache management schemes.

The rest of this paper is organized as follows: Section 2 describes
the related work on cache management inside SSDs and the mo-
tivation of our proposal. In Section 3, we present the design and
implementation of the proposed Req-block algorithm. The perfor-
mance of our approach is evaluated and discussed in Section 4.
Finally, we make concluding remarks in Section 5.

2 RELATEDWORK AND MOTIVATION
2.1 Related Work
Caches inside SSDs can absorb certain I/O requests to avoid forward-
ing them onto the underlying flash array which in turn improves
SSD performance [18]. Cache management mainly focuses on the
replacement strategy, to make room for newly written data by evict-
ing some of the previously buffered data. Traditional cache manage-
ment schemes, such as first in first out (FIFO), LRU, and LFU [24],
are built on the top of references of temporal locality [22] [23], and
can be also naturally applied in SSDs.

Specifically, concerning the scenario of SSDs, advanced cache
management schemes can be classified into page-based and block-
based approaches according to the management granularity.

The page-based cachemanagement approaches, such asCFLRU [9],
ECR [10], and Co-Active [11], are committed to minimizing the
negative effects of cache eviction, considering a page as the basic
read/write granularity [17]. According to the asymmetrical eviction
cost of clean and dirty pages, CFLRU divides the cache space into
the working region and the clean-first region. In an eviction pro-
cess, the least recently used clean page in the clean-first region is
preferred to be selected as a victim, since it has the lowest eviction
cost. Moreover, ECR chooses the victim page which requires the
shortest waiting time to be flushed onto the flash cell, by referring
to the length of I/O queues of SSD channels (or chips). Similarly,
Co-Active offers a means to make full use of the internal parallelism
of SSDs under I/O write-intensive workloads. Consequently, the
cold dirty pages can be actively evicted from the cache and written
into flash cells when SSD becomes idle.

To better utilize spatial locality of reference, a number of block-
based cachemanagement schemes, such as FAB [19], and BPLRU [15]
have been proposed to cluster data pages having spatial correla-
tion, with the granularity of an SSD block. Specifically, FAB targets
portable media player applications that have intensive sequential
write requests. It groups cached data pages in the same flash block
and evicts the group that holds the largest number of pages when
the buffer is full. However, FAB only considers the group size while
neglecting data recency [20]. Similarly, BPLRU adopts a block-level
LRU list and each block can be preferentially evicted from the cache
if it is written sequentially, considering that these blocks have the
least possibility of being rewritten in the near future. Furthermore,
BPLRU supports a page padding approach to minimize the merge
operations.
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Figure 2: Cumulative Distribution Function (CDF) of page
insert and hit statistics as the function of request sizes using
a 16MB data cache and the LRU replacement policy.

More importantly, Du et al. [16] proposed a buffer management
scheme called VBBMS that takes the different localities of random
and sequential requests into account. Specifically, it divides the
cache into random and sequential regions for different kinds of
requests, and respectively employs LRU and FIFO for selecting the
victims of virtual blocks to be evicted in two regions of the cache.
Moreover, it manages the cached data pages at the granularity of
virtual blocks for the utilization of spatial locality.

In brief, either block-based or virtual-block-based cache man-
agement approaches work efficiently in their target application
contexts, but cannot yield good I/O performance under random
access dominated workloads [11]. This is because the small size
random requests are unable to make full use of a block granularity
with dozens of pages.

2.2 Motivation
In I/O workloads of real-world applications, small write requests
commonly reveal higher temporal locality than those with larger
write requests [25]. That is to say, the access frequency of a data
page may be related to the size of its write request. For quantifying
the relationship between the hits of cached data pages and the size
of their corresponding write request in the workloads of SSDs, we
have conducted a series of experiments. The specification of the
experimental platform and the details of the used benchmarks are
described in Section 4.1.

Figure 2 shows the results of page hits and page inserts as cu-
mulative distribution function (CDF ), according to the size of the
requests. In the figure, Request Size means the size of write request
whose contents (i.e. data pages) are inserted into the DRAM cache.
The CDF result of Page Hit implies the proportion of page hits
on the pages whose write request size is equal to or less than the
corresponding request size, to all hits. Similarly, the CDF result of
Page Insert represents the portion of inserted pages whose request
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Figure 3: Hit statistics of large requests in cache, with 16MB
data cache and the LRU replacement policy.

size is equal to or less than the corresponding request size, to all
pages inserted to the cache.

In most of the block traces, as shown, the buffered data pages
of small size requests1 contribute about 80% of the page hits from
the entire workload. On the other hand, the data pages from large
write requests occupy the majority of the cache space. Taking the
traces of ℎ𝑚_1 and 𝑝𝑟𝑜 𝑗_0 (see Figures 2(a) and 2(d)) as examples,
we see that the small size write requests take up less than 20% of
the cache space, but contribute more than 80% of the page hits.

Observation ❶: Cache hits for requests with small sizes account
for a major part of all hits, meanwhile the large size requests
take up most of the cache space.

Furthermore, we exploit how many cached data pages of large
size requests are hit in the cache, and Figure 3 presents the results.
As shown, only 22.0%-37.2% of cached data pages of large size
requests have been re-accessed.

Observation ❷: Only a small part of buffered data pages of
large size write requests will be re-accessed in the cache.

Such observations motivate us to design a request size-based
cache management approach, to not only assign a high priority for
the cached data pages associated with small size requests, but also
abstract the hot accessed data from large write requests and keep
them separately in the cache.

3 DESIGN AND IMPLEMENTATION
3.1 High-Level Overview of Req-block
We propose a DRAM cache management scheme with write request
granularity for NAND-based SSDs, called Req-block. The principle
idea of Req-block is taking a request block as the basic unit for
cache space allocation, and adopting different techniques for cached
request block management with small and large size write requests.

Figure 4 shows a high-level overview of Req-block, which holds
three-level linked lists for enabling request-granularity based cache
management inside SSDs. As seen, when a write request arrives,
we build a request block by grouping its data pages and initially

1We refer a small request while its size is not larger than the average size of all requests
of selected traces in this analysis, and other requests are regarded as large size requests.
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Figure 4: Overall architecture of our proposal of Req-block
cache management.

insert it to the head of Inserted Request List (IRL). Subsequently,
Req-block supports upgrading the cached request blocks to higher
level linked lists of Small Request List (SRL) or Divided Request List
(DRL), while they or part of them are hit in the cache.

Specially, we configure a size limit (i.e. the parameter of 𝛿)
for the request blocks in SRL, and the request blocks that have
more than 𝛿 data pages cannot be directly moved to SRL. We prefer
buffering the data pages of small request blocks of SRL in the cache,
by assigning a higher priority to them.

Once the cache becomes full, Req-block compares the priorities
of the tail nodes of three linked lists and evicts a request block that
has the lowest priority for making available cache space. To this
end, the data structure of request block contains the information of
the size and the access count, which is used to select the eviction
victim.

3.2 Block Request Upgrade
All request blocks of write requests are initially inserted into the
Inserted Request List. After the block or a part of the block is re-
accessed, the proposed Req-block scheme will carry out an upgrad-
ing adjustment of the request block.

The design principle is that the data pages of small requests
have more opportunities to be upgraded to higher level linked lists
and thus preferably are kept in the cache. Therefore, Req-block
supports different routines to adjust small request blocks (their size
is not larger than 𝛿) and large request blocks, after they have been
re-accessed in the cache.

3.2.1 Hit on Large Request Blocks. A large request block includes
a large number of pages, in which some pages are less likely to be
re-accessed in the future. Req-block splits large request blocks and
makes an adjustment for the hit data pages to Divided Request List.
Note, that the split request block that is originally from a large block
request must be inserted to the head of the DRL list, regardless of
its size and the location of the original request block.

Figure 5(a) shows an adjustment example of page hits on the
large request blocks located in either IRL or DRL. As seen, the hit
data pages will be abstracted from the original request block, and
is inserted to the DRL list after creating a new request block.

3.2.2 Hit on Small Request Block. When one or more data pages
of a small request block (i.e. the page number is not larger than 𝛿)
are hit in the cache, Req-block adjusts it with an upgrade operation
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and directly moves the hit small request block to the head of Small
Request List.

Figure 5(b) illustrates an instance of upgrading two hit small
request blocks. As seen, we move the small request block that
contains Page M to SRL from IRL, and adjust the split small request
block that has Page K+1 to SRL from DRL.

3.3 Cache Eviction
Evicted data pages should be selected and then flushed onto un-
derlying flash cells of the SSD to make cache space for new data.
In Req-block, we introduce data eviction with the unit of request
block, in which all data pages belonging to the same request block
are evicted in batch to utilize the parallelism of multiple channels
inside SSDs.

As previously demonstrated in Figure 4, the victim request block
is chosen from the tail nodes of three linked lists, and the request
block with the lowest priority will be selected. To this end, we
introduce a method to estimate the priority for a given request
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block, by considering the average access count of each page and
the distance between the insert time and current time.

Equation 1 defines the access frequency of request block, labeled
as 𝐹𝑟𝑒𝑞𝑟𝑒𝑞_𝑏𝑙𝑘 , and a tail request block with the smallest value of
𝐹𝑟𝑒𝑞𝑟𝑒𝑞_𝑏𝑙𝑘 will be evicted.

𝐹𝑟𝑒𝑞𝑟𝑒𝑞_𝑏𝑙𝑘 =
𝐴𝑐𝑐𝑒𝑠𝑠𝑐𝑛𝑡

𝑃𝑎𝑔𝑒𝑛𝑢𝑚 × (𝑇𝑐𝑢𝑟 −𝑇𝑖𝑛𝑠𝑒𝑟𝑡 )
(1)

where 𝐴𝑐𝑐𝑒𝑠𝑠𝑐𝑛𝑡 is the access count of the block request since it
was buffered in the cache, which is initialized to 1; 𝑃𝑎𝑔𝑒𝑛𝑢𝑚 is
the number of pages in the block request; 𝑇𝑐𝑢𝑟 and 𝑇𝑖𝑛𝑠𝑒𝑟𝑡 are the
current time point and the insert time of the request block.

Our proposal of Req-block adopts three-level linked lists to man-
age the cached request blocks, and the blocks in SRL and DRL are
usually with lager 𝐴𝑐𝑐𝑒𝑠𝑠𝑐𝑛𝑡 and smaller 𝑃𝑎𝑔𝑒𝑛𝑢𝑚 , thus gaining
a higher priority to be kept in cache, compared with the request
blocks held in IRL.

Furthermore, Req-block supports downgraded merging of cached
blocks and evicts them in batch, and Figure 6 demonstrates the
workflow. As seen, the tail node of DRL is selected to be evicted as
it has the least value of 𝐹𝑟𝑒𝑞𝑑𝑖𝑠𝑐𝑛𝑡 . Then, we will merge it with the
neighbouring data pages in the lower level list of IRL by referring
to spatial locality, and evict them together in batch.

3.4 Implementation Details
Algorithm 1 demonstrates the specifications of Req-block in cache
management with three-level linked lists. Note that, the cache of
SSD devices is mainly used as a write buffer to cache the write data,
so that only the data pages associated with write requests will be
inserted to the cache.

As seen, Lines 1-6 and Lines 7-14 show the details about the
creation of request blocks and the selection of victim blocks. The
main routine of Req-block begins in Line 15. Specifically, Lines 19-28
mainly illustrate the adjustment of request block when a hit on a
small or large request block. Lines 30-39 deal with the case of cache
miss, in which it needs to evict the cached blocks to make room for
the new data.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup
Wehave performed trace-driven simulationwith SSDsim [26], which
has been modified to support our newly proposed Req-block cache
management scheme. The experiments were conducted on a local
ARM-based machine, which has an ARM Cortex A7 Dual-Core with
800MHz, 128MB of memory and runs 32-bit Linux. Experimental
settings are presented in Table 1, mainly corresponding to [12] [27].
Besides, we further investigate the performance of Req-block with
different scales of data cache. 128GB SSD devices are generally
equipped with 128MB DRAM by the proportion of 1GB:1MB [12],
and at least 100MB of which is used to storing the mapping ta-
ble to support page-level FTL [13]. Specifically, we set the size of
data cache varying from 16MB to 64MB for our 128GB SSD device,
excluding the DRAM space used for holding the mapping table.

To make a comprehensive assessment of Req-block, we select 6
commonly used disk traces that are collected from different kinds

Algorithm 1: The Workflows of Req-block
Input: I/O request R with request type 𝑅𝑡𝑦𝑝𝑒 , logical page

number 𝑅𝑙𝑝𝑛 , and request size 𝑅𝑠𝑖𝑧𝑒
Output: 𝑁𝑈𝐿𝐿

1 Function create_req_blk(list, req)
2 if list.head.Req ≠ req then
3 /*head block of list does not belong to req*/
4 blk = new request block;
5 blk.Req = req;
6 insert_to_head(𝑙𝑖𝑠𝑡 , 𝑏𝑙𝑘);

7 Function get_victim()
8 /*select a victim block*/
9 victim = tail block with minimum 𝐹𝑟𝑒𝑞𝑑𝑖𝑠𝑐𝑛𝑡 ;

10 if victim is a split block then
11 /*merge operation for evicting a request block*/
12 if original block of victim is still in IRL then
13 victim = merge(victim, orig_block);

14 return victim;
15 Function main_routine()
16 𝑙𝑝𝑛 ← 𝑅𝑙𝑝𝑛 ; 𝑠𝑖𝑧𝑒 ← 𝑅𝑠𝑖𝑧𝑒

17 while 𝑠𝑖𝑧𝑒 ≠ 0 do
18 /*page hit*/
19 if is_in_cache(𝑙𝑝𝑛) then
20 read or update lpn in cache;
21 request_blk = get_blk(lpn);
22 if 𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑏𝑙𝑘.𝑃𝑎𝑔𝑒𝑛𝑢𝑚 ≤ 𝛿 then
23 /*move request block to head of SRL*/
24 move_to_head(𝑆𝑅𝐿, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑏𝑙𝑘);
25 else
26 remove_from_req_blk(𝑙𝑝𝑛);
27 create_req_blk(𝐷𝑅𝐿, 𝑅);
28 insert_to_head_blk(𝐷𝑅𝐿, 𝑙𝑝𝑛);

29 /*page miss*/
30 else
31 if 𝑅𝑡𝑦𝑝𝑒 is write then
32 if cache_is_full() then
33 /*eviction for making space*/
34 victim = get_victim();
35 evict_from_cache(𝑣𝑖𝑐𝑡𝑖𝑚);
36 create_req_blk(𝐼𝑅𝐿, 𝑅);
37 insert_to_head_blk(𝐼𝑅𝐿, 𝑙𝑝𝑛);
38 else
39 read_from_flash(𝑙𝑝𝑛);

40 size−−; lpn++;

of applications. Specially, the 2016021613-LUN0 (labeled as lun1)
is recently collected from the enterprise virtual desktop infrastruc-
ture(VDI ) [28]. The remainder 5 traces are selected from the block
I/O trace collection of Microsoft Research Cambridge [29]. The
specification on the selected traces is shown in Table 2. In the table,
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Table 1: Experimental settings of SSDsim

Parameters Values Parameters Values
Capacity 128GB Read latency 0.075ms

Channel Size 8 Write latency 2ms

Chip Size 2 Erase latency 15ms

Page per block 64 Transfer (Byte) 10ns

Page Size 4KB GC Threshold 10%

FTL Scheme Page level DRAM Cache 16/32/64MB

Table 2: Specifications on traces (ordered by the write ratio)

Traces Req # Wr Ratio Wr Size Frequent R(Wr)
hm_1 609312 4.7% 20.0KB 46.1%(83.9%)

lun_1 1894391 33.2% 18.6KB 12.4%(12.8%)

usr_0 2237889 59.6% 10.3KB 52.9%(32.9%)

src1_2 1907773 74.6% 32.5KB 79.6%(39.1%)

ts_0 1801734 82.4% 8.0KB 43.0%(58.1%)

proj_0 4224525 87.5% 40.9KB 62.5%(59.9%)
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Figure 7: The sensitivity of parameters on hit ratio and I/O
response time with 32MB cache. (Normalized to 𝛿 = 1).

Frequent R means the ratio of addresses requested not less than
3, and (Wr) implies the percent of write addresses in which.

Apart from the widely used LRU algorithm, we also take the
VBBMS and BPLRU into comparison evaluation. The main design
of the VBBMS and BPLRU schemes are summarized as follows:

• BPLRU [15] supports block granularity cache management. A
block of cached pages is flushed onto physical SSD block of
underlying flash memory on a replacement process. Furthermore,
the cached block can be adjusted to the tail of the LRU list for
the preferential eviction, while it is written sequentially.
• VBBMS [16] splits the cache space into a random request service
region and a sequential request service region, by following the
proportion of 3:2, and the sizes of virtual block in two regions
are respectively set to 3 pages and 4 pages.

We argue that BPLRU and VBBMS are the most related works of
our proposal, as both of them have the consideration of (large size)
sequential writes have less temporal locality.
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Figure 8: Comparison of overall I/O response
time(Normalized to LRU ). Note that the numbers un-
der the X-axis are the absolute values of LRU (unit: ms).

4.2 Results and Discussion
4.2.1 Sensitivity of Parameters. In the Req-block scheme, the size
limit of the request block in Small Request List (i.e. 𝛿) is a sensitivity
parameter, which is used to distinguish small and large request
blocks. Generally, Req-block performs page-based cache manage-
ment in SRL if 𝛿 is equal to 1, and a large 𝛿 implies request blocks
that can be upgraded to the SRL list, may have more data pages.

That is to say, it is important to find a suitable 𝛿 for yielding
an effective separation of request blocks. From the results of our
comprehensive sensitivity tests, as shown in Figure 7, we conclude
that a 𝛿 value of 5 results in a better hit ratio and I/O performance
for most of the selected I/O workloads, thus we use this value by
default in our evaluation.

4.2.2 I/O Response Time. I/O response time is the primary indica-
tor of performance in SSDs. Figure 8 shows the normalized results
of I/O response time after replaying the selected traces. We can see
that Req-block can make a significant reduction on I/O response
time. Specifically, it reduces I/O time by 23.8%, 11.3%, and 7.7%
on average, in contrast to LRU, BPLRU, and VBBMS respectively.

VBBMS and Req-block result in better I/O performance with the
selected I/O traces, in contrast to LRU. That is because VBBMS and
Req-block perform cache evictions with a virtual block or request
block granularity that contain several data pages, which exploits
the multiple channels inside SSDs, and each eviction operation can
make more available cache space.
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Figure 9: Comparison of hit ratio of varied cache configura-
tions(Normalized to Req-block). Note that the numbers under
the X-axis are the absolute values of Req-block.

BPLRU generally performs worse than VBBMS and Req-block,
though it also manage the cached data with the block granularity.
The reason is that BPLRU flushes the whole block consisting of
many data pages onto a single SSD block, which fails to utilize
access parallelism across multiple channels inside SSDs, and then
affects I/O performance. Another interesting clue is about BPLRU
works the best in the case of hm_1. We argue that flushing a block
data onto a specific SSD channel only delays I/O processing at the
same channel, which does not affect processing other I/O requests
targeting at other channels, so that BPLRU may have better I/O
performance when running read-intensive workloads.

We argue that the optimization of I/O response time is related
to not only the cache hit ratio (see Section 4.2.3), but also the uti-
lization of single or multiple channels in the contexts of SSDs (see
Section 4.2.4).

4.2.3 Cache Hit. The term of cache hit means the ratio of the
pages from the I/O request that is absorbed by the cache, without
accessing to underlying flash memory. A higher cache hit ratio
implies less access to underlying flash arrays, which contributes to
better I/O performance.

Figure 9 reports the normalized results of hit ratio after run-
ning the benchmarks with varied cache management schemes. As
seen, the proposed Req-block scheme delivers the highest hit ratio
compared to the other algorithms. Specifically, Req-block improves
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Figure 10: Comparison of average page number of each evic-
tion.

cache hit by 42.9%, 23.6%, and 4.1% on average, in contrast to
LRU, BPLRU, and VBBMS.

Furthermore, Req-block achieves more pronounced improve-
ments in case of replaying the traces having considerable number
of both large and small requests, as Req-block can make a better
separation of request blocks and the small request blocks are desig-
nated a high priority to be kept in the cache which contributes to
better cache hits. For example, in the cases of src1_2 and proj_0, our
proposal of Req-block can improve the hit ratio by up to 100.0%,
in contrast to the baseline of LRU. Similarly, BPLRU preferentially
evicts blocks of large size sequential write and VBBMS employs
three-fifth of the total cache capacity for buffering small size ran-
dom requests, so that they can also yield better cache hits after
replaying these traces compared to LRU.

Another observation is that BPLRU performs even worse on ts_0
with respect to the measure of cache hits, compared to the baseline
of LRU. This is because most of the requests in these traces are less
than 3 data pages but the size of a block in BPLRU is 64 pages. Thus,
the hot and cold level of the pages belonging to the same block can
be uneven, which can cause the lower cache utilization.

4.2.4 Batch Eviction. To characterize the eviction in the three cache
management schemes, we record the number of ejected pages in
each eviction operation. Statistics are shown in Figure 10. As seen,
our method of Req-block evicts pages in each eviction process be-
tween VBBMS and BPLRU. This is because Req-block evicts the data
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Figure 11: Comparison of write count to flash memory (unit:
106).

as the granularity of request block, while BPLRU and VBBMS evict
with a block or virtual block granularity.

We emphasize that evicting more data pages (more than the num-
ber of channels in SSDs) does not directly contribute to better I/O
performance, a large number of evicted pages may lead to flushing
congestion and even an I/O performance degradation. Nowadays,
high density SSDs usually come with multiple channels [30, 31].
For example, the SM8266 controller enables 16 SSD channels and
is designed to support the latest 3D TLC and QLC NAND flash
technologies [32]. Thus, it is beneficial to exploit the parallelism of
SSD channels for better I/O performance in cache management.

Three block-level cachemanagement schemes, i.e. BPLRU,VBBMS,
and Req-block eject multiple data pages in each eviction, that means
the data pages are flushed to the flash memory in batch and more
cache space can be freed up for upcoming write requests. However,
this may intuitively increase the number of write operations to
the flash memory if the flushed data pages are updated in the near
future. To prove batch eviction of our proposal does not lead to
more flush operations to flash array in the end, we record the write
count after running the selected benchmarks, by using different
cache management schemes.

As reported in Figure 11, Req-block causes the least number of
write count in most of traces. More exactly, it can cut down the
number of write count by 8.6%, 4.3%, and 1.1% on average, in
contrast to LRU, BPLRU, and VBBMS. In fact, evicting more cold data
pages earlier can make more room for hot data and thus boost I/O
performance. Our proposal of Req-block preferentially ejects cold
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Figure 12: Space overhead of three cache management
schemes.

large request blocks, as the data pages of these request blocks are
less likely to be updated frequently. On the other hand, Req-block
can then hold more hot data pages in cache to absorb write requests
and thus yield better performance.

4.2.5 Run-Time and Space Overhead. The time overhead of used
cache management schemes is mainly caused by search and adjust-
ment operations on the linked lists that manage the data structure
of cached items. The search operations of cached pages in SSD-
sim simulator are performed on an AVL-tree with O(log n) time
complexity, and n is the number of cached data pages. Besides, the
adjustment operations on the linked-list cause O(1) time complexity.
Overall, we conclude that the time complexity of Req-block is O(log
n). In other words, the run-time overhead of Req-block is acceptable.

The space overhead is due to storing the linked lists, which is
directly related to the number of cached items and the size of the list
node that corresponds to a cache item. Specifically, the granularity
of cached items in LRU, BPLRU, and Req-block is a page, a block,
and a request block, and the corresponding node requires 12 Byte,
24 Byte, and 32 Byte, respectively. Specially, the VBBMS adopts a
virtual block, which needs the same memory as a block.

Figure 12 shows the space overhead of three cache management
schemes. As seen, our proposal of Req-block needs 67.6 KB, 133.6
KB, and 271.6 KB on average with different sizes of cache config-
urations, and corresponds to an average of 0.41% of total cache
space. Besides, LRU, BPLRU, and VBBMS separately need 0.29%,
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Figure 13: Page count of three lists in Req-block, which is
logged once for every 10,000 requests (K means 1024).

0.32%, and 0.53% of total cache space on average. Thus, we con-
clude that the space overhead of Req-block is comparable to that of
LRU, BPLRU, and VBBMS.

4.3 Analysis on Lists of Req-block
This section characterizes the number of elements in three-level
linked lists, adopted by the proposed Req-block scheme. Figure 13
reports the number of pages in three linked lists after replaying the
selected traces. As shown, a majority of data pages in the cache is
reserved in SRL and IRL, especially, SRL contains the largest number
of cached pages in most cases. This is because the request blocks
in SRL are more likely with a higher access count and a lower page
number and thus they have more opportunities to be kept in the
cache. In addition, the newly inserted pages are initially added to
IRL, so that the number of cached pages accounts for a reasonable
proportion.

Another interesting observation shown in the figure is that DRL
holds a small part of cached request blocks. This information further
verifies that large block requests and their parts of data pages will be
re-accessed with a low probability. Thus, managing the cached data
as the request granularity and preferably keeping small requests in
the cache can contribute to I/O performance improvements, which
has been illustrated in Section 4.2.2.

5 CONCLUSION
This paper has proposed a request-granularity based cache manage-
ment approach for SSD devices, called Req-block. Considering that

the data of small sized requests are more likely to be accessed in
the DRAM cache compared to those with larger size request data,
Req-block directly manages the cached data in batches (i.e. request
blocks) corresponding to the write requests. To this end, it supports
three-level linked list and performs different cache management for
the cached request blocks corresponding to write requests with dif-
ferent sizes. The scheme preferentially keeps small request blocks
in the DRAM cache.

Through a series of simulation tests based on several real-world
disk traces, we have demonstrated that our proposal enhances cache
hits by up to 90.5%, and reduces I/O latency by 14.3% on average,
compared to other state-of-art cache management schemes in SSDs.
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