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Abstract

The particle swarm optimisation algorithm is proposed as a new method to design a model-based
predictive greenhouse air temperature controller subject to restrictions. Its performance is compared
with the ones obtained by using genetic and sequential quadratic programming algorithms to solve
the constrained optimisation air temperature control problem. Controller outputs are computed in
order to optimise future behaviour of the greenhouse environment, regarding set-point tracking and
minimisation of the control effort over a prediction horizon of 1 h with 1-min sampling period, for a
greenhouse located in the north of Portugal. Since the controller must be able to predict the greenhouse
environmental conditions over the specified time interval, it is necessary to use mathematical models
that describe the greenhouse climate, as well as to predict the outside weather. These requirements are
met by using auto regressive models with exogenous inputs and time series auto-regressive models
to simulate the inside and outside climate conditions, respectively.

These models have time variant parameters and so, recursive identification techniques are applied
to estimate their values in real-time. The models employ data from the climate inside and outside the
greenhouse, as well as from the control inputs. Simulations with the proposed methodology to design
the model-based predictive air temperature controller are presented. The results indicate a better
efficiency of the particle swarm optimisation algorithm as compared with the efficiencies obtained
with a genetic algorithm and a sequential quadratic programming method.
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1. Introduction

Greenhouses are building structures that allow the creation of an indoor microclimate
for crop development, protecting plants from adverse outdoor conditions. The greenhouse
climate can be modified by artificial actuations, such as heating, ventilation and CO2 sup-
ply, in order to provide the best environmental conditions. These modifications must be
accomplished by spending additional energy in the production, requiring a regulator that
minimises the energy consumption while keeping the state variables as close as possible
to the optimum crop physiological reference. The use of model predictive control (MPC)
for greenhouse indoor environment control has the advantage of providing the system with
the ability to react before any deviations in the controlled variable take place, avoiding
delays in the system response (Nielsen and Madsen, 1996). This class of control algorithms
must employ models to describe and predict variables required for crop development over a
specified time horizon. The MPC operation, within a process with bounded signals, usually
involves the solution of a quadratic programming problem. This optimisation procedure is
a fundamental part of model-based predictive control. The controller states are obtained by
iterative numerical procedures that can be based on deterministic or stochastic algorithms.
The optimiser must be able to handle constraints to model physical bounds, such as actua-
tor saturation. Commonly, magnitude and rate constraints for the control actions and level
constraints for the outputs are considered. Model predictive control cost functions, when
subjected to restrictions, define a complex, non-linear, non-convex search space (Camacho
and Bordons, 1994); hence, suitable for evolutionary algorithms optimisation.

This paper reports the use of the particle swarm optimisation algorithm (Kennedy and
Eberhart, 1995) to optimise a predictive controller within a greenhouse temperature control
application. The results achieved with the proposed methodology are compared with the
ones obtained with a genetic algorithm and a sequential quadratic programming method.

2. Methods and theoretical background

2.1. Experimental set-up

This section describes the experimental set-up and the methods used to simulate and
control the air temperature inside a greenhouse located on the UTAD University Campus
in the north of Portugal.

The greenhouse had a floor area of 210 m2 and was covered with a 200�m polyethylene
film. To control its climate, several actuators and sensors were installed and connected to
an acquisition and control system based on a personal computer and a data acquisition card
(PCL-818, Advantech). This device had 16 analogue channels with 12-bit resolution, 31
digital input/output channels, one 16-bit counter, one analogue output and a real-time clock.

The weather and the greenhouse climate physical variables were acquired and/or con-
trolled, with a sampling interval of 1 min. Inside and outside air and soil temperatures,
relative humidities and solar radiation were measured using, respectively: PT100 sensors,
capacitor sensors (F22H, Rotronic) and low-cost optoelectronic sensors (TSL230, Texas
Instruments). Inside air CO2 concentration was measured with an infrared gas analyser
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(GMP111, Vaisala) and the wind speed was measured with an anemometer (PV01-02,
Electromatic).

Outside sensors were located 2 m above the soil. Inside the greenhouse, the air environ-
mental data were measured at the central point 1 m above the soil, and soil temperature was
measured at a depth of 5 cm. The data-acquisition system resolutions, including the sensors,
were±0.2◦C, ±2%,±0.2 m/s and±10 W/m2 for temperatures, relative humidities, wind
speed and solar radiation, respectively. The installed actuators were a ventilator with a flow
rate of 38,000 m3/h, a shadow/thermal screen, a gas heating system with a heating power
of 100,416 kJ/h, CO2 injectors and an irrigation system.

Inside air temperature set-points,w(k), were constant during the daytime period and
computed on-line for the night period. The desired air temperature for daytime conditions
was 24◦C. For the night period, the desired air temperature depended on the outside air tem-
perature,To, and wind speed,Ws, in order to reduce the heating system energy consumption.
These values are computed each minute using Eq.(1),

w(k) + 0.1Ws(k) =




12 (◦C); To(k) < 0 ◦C

0.5To(k) + 12 (◦C); 0◦C ≤ To(k) ≤ 8◦C

16 (◦C); To(k) > 8◦C

(1)

whereWs(k) andTo(k) are the wind speed and outside air temperature measured at sample
k.

The effective set-points used by the controller were obtained as the mean value of the last
10 calculations, which prevented high-frequency fluctuations in the air temperature caused
by fast load variations in the wind speed or the transitions between night and day periods.

2.2. Air temperature model

To design model-based control algorithms to compute suitable control inputs in such a
way that a cost performance function is optimised, it is necessary to use software models to
compare different scenario outcomes. This requirement implies the use of dynamic models
to predict the inside greenhouse climate, as well as the weather, in order to infer the optimal
solution of a set of control sequences.

The dynamic changes in the greenhouse are determined by differences in energy and
mass contents between inside and outside air, from exogenous energy as solar radiation
or outdoor temperature and through the control actions taken. The greenhouse air energy
balance is affected by energy supply and energy losses. The former is due to an artificial
heating system and heat load imposed by the sun and the latter is due to transmission through
the greenhouse cover and forced ventilation. Other energy and mass transport phenomena,
for instance at the greenhouse soil, are neglected due to their small contribution to the overall
air temperature dynamics.

Assuming that the greenhouse climate can be described by a linear system around an
operating point, the greenhouse air temperature model is described by a parametric equation
with exogenous inputs,u (Ljung, 1987),

Ti (kT ) · A(q−1) = u(kT − nT ) · B(q−1) + ε(kT ) (2)
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whereTi is the air temperature,T the sampling interval,q−1 the backward-shift operator,
n the number of delays from input to output,u the input signals vector andA andB are
polynomials inq−1.

To select a model, a set of possible models, with different orders (degrees of polynomials
A andB) and delays were first tested. There are several criteria that can be employed for
this purpose, but the one most commonly used is Aikaike’s Information Theoretic Criterion
(AIC) (Akaike, 1974).

More explicitly, to simulate and predict the air temperature,Ti , the model described by
Eq.(3) is used,

Ti (kT ) = [b1q
−1 b2q

−1 b3q
−1 b4q

−1 b5]

1 + aq−1 ·




�Ti,o(kT )

Ro(kT )

�Tp,i (kT ) · H(kT )

�Ti,o(kT ) · V (kT )

1




(3)

wherea denotes the transfer function denominator parameters,bi the coefficients of the
Bi polynomials in the delay operator,�Ti,o(kT) = Ti (kT) − To(kT) the difference between
inside (Ti ) and outside (To) air temperatures,�Tp,i(kT) = Tp(kT) − Ti (kT) is the difference
between the heating pipe water (Tp) and inside air (Ti ) temperatures,Ro is the outside solar
radiation,V andH the ventilation and heating control input signals, respectively, and the
constant input 1 relates to the offset component.

The model parametersa, b1, b2, b3 andb4 represent the partial contributions of each
physical variable in the overall greenhouse air temperature andb5 is the contribution of the
continuous component. Since the model parameters are time varying (Boaventura Cunha
et al., 2000), recursive identification techniques must be employed to estimate their values.

There are several methods that can be used to estimate the time-varying parameters of
polynomialsA andB (Åström and Wittenmark, 1995). For the case where the real parameters
are slow time variant, as in this type of process, a recursive least-squares algorithm with
exponential forgetting can be used (Boaventura Cunha et al., 1997). For the system described
in Eq.(3), with delayn = 1, the model output,̂Ti (k), can be expressed as:

T̂i (k) = ϕT(k)θ + ε(k) (4)

where:ϕ(k) is the data or regression vector andθ is the vector that contains the estimated
parameters,

ϕ(k) =




Ti (k − 1)

�Ti,o(k − 1)

Ro(k − 1)

�Tp,i · H(k − 1)

�Ti,o · V (k − 1)

1




(5)

θ = [a b1 b2 b3 b4 b5]T (6)
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The recursive computations of the vector parameters can be realized using Eqs.
(7.1)–(7.3)known as Recursive Least-Squares algorithm (RLS),

θ̂(k) = θ̂(k − 1) + K(k)[y(k) − ϕT(k)θ̂(k − 1)] (7.1)

K(k) = P(k − 1)ϕ(k)[I + ϕT(k)P(k − 1)ϕ(k)]
−1

(7.2)

P(k) = [I − K(k)ϕT(k)]P(k − 1) (7.3)

whereK(k) denotes a gain matrix andP(k) is the covariance matrix of the estimated param-
eters.

This RLS algorithm assumes that the process model parameters are constant. Since
the real processes have time-varying parameters, the least-squares method could lead to
inadequate estimations. To cope with time-variant cases, some adjustment mechanisms
must be introduced in the previous basic equations. Several solutions to this problem have
been proposed (Åström and Wittenmark, 1995; Ljung, 1987). When the real parameters
have abrupt changes, the covariance matrixP must be periodically reset toαI, with α being
a large number. If the real parameters are slowly time-variant, an RLS with exponential
forgetting can be used. In the RLS with exponential forgetting algorithm, the least-squares
criterion is given by,

V (θ, k) =
k∑

j=1

λk−i(Ti(j) − ϕT(j)θ(j − 1))
2

(8)

where 0 <λ < 1, designates the forgetting factor. This factor implies a time varying weighting
of the data.

This method has the main disadvantage that when the input is not persistent, and as the
old data is discarded in the estimation procedure, the matrixP increases exponentially with
rateλ, which in this case was chosen as 0.9. This phenomenon is called estimator windup.

To solve the problem of estimator windup, an estimator that forgets the information
only in the directions in which new information is gathered was implemented. For the
estimator described by Eqs(9.1)–(9.8), the estimations converge avoiding large changes
in the parameters. The parameters that minimise the cost function in Eq.(8) are obtained
recursively fromParkum (1992):

α(k) = P(k)ϕ(k + 1) (9.1)

β(k) = ϕT(k + 1)α(k) (9.2)



ξ(k) = β(k)

�β(k) − (1 − �)
, β(k) > 0

ξ(k) = 1 , β(k) ≤ 0
(9.3)

δ(k) = α(k)

ξ(k) + β(k)
(9.4)

K(k) = δ(k)ϕT(k + 1) (9.5)

P(k + 1) = [I − K(k)]P(k)[I − KT(k)] + δ(k)δT(k) (9.6)
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ε(k + 1) = y(k + 1) − ϕT(k + 1) · θ̂(k) (9.7)

θ̂(k + 1) = θ̂(k) + P(k + 1)ϕ(k + 1) · ε(k + 1) (9.8)

This method can be combined with other methods and techniques aiming to achieve a
robust estimation algorithm. A simple way to improve the robustness of this method is to sub-
stitute for the prediction error used in the estimator law,ε(k + 1) =Ti (k + 1)− ϕT(k + 1)θ(k),
with a function,f(ε(k)), in order to decrease the effects of infrequent large noise signals,
such as in the case of intermittent sensor failures, over the computed parameters. In this
way, the parameter adaptation law can be replaced by (Åström and Wittenmark, 1995),

θ(k + 1) = θ(k) + P(k + 1) · ϕ(k + 1) · f (ε(k + 1)) (10)

wheref(ε(k + 1)) is a linear function for small prediction errors but increases slowly for
large ones,

f (�(k + 1)) = �(k + 1)

1 + d|�(k + 1)| (11)

in which d is a positive constant.
Figs. 1–3show the parameters computed on-line for the day 5 November of 2000. These

parameters, computed using Eqs. (9)–(11), together with the inside and outside greenhouse
climate data, were used to compare the described temperature adaptive control algorithms,
regarding both set point accuracy and control effort. These figures allow the visualisation
of the model time-varying parameters, estimated with a time step of 1 min. Detailed infor-
mation about the greenhouse climate model and the estimation techniques used to compute
their values can be found inBoaventura Cunha et al. (1997).

Fig. 1. Evolution of the computed parametersa andb1 of the air temperature model Eq.(3).
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Fig. 2. Evolution of the computed parametersb2 andb3 of the air temperature model Eq.(3).

2.3. Model predictive control

Model Predictive Control (Clarke et al., 1987) comprises a collection of control methods
having in common that the controller is based on the future predictions of the system
behaviour using a mathematical model of the plant. There are several predictive control
algorithms based on process models. These algorithms differ from each other only in the
system or disturbances model’s structures and in the objective function to be minimised
(Camacho and Bordons, 1994), and have been applied to a wide set of control engineering

Fig. 3. Evolution of the computed parametersb4 andb5 of the air temperature model Eq.(3).
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Fig. 4. Basic strategy of a model-based predictive controller. Reference signal,w, control signal,u, and output
signal,ŷ, vs. number of samples.

applications including greenhouse environmental control (Pinon et al., 2000; Kyriannakis
et al., 2002; El Ghoumari et al., 2002).

The performance of MPC depends largely on the accuracy of the process model. This
performance increases as the process-model mismatch decreases. The estimated model
must be as simple as possible and capable of describing the system dynamics in a way to
predict, with some precision, future outputs. So, a large part of the design effort is related
to system modelling and identification. MPC involves the computation of a sequence of
future control values for which it is expected that the system output tracks a given input
reference. The methodology underlying these types of controllers is characterized by the
strategy illustrated inFig. 4(Camacho and Bordons, 1994).

Future outputs for a prediction horizonL are computed for each samplek using the process
model. The predicted output ˆy(k + j|k) for j = 1, . . ., L is computed using past inputs and
outputs as well as the computed future values of the control signal. The collection of future
control signals is computed by optimising a predefined criterion in order to maintain the
process output as close as possible to the referencew(k). This criterion normally takes the
form of a quadratic function of the error between the predicted output and the set point. In
most cases, the control effort is included in the objective function in order to avoid abrupt
changes in the control action.

Future control actions are computed optimising a specified cost function governed by
the following expressions:

J = λ1

hmax∑
j=hmin

[ε(k + j|k)]2 + λ2

hc∑
j=1

[�u(k + j − 1)]2 (12)

ε(k + j|k) = ŷ(k + j|k) − w(k + j) (13)

whereε(k + j|k) is the prediction error between the future trajectory and expected output,
�u(k + j − 1) represents the control effort,λ1 andλ2 the weighing factors for each compo-
nent,hmax andhmin represent the maximum and minimum prediction horizon andhc is the
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control horizon. Constantshmax andhmin represent the instant limits in which it is desirable
that the output follows the reference.

The reference trajectoryw(k + j) is sometimes different from the real reference (Clarke
et al., 1987). Normally, a soft approximation from the actual value of the output towards the
known reference is considered. This approach avoids abrupt changes in the control action by
means of less aggressive responses. The shaped referencew(k + j) is often approximated
by using a first-order lag model as described by Eqs.(14)and(15).

w(k) = y(k) (14)

w(k + j) = α · w(k + j − 1) + (1 − α) · r(k + j) (15)

with α ∈ [0, 1], j = 1, 2,. . ., andr(k) denoting the real reference signal.

2.4. The particle swarm optimisation algorithm

Kennedy and Eberhart (1995)proposed the Particle Swarm Optimisation (PSO) algo-
rithm, conceptually based on the social behaviour of groups of organisms, such as herds,
schools and flocks. As an evolutionary technique, the PSO is a population-based algorithm,
formed by a set of particles, representing potential solutions for a given problem. Each
particle moves through an-dimensional search space, with an associated position vector
Xi(t) ={xi1(t), xi2(t),. . ., xin(t)} and velocity vectorVi(t) ={vi1(t), vi2(t), . . . , vin(t)} for the
current evolutionary iterationt.

The original PSO model integrates two types of knowledge acquisition by a particle:
through its own experience and from social sharing from other population members. The
former was termed cognition-only model and the latter was termed social-only model
(Kennedy, 1997). The behaviour of each particle is based on these two types of knowl-
edge and their current position regarding the search. The particle behaviour is modelled by
using the following equations:

coid(t) = pid(t) − xid(t) (16)

soid(t) = pgd(t) − xid(t) (17)

vid(t + 1) = vid(t) + 2ϕ1 · coid(t) + 2ϕ2 · soid(t) (18)

xid(t + 1) = xid(t) + vid(t + 1) (19)

in which d represents the dimension index, 1≤ d ≤ n, pid(t) represents the best previous
position of particlei in the current iterationt, pgd(t) represents the global best position in
the current iteration for a pre-defined neighbourhood type, and the terms co, so,v denote
cognition-only, social-only and velocity. Parameterϕ1 is known as the cognitive constant
and ϕ2 is known as the social constant, which represent uniformly distributed random
numbers generated in a pre-defined interval.

An additional parameter was incorporated into Eq.(18) by Shi and Eberhart (1999),
resulting in the relation(20):

vid(t + 1) = ω(t) · vid(t) + ϕ1 · coid(t) + ϕ2 · soid(t) (20)
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in which ω represents the inertia weight. The value given to the inertia weight will affect
the type of search in the following way: a largeω will direct the PSO for a global search
while a smallω will direct the PSO for a local search. This parameter can vary linearly
from a larger value to a smaller value in order to make the search global in the early run and
local in the end of the run. Constantsϕ1, ϕ2 andω can be interpreted as the confidence that
each particle has in the current position, its own experience and its neighbours experience,
respectively.

The neighbourhood can be of different size and topology. Each particle can take into
account either:

(i) The social information from a list of particles pre-defined in the beginning of the simu-
lated evolution. The list can incorporate all the population individuals, with an individual
being able to use the best solution found by every other member. This full-connected
social network structure was termedStar. In other list definitions, an individual uses
only k adjacent neighbours organised in aCircle or Wheel topology (Kennedy et al.,
2001).

(ii) The physical information which considers distance between neighbouring individuals,
evaluated using some metric definition.

The velocity is limited by a maximum,Vmax, meaning the maximum jump that each
particle can make in one iteration. The selected value forVmax should not be too high
to avoid oscillations, or too low to avoid search traps. The inertia weight and maximum
velocity parameters selection in the PSO algorithm was studied and reported byShi and
Eberhart (1998). Each particle position should also be located within its dynamic range
[Xmin, Xmax].

The PSO algorithm has been applied successfully to solve several optimisation prob-
lems (Kennedy et al., 2001), including control tuning and optimisation (De Moura Oliveira
et al., 2002; Coelho et al., 2002a,b).

2.5. Methodology of the optimisation application

The problem addressed in this report is to control the air temperature within a greenhouse
using a MPC strategy. The quadratic programming (QP) problem underlying this type of
controller was solved iteratively using the PSO algorithm and the results were compared with
the ones obtained by using genetic algorithms (GA) and sequential quadratic programming
(SQP) (Biggs, 1975) methods.

Besides the modelling technique described in Section2.2, the MPC requires models to
predict the outside climate during the prediction horizon. Several approaches were suc-
cessfully used with this propose, such as the lazy men’s prediction (Van Straten, 1996).
Here, auto-regressive models, described by Eq.(21), are applied to predict the outside air
temperature and solar radiation (Coelho et al., 2002a,b),

yTS(kT ) · ATS(q−1) = ξ(kT ) (21)

in whichATS is a fourth-order polynomial inq−1, yTS the time series to be modelled andξ

is the model error.
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Table 1
Particle swarm algorithm settings

Population size 30

ϕ1 N (0.0, 2.0)
ϕ2 N (0.0, 2.0)
ω Linear decay (1.4, 0.7)
Coding scheme Floating point

To use evolutionary algorithms as design tools within the predictive control framework, it
is necessary to modify them accordingly. The prediction steps are represented by population
members that correspond to genes and space coordinates in the GA and PSO algorithms,
respectively. Thus, control actions�u to be applied to the system in a specified future time
are encoded into corresponding data structures that form the population. In each genera-
tion/epoch the best two solutions found are shifted one position toward the present instant
and introduced in the population of the next generation. The size of the population must be
related to the size of the search space, ensuring a sufficient number of points for the evo-
lutionary algorithm prospect. In the present case, a population of sizen = 30 was selected
in order to reduce the computational time. The best population/swarm solution was used as
a stop criterion; i.e., the search algorithm stops if its convergence rate does not change in
30 generations/epochs.

The quadratic programming problem with linear restrictions was solved using the PSO,
GA and SQP for indoor greenhouse temperature control using the described MPC strategy.
Tuning parameters for both algorithms (Tables 1 and 2) are typical values used in these types
of optimisation algorithms. Further study involving different parameters is underway, which
will be reported in future publications, in which a comparison will be made with some results
published by (Krink et al., 2001; Ursem et al., 2002; Ursem, 2003). For control purposes,
the objective function to be minimized is described by:

Γ (u) = λ1 ·
60∑

j=1

ε(k + j)2 + λ2 ·
60∑

j=1

�u(k + j)2 (22)

The cost function factors,λ1 andλ2, define the set-point accuracy and control effort
relative weights, respectively, and are set toλ1 = 0.6 andλ2 = 1. The performance of each
optimisation algorithm was analysed in three different aspects: set-point accuracy(23),
energy consumption ((24) and(25)), for ventilation and heating signals, respectively, and
the normalized computing time(26) spent by each algorithm in relation to the maximum

Table 2
Genetic algorithm settings

Population size 30
Mutation probability 0.1
Crossover probability 0.75
Selection strategy Tournament
Coding scheme Floating point
Elitism Yes
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computation time required by the least efficient algorithm. Also, the standard deviations of
the control signals (σ�H andσ�V) were computed in order to evaluate the control effort for
each case.

SPe=
N∑

k=1

[Ti(k) − w(k)]2 (23)

EV =
N∑

k=1

V (k) (24)

EH =
N∑

k=1

H(k) (25)

CT = elapsed timeGA,PSO,SQP

max(elapsed timeGA,PSO,SQP)
(26)

3. Results and discussion

Simulations using two data sets, for the 5th of November of 2000 and the time period
from the 1st of December to the 12th December of 2000, are presented to illustrate the
performances of the PSO, GA and SQP algorithms regarding set-point accuracy, energy
consumption of the ventilation and heating systems, actuator effort (standard deviations of
the heating and ventilation control signals,σ�H andσ�V) and computation time.

Table 3
Simulation results using PSO, GA and SQP for the 5th day of November, 2000

SQP PSO GA

SPe 23.01 4.3 6.1
EH 344.4 351.8 356.1
EV 252.8 225.8 225.9
σ�H 0.055 0.053 0.055
σ�V 0.078 0.070 0.071
CT (%) 26 74 100

Table 4
Simulation results using PSO, GA and SQP for the time period from 1 December to 12 December, 2000

SQP PSO GA

SPe 248.3 56.4 77.2
EH 4216.4 4278.1 4314.3
EV 2160.1 2029.7 2011.4
σ�H 0.061 0.059 0.060
σ�V 0.072 0.065 0.066
CT (%) 30 82 100
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Fig. 5. Air temperature set-point tracking results using the PSO algorithm.

Tables 3 and 4show the results obtained with PSO, GA and SQP algorithms for the criteria
defined by equations(23)–(26)using the data sets mentioned.Tables 3 and 4simulation
results, indicate that the PSO algorithm was able to reduce the set-point tracking error in
approximately 30% (27%) and 81% (77%) relative to the set-point accuracies achieved with
the genetic and SQP algorithms, respectively. Simultaneously, the PSO algorithm was able
to decrease the variations in the heating and ventilation control signals, reducing the effort
over the actuators. Regarding the energy consumption computed with the three methods, it
can be concluded fromTables 3 and 4that they are very similar for the heating and ventilation

Fig. 6. Ventilation and heating control signals computed with the PSO algorithm. These signals are scaled between
0 and 1, corresponding to actuator power inputs range, from 0 to 100% of their maximum power.
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actions. The major drawback of the PSO algorithm is due to the large computation run time,
about 2.8 times greater than that required by the SQP method.

Due to the difficulty in visualizing the simulation curves for the largest data set,
Figs. 5 and 6show the simulated set-point tracking and actuating signals computed with
the PSO algorithm only for the 5th of November, 2000.

Fig. 5 indicates a close match between the system response (Ti ) and set-point (w) due
to the time scale used, as can been seen from the error plot clearly indicating error ampli-
tudes comprised between±0.2◦C. The heating and ventilation control signals are shown
in Fig. 6, scaled between 0 and 1, corresponding to actuator power inputs ranging from 0 to
100% of their maximum power. It can be seen from the air temperature and the controller
output curves (Figs. 5 and 6), that the PSO multivariable predictive controller has a good
performance in respect to set-point accuracy, energy saving and reduction of control effort.

4. Conclusions and further work

The particle swarm optimisation algorithm was proposed as an alternative method to
the design of a greenhouse air temperature model predictive controller subject to con-
straints. The controller outputs are computed to optimise the greenhouse environment future
behaviour, regarding air temperature set-point tracking and control effort reduction. The pre-
diction horizon considered was of 1 h with a 1-min sampling period. From the simulation
results, we can conclude that the PSO algorithm, using a small population size, was able
to significantly reduce the set-point tracking error using a lower control effort. As an evo-
lutionary inspired optimisation algorithm, the PSO requires a larger computation run time
than a classical optimisation technique, which still restricts its use in real-time applications.
However, future research involving the use of micro-sized populations and parallel com-
putational means will be directed to real-time greenhouse environmental control. Multiple
tests were also conducted using data sets for other periods during the year, and the results
are in agreement with those presented in this report. Moreover, the proposed techniques
will be implemented and tested not only for greenhouse temperature control, but also for
air humidity and CO2 concentration control.
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