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A B S T R A C T

Recent studies show a significant variation in antioxidant and antimicrobial properties between the various
garlic genotypes mostly due to differences in chemical composition and bioactive compounds content. The aim
of the present study was to evaluate antioxidant properties and antimicrobial activity of garlics collected from
the main cultivation areas of Greece, as well as to correlate this activity with their total phenolics content.
Genotype G5 showed the highest total phenolics content, which was significantly correlated with the lowest EC50

values for all the tested antioxidant activity assays. Antimicrobial activity was significant, especially against the
bacteria Proteus mirabilis and Antibiotic resistant Escherichia coli. In conclusion, significant variation was ob-
served between the studied garlic genotypes, indicating the importance of both growing conditions and genotype
on bioactive properties of dry garlic bulbs. This variation could be further exploited in breeding programs in
order to select elite genotypes with increased bioactive properties.

1. Introduction

Garlic (Allium sativum L.) is one of the most economically important
species of the Allium genus and a very economically important vege-
table with an annual production of 24,939,965 tonnes and a total
harvested area of 1,547,381 hectares (FAO Statistics Division, 2014).
Although, the species originates from Central Asia, it is widely dis-
tributed and well adapted throughout the Mediterranean basin, while in
Greece there are many regions where garlic is the main agricultural
product and a part of popular culture throughout the centuries.So far,
there is great interest in its therapeutic properties and health benefits
and many reports confirm the beneficial effects of garlic and garlic
related products, e.g. aged garlic extracts (AGE), garlic oils, essential
oils and so forth against various diseases (Casella, Leonardi, Melai,
Fratini, & Pistelli, 2013; El-Hamidi & El-Shami, 2015; Kopec,
Piatkowska, Leszczynska, & Sikora, 2013; Kyung, 2012; Martins,
Petropoulos, & Ferreira, 2016; Zeng et al., 2017). Moreover, considering
the vegetative propagation of garlic, there is a great interest for local
landraces and ecotypes regarding their bioactive compounds content
and the importance of genetic material conservation (Baghalian,
Naghavi, Ziai, & Badi, 2006; Baghalian, Ziai, Naghavi, & Naghdi Badi,
2005; Gonzalez, Soto, Sance, Camargo, & Galmarini, 2009; Kamenetsky
et al., 2005).One of the major beneficial effects of garlic is related with
antioxidant properties which have been tested in animal models and

clinical studies with various forms, e.g. raw garlic, garlic extracts, AGE,
commercial supplements or herbal medicines (Hirsch et al., 2017;
Santhosha, Jamuna, & Prabhavathi, 2013). The strong antioxidant
properties of garlic have been associated with many therapeutic effects,
including cancer prevention, antithrombotic effects, cardiovascular
protection and anti-aging effects (Huang et al., 2015). Therefore, it is
crucial to identify garlic genotypes with high inherent antioxidant po-
tential, as well as growing and climate conditions that may increase
these antioxidant properties. According to Kyung (2012) who evaluated
19 garlic parental lines and cultivars, there is a positive correlation
between total phenolics and flavonoids content and antioxidant ac-
tivity, as determined by DPPH assay, as well as a great variation in
antioxidant properties of the studied genotypes. The strong correlation
of total phenolics content and antioxidant activity, has been also con-
firmed by Chen et al. (2013), who tested five different assays and ob-
served similar results, while Bozin, Mimica-Dukic, Samojlik, Goran, and
Igic (2008) suggested that antioxidant activity of phenolic compounds
of various garlic extracts from raw garlic bulbs, AGE and air-dried
plants may show variable EC50 values, depending on the evaluated
assay (DPPH, lipid peroxidation and hydrogen peroxide-scavenging
activity). Similar results have been reported by Denre, Pal, Mazumdar,
Chakravarty, and Bhattacharya (2013) who also observed a significant
variation in antioxidant activity between various garlic cultivars and
radical scavenging activity assays. Moreover, Beato, Orgaz, Mansilla,
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and Montaño (2011) evaluated the same garlic cultivars at four dif-
ferent locations and confirmed the significant effect of growing condi-
tions on total phenolic compounds content. In contrast, Soto, González,
Sance, and Galmarini (2016) suggested that antioxidant activity of
garlic is mostly associated with organosulfuric compounds, rather than
total phenolic compounds content.Antimicrobial activity of garlic is
known since the ancient times, where people used to use it as a basic
ingredient in folk medicine against various infections (Lanzotti,
Bonanomi, & Scala, 2013). Allicin is considered the most potent com-
pound of garlic with significant antibacterial and fungicidal properties
which have been confirmed through in vitro test with allicin in pure
form (Ankri &Mirelman, 1999), while in vivo activity has not been well
confirmed with preclinical and clinical studies so far (Marchese et al.,
2016). Although volatile compounds are of outmost importance, espe-
cially organosulfuric compounds such as thiosulfinates, garlic bulbs
contain a great variety of other bioactive compounds which contribute
to their overall antimicrobial activity, including phenols, saponins,
peptides and so forth (Kyung, 2012; Lanzotti, Barile, Antignani,
Bonanomi, & Scala, 2012; Lanzotti et al., 2013), especially after pro-
cessing of garlic. It has been reported that processing treatments may
alter chemical composition and therefore affect significantly anti-
microbial and antioxidant properties of garlic products, mostly due to
the labile nature of organosulfuric compounds (de Queiroz et al., 2014;
Horita et al., 2016). Therefore, garlic bulbs content in other bioactive
compounds except for organosulfuric ones, is essential for their overall
antimicrobial properties.Total phenolic compounds content of garlic
bulbs shows a great variability depending on both growing condition
and genetic factors. Hirata, Abdelrahman, Yamauchi, and Shigyo
(2015) evaluated 103 garlic clones collected from various regions
throughout the world regarding their the content of S-allyl-cysteine
sulfoxide and total phenolics, and they reported a significant variation
which could be attributed to the adaptation of the species under various
growing conditions during the diffusion of the species throughout the
world.

Beato et al. (2011), have also suggested that cultivar selection might
be a useful means to improve quality by increasing the total phenolics
and ferulic acid contents, regardless of the growing conditions, which
mostly have a significant impact on specific compounds content, such
as caffeic, vanillic, p-hydroxybenzoic and p-coumaric acids. In addition,
Chen et al. (2013) studied 43 garlic cultivars for their phenolic com-
pounds (total phenolics and flavonoids contents) and antioxidant ac-
tivity through various assays [(DPPH [2,2-diphenyl-1-picrylhydrazyl]
radical scavenging activity, HRSC (hydroxyl radical scavenging capa-
city), FRAP (ferric ion reducing antioxidant power), CUPRAC (cupric
ion reducing antioxidant capacity), and MCA (metal chelating ac-
tivity)]. The authors reported a significant variation among the tested
cultivars and furthermore they distinguished three separate groups of
cultivars, according to the observed differences in total phenolics and
flavonoids contents, and antioxidant activity. In contrast, Beato et al.
(2011) evaluated total phenolics content in white and purple garlics
and although they found a higher content of total phenolics content in

white comparing to purple colored garlics, these differences were not
significant, indicating a genotype × environment interaction.

The aim of the present study was to determine the antioxidant ac-
tivity and antimicrobial properties from various Greek garlics. For this
purpose, samples of local landraces and cultivars were collected from
the main cultivation regions of Greece in order to determine the
variability in their antimicrobial and antioxidant properties, as well as
to compare them with commercial cultivars.

2. Materials and methods

2.1. Plant material

Samples of garlic bulbs were collected from commercial farms lo-
cated at the most important regions for garlic cultivations, where
especially for local landraces sample methodology was applied ac-
cording to IPGRI descriptors for Allium species (IPGRI, 2001). Con-
sidering that sampling regions extend all over the Greece
(Supplementary material Fig. S1), there is a great variation in planting
and harvesting (sampling) dates between the studied genotypes. Garlic
is a winter crop with a growth cycle that may extend up to 8–9 months.
Planting starts usually in late October-early December, while harvesting
starts in late May and extends up to late July, depending on the growing
conditions. In any case, the season of the year was the same for all the
growing regions and planting and harvesting was carried out according
to best practice guides applied in every region. After harvesting, bulbs
were subjected to curing in order to allow for leaves to dry out and bulb
necks to become firmer. This is the usual process applied in garlic
postharvest for increasing storage ability. Further details about each
genotype are presented in Table 1.

The collected samples included: a) two samples from Evros
Prefecture of local garlic cultivar “Nea Vissa” (samples G1 and G2), b)
two samples from Laconia Prefecture, including one sample of the local
garlic landrace of “Neapoli” and one sample of Chinese origin (samples
G3 and G4, respectively), c) one sample from Euboea Prefecture of
garlic from Chinese origin (sample G5), d) three samples from
Magnissia Prefecture, including one sample of local garlic cultivar of
“Platykampos” (sample G6), one sample of commercial garlic of
Chinese origin (samples G7), and one sample of commercial garlic
cultivar Gardos (AGER S.A.; sample G8), and e) three samples from
Arcadia Prefecture of local garlic cultivar of “Tripoli” (samples G9-11,
respectively). After collection, garlic bulbs were divided in cloves, fol-
lowed by peeling of cloves, size reduction with a mortar and pestle by
using liquid nitrogen and storage in deep-freezing conditions (−80 °C).
Before the analyses, the already smashed cloves were lyophilized and
reduced to a fine powder (20 mesh).

2.2. Antioxidant activity assays

For methanolic/water (80:20, v/v) extraction, one gram of lyophi-
lized material was extracted twice for 1 h in a magnetic stirrer plate

Table 1
Description of the tested genotypes regarding sampling region, type of cultivation and growing period (planting and harvesting time).

Genotype Region Type of cultivation Planting Harvesting

G1 Evros Perfecture Commercially cultivated Late October Mid to late June
G2 Evros Perfecture Commercially cultivated Late October Mid to late June
G3 Laconia Perfecture Local landrace November Early May
G4 Laconia Perfecture Commercially cultivated November Early May
G5 Euboea Prefecture Commercially cultivated November End of May–Start of June
G6 Magnissia Prefecture Local landrace December End of June
G7 Magnissia Prefecture Commercially cultivated December End of June
G8 Magnissia Prefecture Commercial cultivar December End of June
G9 Arcadia Prefecture Local landrace Late November Late July
G10 Arcadia Prefecture Local landrace Late November Late July
G11 Arcadia Prefecture Local landrace Late November Late July
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(25 °C at 150 rpm), with 30 mL of methanol/water (80:20, v/v), filtered
through a Whatman No. 4 paper and vacuum-dried in a rotary eva-
porator (rotary evaporator Büchi R-210, Flawil, Switzerland) at 40 °C to
remove the methanol. The extracts were further frozen and lyophilized.
Afterwards, the extracts were re-dissolved in methanol/water (80:20,
v/v) for in vitro antioxidant activity assays, at a final concentration of
20 mg/mL and further diluted to different concentrations.

The antioxidant activity was evaluated by DPPH radical-scavenging
activity, reducing power, inhibition of beta-carotene bleaching in the
presence of linoleic acid radicals and inhibition of lipid peroxidation
using TBARS in brain homogenates (Petropoulos, Fernandes, Barros,
Ferreira, & Ntatsi, 2015). The results were expressed in EC50 values
(sample concentration providing 50% of antioxidant activity of DPPH
radical-scavenging activity, inhibition of beta-carotene bleaching and
TBARS assays, or 0.5 of absorbance for the reducing power assay) for
antioxidant activity and Trolox was used as a positive control.

2.3. Total phenolic compounds

Total phenols were determined based on procedures previously
described by Morales et al. (2014). Briefly, an aliquot of the garlic
extract solution (0.5 mL) was mixed with Folin Ciocalteu reagent
(2.5 mL, previously diluted with water 1:10 v/v) and sodium carbonate
(75 g/L 2 mL). The tubes were vortexed for 15 s and allowed to stand
for 30 min at 40 °C for color development. Absorbance was then mea-
sured at 765 nm (AnalytikJena 200 spectrophotometer, Jena, Ger-
many). Gallic acid was used to calculate the standard curve
((10−5–4 × 10−4 mol L−1; Y = 2.8557X − 0.0021; R2 = 0.9999),
and the results were expressed as mg of gallic acid equivalents (GAEs)
per gram of extract.

2.4. Antimicrobial activity

Antimicrobial activity was evaluated according to the procedure
previously described by Glamočlija et al. (2015). More specifically, the
Gram-positive bacteria Staphylococcus aureus (ATCC 6538), methicillin-
resistant Staphylococcus aureus (MRSA 12), Bacillus cereus (clinical iso-
late) and Micrococcus flavus (ATCC 10240), and the Gram-negative
bacteria Pseudomonas aeruginosa (ATCC 27853), Proteus mirabilis (clin-
ical isolate), Salmonella typhimurium (ATCC 13311), Escherichia coli
(ATCC 35210), resistant E. coli (H2b) and Enterobacter cloacae (human
isolate), and two fungi Candida albicans (IBRS MH4) and C. krusei (IBRS
1flac1) were used. The antimicrobial assay was carried out by a mi-
crodilution method (Tsukatani et al., 2012). In particular, the bacterial/
fungi suspensions were adjusted with sterile saline to a concentration of
1.0 × 105 CFU/mL (Glamočlija et al., 2015). The garlic extracts were

dissolved in 5% DMSO solution containing 0.1% Tween 80 (v/v) (5 mg/
mL) and immediately added in Tryptic Soy broth (TSB) medium
(100 µL) with bacterial/fungi inoculum (1.0 × 104 CFU per well). The
lowest concentrations without visible growth (with the use of a bino-
cular microscope) were defined as concentrations that completely in-
hibited bacterial growth (MICs). The MICs obtained from the suscept-
ibility testing of various bacteria/fungi to tested extracts were
determined also by a colorimetric microbial viability assay based on
reduction of INT ((p-iodonitrotetrazolium violet) [2-(4-iodophenyl)-3-
(4-nitrphenyl)-5-phenyltetrazolium chloride; Sigma]) color and com-
pared with positive control for each microorganisms strains. The MBCs
were determined by serial sub-cultivation of 2 µL into microtitre plates
containing 100 µL of broth per well and further incubation for 24 h. The
lowest concentration with no visible growth was defined as the MBC/
MFC, indicating 99.5% killing of the original inoculum. The optical
density of each well was measured at a wavelength of 655 nm by Mi-
croplate manager 4.0 (Bio-Rad Laboratories) and compared with a
blank (broth medium plus diluted compounds) and the positive control.
Streptomycin (Sigma-Aldrich S6501) and Ampicillin (Sigma-Aldrich
A9393) were used as positive controls (1 mg/mL in sterile physiological
saline). Five percent DMSO was used as a negative control.

2.5. Statistical analysis

For all the antioxidant and antimicrobial properties analyses, three
samples were analyzed for each treatment and all the assays were
carried out in triplicate (n = 9). The results were expressed as mean
values and standard deviations (SD). Statistical analysis of data was
performed using SPSS v. 22.0 program (IBM Corp., Armonk, NY, USA)
and one-way analysis of variance (ANOVA), while for means where a
statistical difference was detected, means comparisons were carried out
with Tukey’s HSD Test at alpha = 0.05.

3. Results and discussion

The antioxidant properties and total phenolic compounds (TPC)
content of the studied garlic genotypes are presented in Table 2. Sig-
nificant differences were observed between the various tested geno-
types, with genotype G5 having the lowest and genotype G8 the highest
EC50 values for all the tested assays, indicating a strong and weak an-
tioxidant activity, respectively. Apart from G5, other genotypes with
significant antioxidant properties include genotype G10 and G3 (the
latter for all the assays apart from β-carotene bleaching inhibition),
whereas G7 showed the second lowest antioxidant activity for all the
assays apart from β-carotene bleaching inhibition. Regarding TPC
content, a reverse trend was observed for the same genotypes with G5

Table 2
Total phenolic compounds content and antioxidant properties of the studied garlic samples (mean ± SD).

Samples* Folin-Ciocalteu assay (mg GAE/g extract) EC50 values (mg/mL)

DPPH radical-scavenging activity Reducing power β-Carotene bleaching inhibition TBARS inhibition

G1 18.98 ± 0.03g 10.47 ± 0.20d 2.07 ± 0.02e 2.81 ± 0.06ab 0.157 ± 0.009d
G2 22.24 ± 0.22d 7.18 ± 0.65f 2.08 ± 0.02e 2.73 ± 0.10b 0.094 ± 0.004fg
G3 24.28 ± 0.54c 3.65 ± 0.12h 1.89 ± 0.01f 1.80 ± 0.02d 0.104 ± 0.001f
G4 16.96 ± 0.35h 16.90 ± 0.54b 2.05 ± 0.04e 1.68 ± 0.09d 0.18 ± 0.01c
G5 44.85 ± 0.19a 2.00 ± 0.08i 0.759 ± 0.009h 0.85 ± 0.01f 0.079 ± 0.011h
G6 21.54 ± 0.04e 13.06 ± 0.09c 2.16 ± 0.01d 1.54 ± 0.09e 0.14 ± 0.01e
G7 11.30 ± 0.23i 17.22 ± 0.32b 3.53 ± 0.01b 2.19 ± 0.08c 0.229 ± 0.001b
G8 8.59 ± 0.06j 20.09 ± 0.55a 5.42 ± 0.15a 2.91 ± 0.13a 0.271 ± 0.009a
G9 20.11 ± 0.08f 8.19 ± 0.17e 2.28 ± 0.03c 1.46 ± 0.13e 0.128 ± 0.005e
G10 33.89 ± 0.40b 3.34 ± 0.13h 1.17 ± 0.01g 0.98 ± 0.05f 0.083 ± 0.009gh
G11 23.90 ± 0.04c 6.40 ± 0.20g 2.23 ± 0.04cd 1.53 ± 0.05e 0.091 ± 0.001fgh

GAE – gallic acid equivalents. The results are presented in EC50 values. This means that higher values correspond to lower reducing power or antioxidant potential. EC50: Extract
concentration corresponding to 50% of antioxidant activity or 0.5 of absorbance for the reducing power assay.

* For details regarding the tested genotypes consult Table 1.
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having the highest and G8 the lowest content, while values ranged
between 8.59 and 44.85 mg GAE g−1 dry extract or 277–1462 mg G-
AE 100 g−1 fw. The great variation in TPC content between the tested
genotypes could be attributed to genotype effect when comparing dif-
ferent landraces and/or commercial cultivars cultivated in the same or
different regions, as well as to differences in microclimate conditions
and cultivation practices between the regions where the samples were
collected. These results are in agreement with those reported by
Bhandari, Yoon, and Kwak (2014), Chen et al. (2013), and Denre et al.
(2013) who also reported a great variation between various garlic
cultivars, as well as a positive correlation of antioxidant activity and
TPC content. The correlation analysis of antioxidant activity and TPC
content of our study showed significantly negative exponential corre-
lations for all the tested assays, with reducing power assay having the
highest determination coefficient (R2 = 0.9145) and beta-carotene
assay the lowest (R2 = 0.6669) (Fig. 1). The variable response to the
various tested assays is usually evidenced in plant extracts and ac-
cording to Chen et al. (2013) it is due to different antioxidative me-
chanisms that may be involved in oxidative stress. Therefore, for better
and more accurate results for antioxidant properties determination, it is
important various assays to be tested. The TPC content of the studied
genotypes was higher than that reported by Beato et al. (2011)
(3.4–10.8 mg GAE g−1 dry weight) and similar to that of Chen et al.
(2013) (17.16–42.53 mg GAE g−1 dry weight), ranging from 8.59 to
44.85 mg GAE g−1 dry weight. Nagella, Thiruvengadam, Ahmad, Yoon,
and Chung (2014) who evaluated various garlics collected from dif-
ferent regions of Korea have reported TPC values in the upper range of
our study (33.50–49.89 mg GAE g−1 extract), while they also observed
significant differences in antioxidant activity between garlic samples for
all the tested assays. Moreover, although that in the study of Beato et al.
(2011) the authors reported that Chinese garlic had a higher TPC
content comparing to other genotypes under the same conditions, in
our study that was confirmed only for genotype G5 (of Chinese origin)
which showed the highest overall TPC content. However, it was not
possible to obtain samples from local landraces from the same region
for direct comparisons, since garlic growers have abandoned them in
favor of genotypes of foreign origin. In all the other cases where

Chinese garlics were cultivated under the same conditions with local
landraces (genotypes G3 and G4, and G6 and G7), local landraces had
higher TPC content than garlics of Chinese origin, whereas the only
commercial cultivar included in the present study (G8) had the lowest
TPC content. This indicates that despite the higher yield and visual
quality (usually larger and more uniform bulbs) that foreign genotypes
may have, local cultivars and landraces showed highest antioxidant
activity under the same growing conditions, which should be further in
breeding programs for the selection of elite garlic genotypes.

Apart from the differences in antioxidant activity and TPC content
between the various genotypes grown in different regions, significant
variations were also observed between local cultivars (G1 and G2) and
local landraces (G9–G11), which further supports the effect of genotype
on these parameters apart from microclimate conditions and cultiva-
tions practices that usually differ between the various growing regions.
Bhandari et al. (2014) have also reported significant differences in
chemical composition and antioxidant activity of garlic lines and cul-
tivars, which could be attributed to adaptation mechanisms that may be
developed throughout their cultivation history, as well as to artificial
selection through vegetative propagation (Hirata et al., 2015) and pre-
harvest factors (Beato et al., 2011; Martins et al., 2016). Furthermore,
Khar, Banerjee, Jadhav, and Lawande (2011) who evaluated chemical
composition of various Indian garlic ecotypes, reported significant
variation between different genotypes, as well as significant bulb to
bulb variation, especially in local landraces where breeding status and
uniformity is generally low. According to Qadir, Shahzadi, Bashir,
Munir, and Shahzad (2017), TPC content and antioxidant activity of
plant extracts is highly dependent on extraction process and solvent
selection, with methanolic and ethanolic extracts showing the best re-
sults for most of the plant species and garlic in particular. Therefore,
sampling and extraction process of garlic bulbs is very important for
bioactive compounds evaluation, especially when local landraces and
ecotypes are tested, and could justify the great variation of bioactive
compounds amounts reported in various studies.

In vitro antimicrobial properties of the studied garlic genotypes
against various bacteria and fungi strains are presented in Table 3.
Regarding the antibacterial activity, the bacteriostatic activity of all the

Fig. 1. Correlation established between total phenolics content and scavenging effect on (a) DPPH radicals, (b) reducing power, (c) b-carotene bleaching inhibition, and (d) lipid
peroxidation inhibition.
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studied genotypes ranged from 0.04 to 0.4 mg/mL, whereas positive
controls of streptomycin and ampicillin presented MIC values ranging
from 0.0015 to 0.1 mg/mL. Increased growth inhibitory properties of
garlic methanolic extracts (80% methanol) against Gram positive and
negative bacteria comparing to streptomycin have been also reported
by Eadlapalli, Vemula, Bramhachari, and Vadde (2016). Similarly,
bactericidal activity values ranged between 0.075 and 0.6 mg/mL,
whereas positive controls MBC values ranged between 0.003 and
0.4 mg/mL. Moreover, genotypes G1 and G8 showed the lowest MIC
values against most of the tested bacteria (8/10), while genotype G3
had the lowest MBC values against almost all the tested bacteria (9/10).
Bactericidal effect against methicillin-resistant Staphylococcus aureus (a
gram positive bacteria) was higher than the reference agents (strepto-
mycin and ampicillin) for all the genotypes, indicating a strong potency
of garlic against this bacteria, while similar results were observed for
bacteriostatic effects against antibiotic resistant Escherichia coli and
Proteus mirabilis (both gram negative bacteria) for almost all the tested
genotypes. Garlic extracts have been previously reported to be effective
against both gram positive and negative bacteria (Karwowska,
Świderski, &Waszkiewicz-robak, 2007; Mozaffari Nejad, Shabani,
Bayat, & Hosseini, 2014), while (Ankri &Mirelman, 1999) attribute
these properties to chemical reaction of allicin with thiol-containing
enzymes, such as thioredoxin reductases, RNA polymerases, alcohol
hydrogenases and cysteine proteinases which are essential for microbes
activity. More specifically, Karwowska et al. (2007), Florinda et al.
(2016) and Taherikalani, Hassanzadazar, Bahmani, Baharvand-
Ahmadi, and Rafieian-Kopaei (2016) have reported that garlic extracts
showed significant in vitro inhibiting properties against Staphylococcus
aureus and Escherichia coli, while Mozaffari Nejad et al. (2014) detected
strong inhibiting effect of garlic aqueous extracts against Staphylococcus
aureus in hamburgers.

Fungistatic and fungicidal properties are presented in Table 3, with

MIC values ranging between 0.075 and 0.2 mg/mL for Candida albicans
and C. krusei, while positive controls of nistadin and fluconazole
showed significantly lower values than any of the tested garlic geno-
types (0.0007–0.03 mg/mL). The fungistatic properties of garlic against
Candida species have been confirmed through in vitro studies with pure
allicin on clinical isolates of fungi (Ankri and Mirelman, 1999). Simi-
larly, MFC values of the tested garlic genotypes ranged between 0.075
and 0.04 mg/mL, whereas positive controls were more effective,
showing values between 0.0015 and 0.06 mg/mL. Genotypes G2, G3-
G8 and G11 showed better fungistatic effects against C. albicans than
the rest of the tested genotypes, while genotypes G1 and G10 were more
potent against C. krusei. Significant differences were also observed be-
tween the tested genotypes regarding their fungicidal effects, with
genotype G3 being more effective against C. albicans and genotype G10
against both the tested fungi. The fungicidal effects of garlic against C.
albicans have been also reported by Karwowska et al. (2007).

4. Conclusions

The results of the present study indicate that despite the higher yield
and visual quality that foreign genotypes may have, local cultivars and
landraces showed highest antioxidant activity under the same growing
conditions, which should be further valorized in breeding programs for
the selection of elite garlic genotypes. Moreover, significant differences
between the tested garlic genotypes were observed regarding the anti-
microbial properties, while garlic extracts were more effective than
positive controls against methicillin-resistant Staphylococcus aureus,
Escherichia coli and Proteus mirabilis. Therefore, the collection and re-
cording of the existing garlic local landraces needs to be intensified in
order to evaluate and preserve promising genetic material, especially
when considering the great variation that microclimate conditions of
Greece offer, as well as the fact that local farmers do not have incentive

Table 3
In vitro antimicrobial activity of extracts (mg/ml) from the studied garlic samples.

Bacteria G1* G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 Streptomycin Ampicillin
MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ MIC/
MBC MBC MBC MBC MBC MBC MBC MBC MBC MBC MBC MBC MBC

Staphylococcus aureus 0.1 0.3 0.1 0.4 0.15 0.2 0.4 0.1 0.3 0.2 0.45 0.08 0.012
0.3 0.6 0.3 0.6 0.3 0.45 0.6 0.3 0.45 0.3 0.6 0.16 0.025

Methicillin-resistant Staphylococcus aureus 0.15 0.2 0.15 0.2 0.15 0.15 0.2 0.15 0.15 0.15 0.2 0.1 –
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 – –

Bacillus cereus 0.05 0.075 0.04 0.075 0.05 0.075 0.075 0.05 0.075 0.075 0.075 0.0015 0.006
0.15 0.15 0.075 0.15 0.075 0.15 0.15 0.15 0.15 0.15 0.15 0.003 0.025

Micrococcus flavus 0.075 0.1 0.075 0.1 0.1 0.1 0.1 0.075 0.1 0.1 0.1 0.025 0.25
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.05 0.4

Pseudomonas aeruginosa 0.075 0.075 0.1 0.1 0.2 0.1 0.075 0.075 0.1 0.075 0.1 0.025 0.05
0.15 0.15 0.15 0.15 0.3 0.15 0.15 0.15 0.15 0.15 0.15 0.05 0.1

Escherichia coli 0.075 0.1 0.075 0.1 0.1 0.1 0.075 0.075 0.075 0.075 0.1 0.05 0.1
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1 0.2

Antibiotic resistant Escherichia coli 0.04 0.05 0.05 0.05 0.075 0.075 0.05 0.04 0.04 0.05 0.1 0.1 0.2
0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.075 0.15 0.15 0.2 –

Proteus mirabilis 0.075 0.05 0.075 0.075 0.1 0.1 0.075 0.05 0.05 0.075 0.075 0.1 0.03
0.15 0.15 0.15 0.15 0.15 0.2 0.15 0.15 0.075 0.15 0.15 0.2 0.06

Enterobacter cloacae 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.1 0.1 0.003 0.006
0.15 0.15 0.15 0.15 0.3 0.15 0.15 0.15 0.15 0.15 0.15 0.006 0.012

Salmonella typhimurium 0.2 0.2 0.15 0.2 0.3 0.15 0.3 0.15 0.15 0.3 0.3 0.012 0.025
0.45 0.45 0.3 0.45 0.45 0.3 0.45 0.3 0.3 0.45 0.6 0.025 0.05

Fungi MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ MIC/ Nistadin Fluconazole
MFC MFC MFC MFC MFC MFC MFC MFC MFC MFC MFC MIC/ MIC/

MFC MFC

Candida albicans 0.05 0.075 0.05 0.075 0.075 0.075 0.075 0.075 0.2 0.04 0.075 0.002 0.02
0.15 0.15 0.075 0.15 0.15 0.15 0.15 0.15 0.3 0.075 0.15 0.003 0.04

Candida krusei 0.025 0.05 0.04 0.15 0.15 0.04 0.05 0.075 0.075 0.02 0.075 0.0007 0.03
0.075 0.075 0.075 0.3 0.3 0.15 0.15 0.15 0.15 0.04 0.15 0.0015 0.06

MIC: Minimum Inhibitory concentration; MBC: Minimum bactericidal concentration; MFC: Minimal fungicidal concentration.
–: No activity detected.

* For details regarding the tested genotypes consult Table 1.
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to retain local landraces and safeguard them for future generations.
Further experiments are also required in order to determinate the effect
of genotype × environment interaction on quality features, for better
selection of elite genotypes.
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