
Li et al. BioDataMining           (2022) 15:12 
https://doi.org/10.1186/s13040-022-00295-w

RESEARCH Open Access

Colorectal cancer subtype identification
from differential gene expression levels
using minimalist deep learning
Shaochuan Li1, Yuning Yang1, Xin Wang2, Jun Li3, Jun Yu4, Xiangtao Li5,6* and Ka-Chun Wong6*

*Correspondence:
kc.w@cityu.edu.hk;
lixt314@jlu.edu.cn
5School of Artificial Intelligence, Jilin
University, Changchun, Jilin, China
6Department of Computer Science,
City University of Hong Kong, Hong
Kong SAR, China
Full list of author information is
available at the end of the article

Abstract
Background: Cancer molecular subtyping plays a critical role in individualized patient
treatment. In previous studies, high-throughput gene expression signature-based
methods have been proposed to identify cancer subtypes. Unfortunately, the existing
ones suffer from the curse of dimensionality, data sparsity, and computational
deficiency.

Methods: To address those problems, we propose a computational framework for
colorectal cancer subtyping without any exploitation in model complexity and
generality. A supervised learning framework based on deep learning (DeepCSD) is
proposed to identify cancer subtypes. Specifically, based on the differentially expressed
genes under cancer consensus molecular subtyping, we design a minimalist
feed-forward neural network to capture the distinct molecular features in different
cancer subtypes. To mitigate the overfitting phenomenon of deep learning as much as
possible, L1 and L2 regularization and dropout layers are added.

Results: For demonstrating the effectiveness of DeepCSD, we compared it with other
methods including Random Forest (RF), Deep forest (gcForest), support vector machine
(SVM), XGBoost, and DeepCC on eight independent colorectal cancer datasets. The
results reflect that DeepCSD can achieve superior performance over other algorithms.
In addition, gene ontology enrichment and pathology analysis are conducted to reveal
novel insights into the cancer subtype identification and characterization mechanisms.

Conclusions: DeepCSD considers all subtype-specific genes as input, which is
pathologically necessary for its completeness. At the same time, DeepCSD shows
remarkable robustness in handling cross-platform gene expression data, achieving
similar performance on both training and test data without significant model
overfitting or exploitation of model complexity.
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Introduction
The gene expression-based consensus molecular subtyping has been demonstrated as a
promising paradigm for patient stratification and therapy [1]. Molecular subtyping of can-
cer is an indispensable step toward individualized treatments while providing important
biological insights into cancer heterogeneity [2]. However, traditional cancer diagnosis
heavily relies on manual inspections and human clinician expertise [3, 4]. Moreover, the
traditional diagnosis methods of cancer subtypes are too expensive that many patients
give up treatment [5]. To address those problems, computational methods have been
developed to diagnose cancer subtypes from molecular data. Unfortunately, since those
molecular data are collected with the high dimensionality of the gene space and only
a few cancer subtypes are available for different cancers, the sufficient data collection
issues for cancer classification after reducing the dimensionality of gene space become
particularly important. Meanwhile, the limited number of cancer subtypes can expose the
computational methods vulnerable to model overfitting.
In the past, application-specific supervised cancer diagnosis methods have been devel-

oped to address the previously mentioned challenges; for instance, Yang et al. [6]
constructed four models based on support vector machine (SVM) for predicting the
metastasis of esophageal squamous cell carcinoma. Huang et al. [7] discussed the perfor-
mance of the SVM-based model for predicting the response of cancer patients to drugs.
Wang et al. [8] proposed an improved method based on random forest (RF) for lung can-
cer classification [9]. However, those methods usually suffer from realistic restrictions
such as high dimensionality and computational scalability.
Recently, deep learning has been proposed to deal with those problems. It automatically

generates informative features from low-dimensional features to discover the essential
data representations [10]. Several supervised models based on deep learning have been
employed to address cancer classification task successfully; for instance, Zeng et al. [11]
applied DeepCues, a convolutional neural network, to classify seven major cancers based
on DNA sequences. Islam and Poly [12] proposed a feedforward neural network to model
breast cancer risk. Karabulut and Ibrikci [13] illustrated deep belief networks to address
cancer classification problem and demonstrated impressive performance over SVM and
RF [14, 15]. Sveen et al. [1] proposed a model called PDX (patient-derived xenograft) to
focus on CMS-specific drug sensitivity. DeepCC, a cancer molecular subtype classifica-
tion based on deep learning framework, has been developed for predicting consensus
molecular subtypes based on high-dimensional gene expression profiles [2]. Unfortu-
nately, most of the classifiers are subject to certain limitations. Firstly, the gene signature
method only emphasizes the role of individual genes, while not fully considering the
pathological impacts. Moreover, the overfitting phenomenon is recurring due to model
complexity and data redundancy [10]. Therefore, in this study, we proposed DeepCSD to
address those problems.
At the beginning, to emphasize the pathological importance of different genes in iden-

tifying cancer subtypes, differential gene expression analysis is computed to identify
different subtype-specific genes in each pair of subtypes. Secondly, we proposed a novel
deep learning framework for cancer-subtype diagnosis, named DeepCSD. To avoid over-
fitting to the maximum extent possible, the dropout layer, L1 and L2 regularization are
added into the network architecture to enhance the robustness of DeepCSD. Finally,
to demonstrate the performance, we collected eight independent datasets to train and
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validate DeepCSD. The experimental results reveal that DeepCSD can achieve compet-
itive performance over the current state-of- the-art cancer-subtype diagnosis methods
including Random Forest (RF), deep forest (gcForest), support vector machine (SVM),
XGBoost, and DeepCC. In addition, we directly applied the DeepCSD model to indepen-
dent TCGA data and can characterize differential gene expressions among diverse marker
genes. Meanwhile, gene ontology enrichment, and KEGG pathology analysis are con-
ducted to reveal novel insights into the cancer subtype identification and characterization
mechanisms with validations.

Methods
Datasets

In this study, we collected eight independent colorectal cancer datasets [16] includ-
ing GSE13067, GSE13294, GSE14333, GSE17536, GSE20916, GSE2109, GSE37892, and
GSE39582 (Supplementary Table S1). All those datasets can be downloaded from the offi-
cial repository of an international CRC subtyping consortium on Synapse (https://www.
synapse.org/#!Synapse:syn2623706/wiki/) (downloaded on 1 Oct 2020).

Gene expression analysis

Since the tumor microenvironment makes an important contribution to gene expression
[1], we identify all differential genes with discriminative gene expression values among
the cancer subtypes (namely, subtype-specific genes).
In this study, we focus on the well-established consensus molecular subtypes (CMS),

i.e. CMS1-CMS4. Each subtype is characterized by its own unique feature: CMS1
(microsatellite instability immune), CMS2 (canonical), CMS3 (metabolic), and CMS4
(mesenchymal). The definitions can be found in [16]. Such high-dimensional data often
brings difficulties in computational resources (i.e., computer memory). Therefore, the
primary task is to select meaningful features from such high-dimensional gene expres-
sion data. Recognizing that there were four consensus molecular subtypes in this study,
we combined these subtypes into six groups: CMS1 vs CMS2, CMS1 vs CMS3, CMS1
vs CMS4, CMS2 vs CMS3, CMS2 vs CMS4, and CMS3 vs CMS4. The subtype-specific
genes are identified based on the fold-change and adjust P value (also called Q value).
Mathematically, the fold-change can be defined as follows:

fold-change =
−
A
−
B

(1)

while A and B denote the genes expression values of the same gene in different subtypes,
−
A is the average value of A and

−
B is the average value of B. In common, the log2 fold-

change is widely used to normalize the range of fold-change. The log2 fold-change can be
defined as follows:

log2 fold-change = log2
−
A − log2

−
B (2)

However, the fold change has a drawback that the misclassification of differentially
expressed genes with large differences may result in poor identification of changes in high
expression levels.
To address it, the P value is implemented as an alternative to the rejection point and

provided the minimum level at which the initial hypothesis will be rejected. The P value

https://www.synapse.org/#!Synapse:syn2623706/wiki/
https://www.synapse.org/#!Synapse:syn2623706/wiki/
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we used is adjusted by the Benjamini-Hochberg (BH) program [17], also called Q value.
In this study, we take the T-test to compute every gene’s P value. More formally, the T-test
is defined as follows:

T =
−
A − −

B√
S2A/n + S2B/n

(3)

Then the significance P value is calculated according to the T distribution to measure the
significance of this difference. Next, we took BH to obtain a Q value. More formally, the
Q value in this study is defined as follows:

Q = BH(P) (4)

After that, we calculated the fold-change and Q value for each CMS group. Then, the
genes with | log2 fold-change |> 1 and Q value < 0.05 are retained and identified.
Finally, we input those subtype-specific genes into deep learning and then construct our
DeepCSD model.

Deep learning for cancer subtype diagnosis (DeepCSD)

Our deep neural network (DNN) is a feed-forward neural network assembled by a
sequential layer-by-layer structure that realizes a series of functional transformations.
Each layer is fed with the previous layer’s outputs as its inputs is to execute its transfor-
mation function. Specifically, every layer consists of multiple “neurons”. The input data
will pass every layer by the “connections” with the weight parameters between “neurons”.
The basic layers in DeepCSD are the representation layers and dropout layer (as shown in
Fig. 1). DeepCSD features the sequential alternating representation layers with nonlinear
activation functions (i.e. ReLU) and dropout layers, followed by representation layers with
softmax activation functions for computing probability of each CMS (more detail can be
seen in Fig. 1). Mathematically, it is recursively defined as follows:

f l(X) = αl(WlRl−1f l−1(X) − θl) l = 1, 2, 3 (5)

while X is the model’s inputs, f l−1(X) is the (l − 1)-th layer’s output, θl is the l-th layer’s
threshold, and αl is the l-th layer’s activate function. It is worth noticing that R0 does not
exist. In other words, the dropout layer is not employed in DeepCSD’s first layer.
The natural method is to process the original inputs layer by layer to obtain “deep fea-

tures”. In other words, every layer in the framework of deep learning is to extract deep

Fig. 1 The framework of DeepCSD. DeepCSD consists of two representation layers to extract deep features,
two dropout layers, and a output layer. DeepCSD has 768 neurons in the first representation layer, 128 in the
second representation layer, and 4 in the final layer because molecular subtyping of colorectal cancer is a
four-class classification problem in our study
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features from the previous layer’s outputs. The more layers the DNN has, the deeper fea-
tures the model can extract. In theory, the addition of layers and parameters can increase
the model expressiveness for addressing complex learning tasks. However, the possibility
of overfitting is also increased [10]. To reduce the influence of overfitting, L2 regulariza-
tion and dropout layers are employed in our model. For the dropout layer, it is to abandon
a part of neurons to mitigate the overfitting. The brief implementation step is defined as
follows:

R = Bernoulli(p) (6)

f
′
(x) = R ∗ f (x) (7)

where the Bernoulli function is to randomly generate a binary mask vector with Bernoulli
trial probability p, f (x) is the input of dropout layer, and f ′

(x) is the output [18].
After that, DeepCSD applies L1 and L2 regularization to representation layers 1 and 2

by adding a penalty term to the empirical loss. It is worth to be noticed that the output
layer in DeepCSD does not employ such regularization.

Training of the DeepCSDmodel

For such a multi-class classification task, we minimized the objective function of
DeepCSD defined as follow:

min loss =
n∑

i=0

3∑
t=0

yi,tln(y
′
i,t) + λ

2
||W ||1 + λ

2
||W ||2 (8)

while n is the number of samples, y′
i,t is the t-th neuron’s output of i-th sample, λ is the

learning rate , λ
2 ||W ||1 is the term of L1 ,and λ

2 ||W ||2 is the term of L2. With one-hot label
vector encoding, the objective function can be simplified as follow:

min loss =
n∑

i=0
ln(y∗

i,t) + λ

2
||W ||2

subject to yi,t = 1,
3∑

j=0
yi,j = 1

(9)

while y∗
i,t indicates the output label index of the element 1 in one-hot vector for i-th

sample.
The Adam algorithm has been chosen as our model’s optimizer [19]. The update rule is

defined as follow:

�t = θt−1 − α
mt

1 − βt
1
/(

vt
1 − βt

2
+ ε) (10)

while

mt = β1mt−1 + (1 − β1)gt (11)

vt = β2mt−1 + (1 − β2)g2t (12)

gt = ��ft(θt−1) (13)
We can see that if we compute the parameter of gt , the Adam algorithm automatically
updates the corresponding parameter. Next, we take the update process ofW3 as a sample
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to explain the detail of our model update process. Mathematically, the output is defined
as follow:

y∗
i,t = softmax(W3R2f 2(Xi) − �3) (14)

We focus on the parameter updating process of W3. The Adam algorithm makes some
adjustment toW3 if the gt is computed. The gt forW3 is calculated as follow:

gt = ∂loss
∂W3

(15)

while
∂loss
∂W3

= ∂lny∗
i,t

∂y∗
i,t

∂y∗
i,t

∂(W3R2f 2(x) − �3)

∂W3R2f 2(x) − �3
∂W3

(16)

∂loss
∂W3

= y∗−1
i,t

∂y∗
i,t

∂(W3R2f 2(x) − �3)
R2f 2(x) (17)

Next, we focus on partial derivative calculation of activation function for (W3R2f 2(x) −
�3). Firstly, the partial derivative calculation of softmax activation function for k-th
neuron is calculated as follow:

∂y∗
i,t

∂k
=

∂ei,t
∂k

∑3
j=0 ei,j − ei,t

∑3
j=0

∂ei.j
∂k

(
∑3

j=0 ei,j)2
(18)

It can result in two different outputs according to the value of k, i.e.

∂y∗
i,t

∂k
=

⎧
⎪⎨
⎪⎩

ei,t
∑3

j=0 ei,j−(ei,t)2

(
∑3

j=0 ei,j)2
= y∗

i,t(1 − y∗
i,t) if (t = k)

ei,tei,k
(
∑3

j=0 ei,j)2
= −y∗

i,ty∗
i,k if (t �= k)

(19)

Therefore, we view W3 as (w1,w2,w3,w4)T (expand matrix W3 by row). Then, the par-
tial derivative calculation of activation function for (W3R2f 2(x) − �3) is divided in two
situations as follows:

∂y∗
i,t

∂(wkR2f 2(x) − �3,k)
=

{
y∗
i,t(1 − y∗

i,t) if (k = t)
−y∗

i,ty∗
i,k if (k �= t)

(20)

The final gt is given by the following formula:

∂loss
∂wk

=
{

(1 − y∗
i,t)R2f 2(x) if (k = t)

−y∗
i,kR2f 2(x) if (k �= t)

(21)

Combining those column vectors into a matrix in order, the gt appeared. The y∗
i,t is the

neuron’s output that its position is consistent with the real label, which means the possi-
bility of the real label. We can conclude that wk will be strengthened if “k = t”; it will be
punished if “k �= t”.

Model parameters and running time

In this study, those eight molecular datasets are employed for experimental compar-
isons. For the DeepCSD, the parameters of Adam follows the default setting [20] and
the minimum learning rate was set to 10−5. For SVM and RF, the parameter setting
follows the default parameter values of Python Scikit-learn 0.21.2. For gcForest, we
fixed this model to a multi-class mission with the literature default setting [22]. For
XGBoost, gamma=0.1,maxdepth=12, subsample=0.7, colsamplebytree=0.7, earlystoppin-
grounds=15. For DeepCC, all parameter setting follows the reference [2]. Moreover, we
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also provide the running time of our model. DeepCSD is written in Python. We have
relied on a server with CPU = Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz, GPU =
GTX1080 Ti. Meanwhile, we design our deep learning framework based on Keras. The
versions of those software and packages are Python =3.7, Anaconda=3.7, Keras=2.1.0,
Tensorflow=1.14.0. After running on those molecular datasets, the average running time
is 457 seconds.

Results
Competing methods

To comprehensively demonstrate the DeepCSD performance, five state-of-the-art cancer-
subtype diagnosis methods including Random Forest (RF), multi-Grained Cascade Forest
(gcForest), support vector machine (SVM), XGBoost, and DeepCC are employed in this
study. Firstly, two traditional frameworks were constructed based on RF and SVM. The
fundamental idea of SVM is to find a hyperplane in a given sample space to distinguish
samples with different classes [10]. Although the initial aim of SVM is to address the two-
class task, Hsu and Lin [21] improved it to the multi-class task. RF is an ensemble learning
algorithm in which component learner is a decision tree known for its random feature
selection method. Then, deep forest (gcForest) framework is a deep forest ensemble to
address classification task and the final output is generated by a vote of each tree [22].
XGBoost is a kind of boosting method based on the decision tree, which is a powerful
machine learning method known for “regularized boosting”. DeepCC is a deep learning
method as one of the comparative models with five hidden layers. Moreover, we also
compared our DeepCSD with other deep learning methods (DeepCC) and deep forest
(gcForest) to demonstrate the effectiveness of differential gene expression analysis in our
model.

Evaluation metrics

Four evaluation metrics have been measured in this study. For each dataset, according to
the relationship between the real subtype and the diagnosis of DeepCSD, each diagnosis
of DeepCSD was divided into true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). These four-measure metrics are defined as follow:

Sensitivity = TP
TP + FN

∗ 100% (22)

Specificity = TN
TN + FP

∗ 100% (23)

Precision = TP
TP + FP

∗ 100% (24)

Accuracy = 1
n

n∑
i=1

I(yi = y∗
i ) ∗ 100% (25)

which yi is the sample’s true label, y∗
i is the diagnosis of DeepCSD, I(x) is the indicator

function, and n is the samples of each molecular data.

Application to cancer gene expression data

Tocomprehensively demonstrate the performance of DeepCSD, all datasets (i.e. GSE13067,
GSE13294, GSE37892, GSE39582, GSE2109, GSE14333, GSE17536, GSE20916) are
adopted for model training with 10-fold cross-validation. We identified the differential
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genes as the inputs of SVM, GCF, RF, and XGBoost by subtype-specific gene analysis.
The experimental results are summarized in Fig. 2. We can conclude several interesting
phenomenons:

• Firstly, DeepCSD provides competitive performances in specificity, precision,
sensitivity, and accuracy: 1) the accuracy of DeepCSD is higher than other classifiers
in GSE13067, GSE17536, and GSE20916 by 5%, while the specificity and sensitivity is
not less than 94%. 2) although the performance of DeepCSD is not the best in
GSE39582 and GSE2109, the difference in accuracy is only lower than the champion
by ∼1% while the sensitivity is higher than 92% and specificity is higher than 96%. 3)
the average accuracy, precision, specificity, and sensitivity are higher than the second
place by 2%∼5%.

• Secondly, 1) gcForest and RF provide good performance since those methods are
boosting methods. Its accuracy, specificity, and sensitivity are higher than 90% in 5
out of 8 datasets. The accuracy of RF is higher than gcForest on GSE20916,
GSE14333, and GSE39582. However, the specificity of RF is lower than gcForest for
those datasets. 2) gcForest, RF, SVM, XGBoost and DeepCSD can obtain better
results than other compared algorithms on GSE39582 due to the influence of
subtype-specific genes.

• Thirdly, the average accuracy of DeepCSD, gcForest, and RF are above 90% while
SVM and XGBoost cannot provide such performance.

• Last but not least, we can find that its accuracy on GSE20916 and GSE2109 is not bad
at all compared with other datasets. Moreover, we also computed the distance
correlations [23] between those eight datasets as shown in Fig. 3. We can draw the
conclusion that GSE20916 and GSE2109 have low correlation with other datasets,
demonstrating DeepCSD’s robustness on different datasets with diverse gene
expression characteristics.

Subtype-specific gene analysis

To explore the influence of subtype-specific genes, GSE39582 was chosen as an example
to reveal the subtype-specific genes’ contributions.

Fig. 2 Performance comparisons among DeepCSD, SVM, gcForest, and RF on eight cancer molecular
datasets. a accuracy (calculated by the mean of accuracy per class). b Precision (calculated by the mean of
precision per class). c Specificity (calculated by the mean of specificity per class). d Sensitivity (calculated by
the mean of sensitivity per class)
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Fig. 3 The distance correlation heatmap of multiple molecular datasets. From the figure, we can draw the
conclusion that GSE20916 and GSE2109 have low correlations with other datasets; it demonstrates
DeepCSD’s robustness on different datasets with diverse gene expression characteristics

In GSE39582, 2917 subtype-specific genes were extracted and visualized as red and
blue dots in Fig. 4. From Fig. 4(a)-(f ), we can draw some observations: firstly, all subtypes
illustrate its distinctiveness since each CMS type has distinct up-regulated and down-
regulated genes compared with others; secondly, it is a hard job to distinguish CMS2 due
to the fact that the numbers of down-regulated gene are much lower than up-regulated
genes compared with CMS3 and CMS4; last but not least, CMS4 is easy to diagnose given
its distinctive characteristics in up-regulated genes.
To demonstrate the distinctiveness of those 2917 subtype-specific genes, we employed

spectral clustering on all samples as depicted in Fig. 5. Figure 5(h) illustrates the differ-
ence between samples, while Fig. 5(g) provides the genes’ correlation to each sample.
From Fig. 5, we can conclude that even with the differential gene analysis method, the
distinguishability between the cancer patients remains very small.
To further demonstrate the subtype-specific genes’ performance, we compared our pro-

posed DeepCSD with DeepCC. DeepCC combines samples’ gene expressions with public
data to process gene set enrichment analysis (GSEA) to select some gene expressions
which the authors called Functional Spectrum [2]. As mentioned above, DeepCC con-
sists of five representation layers to extract “deep features” while DeepCSD only employed
two layers as a minimalist approach. Therefore, it may not be a fair comparison for our
proposed DeepCSD.
The experimental results are shown in Fig. 6. We can observe the followings: first of

all, DeepCSD achieves higher performance than DeepCC in terms of accuracy, speci-
ficity, and sensitivity, while the average of accuracy and sensitivity is even higher than
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Fig. 4 Differential gene expression visualization on GSE39582. a-f represents a comparison of each CMS group
and each dot represents a gene: red represents up-regulated gene and blue represents down-regulated gene

DeepCC by 5%. Meanwhile, although the specificity of DeepCSD is lower than DeepCC
in GSE37892, the accuracy, and sensitivity of DeepCSD are higher than DeepCC. Given
that, the subtype-specific gene provides a significant contribution to the diagnosis. To
demonstrate the necessity of differential gene expression analysis, ensembles of decision
trees (EDT) and select k best features (SKB) (supported by scikit-learn) were employed as
feature selection methods for comparisons. Equally, the top 2000 genes selected by each
method were selected as the input of our model. The results are summarized in Fig. 7.
It can be found that the performance of DeepCSD is higher than EDT and SKB

under the same condition. Meanwhile, we also compared DeepCSD with and without

Fig. 5 Gene Clustergram on GSE39582. h illustrates the difference between samples while g provides the
genes’ correlation to each sample
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Fig. 6 Performance comparison between DeepCSD and DeepCC. The vertical axis denotes the
corresponding performance metric

differential genes. The results reveal that the differential genes analysis is very impor-
tant in DeepCSD. Therefore, we can conclude that the subtype-specific differential gene
expression analysis is an inevitable step towards cancer subtype diagnosis improvement.

Parameter analysis

In DeepCSD, the dropout parameter is 0.5. It indicates that all inputs delivered from pre-
vious layers will be abandoned for half of the neurons. Traditionally, the parameter is
chosen in the range from 0.2 to 0.5. However, to reduce the influence of overfitting to
the utmost extent and to strengthen the generalization ability, dropout=0.5 is chosen in
DeepCSD [18, 20].
The real challenge lies in the parameter setting of the regularizer. It is well known that

the regularizer of L1 and L2 can strengthen the important features and reduce the weights
of redundant features. Therefore, if the parameter is too large, the learning ability of
DeepCSD will be limited. On the opposite, if the parameter is too small, the phenomenon
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Fig. 7 The performance comparisons of DeepCSD with two distinct feature selection methods including EDT
and SKB

of overfitting may not be prevented. To find a suitable parameter to strike a balance, we
trained DeepCSD with the learning rate ranging from 0.1 to 0.9. The analysis is shown in
Fig. 8.
We can summarize some conclusions from Fig. 8. In the first, the numerical variation

of the average accuracy is not very large when the learning rate is in the range from 0.1 to
0.3. Secondly, with the increase in the learning rate, the average curve is falling. That is in
line with the expected impact of the regularizer. More interestingly, the average accuracy
is still higher than 90% even at learning rate=0.9. Finally, it can be observed that DeepCSD
has the best performance at the learning rate =0.3. Therefore, we choose the learning rate
as 0.3 in our study. Moreover, we also compared DeepCSD with and without regulariza-
tion as shown in Supplementary Fig. S1. From this figure, the performance of DeepCSD
with regularization is higher than DeepCSD without regularization.

Fig. 8 The comparison performance of different learning rates increasing from 0.1 to 0.9
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Case study
The performance of DeepCSD on TCGA

To further demonstrate the performance of DeepCSD, we applied it to annotate subtypes
on an independent colorectal cancer dataset fromThe Cancer GenomeAtlas (TCGA) [16,
24]. The TCGA expression data can be downloaded from (https://www.synapse.org/#!
Synapse:syn2623706/wiki/). The TCGA dataset has 512 patients with explicit CMS labels
in total. Meanwhile, each patient sample in TCGA has 20293 features. In the first, the
TCGA dataset was split randomly into a training set and test set with the 9:1 ratio. Next,
we trained DeepCSD on a training set with 10-fold cross-validation and took the corre-
sponding test set to demonstrate the performance of DeepCSD. To identify the differential
genes, we applied the subtype-specific differential gene expression analysis, resulting in
4881 genes for such TCGA data. From Supplementary Fig. S3, we can find that CMS4 also
illustrated its distinctive difference compared with other groups. Moreover, the TCGA
dataset shown its unique characterization from the previous molecular data. Intuitively,
DeepCSD was trained on each training set (n=460) and then applied it to the diagnosis of
the independent test set (n=52). The experimental results are tabulated in Supplementary
Tables S2 and S3.
From Supplementary Table S2, we can conclude that the performance of the test set

is no worse than that of the training set, indicating that the impact from the overfitting
phenomenon of DeepCSD may be minimized. Supplementary Table S3 explicitly lists
the performance of DeepCSD on TCGA: 1), 2 out of 19 CMS2 was diagnosed to other
subtypes since the corresponding number of up- and down-regulated genes is low as
we discussed in Subtype-specific gene analysis section; 2), the sensitivity of CMS3 and
CMS4 are 100% since a large number of up- and down-regulated genes are available for
diagnosis.

Biological interpretability from DeepCSD

In the previous section, we have demonstrated the competitive performance of DeepCSD
based on subtype-specific genes. In this section, we investigated the biological signifi-
cance of the subtype-specific genes.
Firstly, we identified the top 100 genes with the largest weights in each of the first 10

neurons in the representation layer 1 (the detail of those selected genes can be found
in Supplemental Data). After that, we conduct gene ontology (GO) enrichment analy-
sis based on Metascape [25] to analyze those selected genes. We input those selected
genes into Metascape and then collect the GO enrichment in the first 10 neurons in
the representation layer 1 of DeepCSD trained on the TCGA dataset. Supplementary
Fig. S4 summarizes the results of GO enrichment analysis. In those figures, the top cat-
egory is the enriched biological process ordered by p-values. After that, we randomly
took the 9-th neuron as example; for instance, the top three enriched GO biological
processes in 9-th neuron are mucosal immune response (GO:0002385), prostaglandin
secretion (GO:0032310), and regulation of secretion by cell (GO:1903530). Meanwhile,
as depicted in Fig. S2, the Cytoscape is employed to visualize a subset of enriched terms
and present a network connected by edges to illustrate the relationship between terms.
From the figure, each node denotes an enriched term and is colored first by its cluster
ID as shown in the first figure of Fig. 9. After that, the p-values of the enriched term
are clustered in the second figure of Fig. 9. Furthermore, some molecular pathways were

https://www.synapse.org/#!Synapse:syn2623706/wiki/
https://www.synapse.org/#!Synapse:syn2623706/wiki/
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Fig. 9 The metabolic pathways (hsa01100) is provided by KEGG database: the genes marked “red” are the
subtype-specific genes in this pathway

provided by the enrichment analysis. For example, MAPR signaling pathway (hsa04010),
PID HIF1 TFPATHWAY (M255, a kind of canonical pathways), cAMP signaling pathway
(hsa04024), and Pancreatic secretion (hsa04972).
In addition, to further analyze the molecular pathways behind the layer of DeepCSD,

those selected genes were taken to the molecular pathway analysis with KEGG (https://
www.kegg.jp). As shown in Fig. 9, we observe that 7 subtype-specific genes of the
9-th neurons can be found in the PATHWAYS IN CANCER (hsa05200). That pro-
vide evidences that our subtype-specific genes make an extinguished contribution to
diagnosis.

Discussion and conclusions
Given the central importance of colorectal cancer subtyping, the consensus molecular
subtype classification is always desirable for patient stratification. Specifically, the most
important component to the consensus molecular subtyping is that the underlying clas-
sifier can diagnose every subtype correctly. In this study, we proposed a deep learning
framework based on differential gene expression analysis to diagnose cancer subtypes.
Based on the results, we observe that DeepCSD can achieve better colorectal cancer

subtype identification than RF, SVM, gcForest, XGBoost, and DeepCC. We also high-
lighted the significance of the differential gene expression analysis compared with other
possible algorithms as shown in Fig. 7. Obviously, we can observe that the differential gene
expression analysis is necessary and important for cancer subtype diagnosis. In particular,
we conceive that DeepCSD can bring us the following performance advantages: 1) Bio-
logical interpretability: DeepCSD takes all of the subtype-specific genes into account as
inputs, which are pathologically necessary for its completeness. 2) Robustness: DeepCSD
demonstrated its remarkable robustness in processing cross-platform gene expression

https://www.kegg.jp
https://www.kegg.jp
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data. 3) Generalization ability: DeepCSD achieves similar performance on both training
and test data, suggesting that it may not suffer from severe model overfitting or model
complexity exploitation..
In the future, we are optimistic that our minimalist approach can demonstrate its own

value and applicability to cancer genomics in the face of high-throughput medical data.
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