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Thermally modified wood has high dimensional stability and biological 
durability.But if the process parameters of thermal modification are not 
appropriate, then there will be a decline in the physical properties of 
wood.A neural network algorithm was employed in this study to establish 
the relationship between the process parameters of high-temperature 
and high-pressure thermal modification and the mechanical properties of 
the wood. Three important parameters: temperature, relative humidity, 
and treatment time, were considered as the inputs to the neural network. 
Back propagation (BP) neural network and radial basis function (RBF) 
neural network models for prediction were built and compared. The 
comparison showed that the RBF neural network model had advantages 
in network structure, convergence speed, and generalization capacity. 
On this basis, the inverse model, reflecting the relationship between the 
process parameters and the mechanical properties of wood, was 
established. Given the desired mechanical properties of the wood, the 
thermal modification process parameters could be inversely optimized 
and predicted. The results indicated that the model has good learning 
ability and generalization capacity. This is of great importance for the 
theoretical and applicational studies of the thermal modification of wood. 
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INTRODUCTION 
 

Along with the continued reduction ofglobal forest resources and the growing 

need for timber, the reasonable application of the wood resources from artificial forests 

has become intensively studied. Artificial forestshave fast growth and high yields; 

however, the timber produced by artificial forests deforms and cracks easily, resulting in 

low added economic value. The exploration of a rational thermal modification process for 

fast-growing hardwood is of great significance to expanding the application scopes of 

low-quality wood and increasing its high value-added applications (Cheng and Liu 2007). 

There are many methods of wood modification. Among them, thermal modification at 

high temperaturesprovides dimensional stability and biological durability. At the same 

time, it is also environmentally friendly. Thermal modification is a short-term pyrolytic 

treatment of wood at 150 to 260 °C in the presence of heating media such as steam, inert 

gas, or vegetable oil. Wood modified at high temperature and pressure has greatly 

improved dimensional stability, biological durability, and color. As these properties are 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Yang et al. (2015). “Model of wood properties,” BioResources 10(3), 5758-5776.  5759 

improved, corresponding changes in the wood’s chemical and biological structure can 

also occur. If the process parameters of thermal modification are not appropriate, the 

physical properties of the wood are damaged. Different processing temperature and RH 

have influence on the mechanical properties of the material, for example, Compared with 

the unmodified wood, the compressive strength parallel to the grain of the modified wood 

increased on the whole. Thermal modification of material has been found to decrease the 

bending strength significantly compared with material (Cheng et al. 2008); also, the 

bending modulus of elasticity generally fell slightly upon thermal modification. The 

hardness after heat treatment can exhibit a downward trend after rising first (Qi et al. 

2005).This has, to a great extent, restricted the application scope of thermally modified 

wood(Shi 2011). Thus, the building of a model that predicts the relationships between the 

process parameters of thermal modification and the mechanical properties is highly 

important. The model can contribute to the reasonable application of wood, reduce the 

number of experiments, and optimize the process. 

The influence of the process parameters of thermal modification on the 

mechanical properties of wood is non-linear and complicated. Thus, it is difficult to build 

a model that is both satisfactory and realistic. Artificial neural network (ANN) algorithms 

can approximate any complex non-linear relationship. Possessing self-learning functions 

and the ability to rapidly seek optimal solutions, artificial neural networks are commonly 

used for process optimization in material processing. For example, Sun et al. (2011) 

carried out process optimization of the modification of poplar veneers based on a neural 

network model. Tang et al. (2011) employed a neural network model to predict the 

relationship between the mechanical properties of wheat straw composite material and 

the process parameters. Zhang (2005) proposed a method for a wood drying process 

based on a neural network. Jiang et al. (2005) established a neural network model for the 

Chinese fir microstructure and its material characteristic. However, this modeling 

technique has only rarely been used in the process optimization of the thermal 

modification of wood. 

In the present study, a neural network model was built to study the relationship 

between the process parameters of wood modification at high temperature and pressure, 

and the mechanical properties of the wood. The inputs included the temperature, 

treatment time, and relative humidity of thermal modification. The BP and RBF models 

were established for the prediction of the final wood properties and the prediction results 

of two models were compared. This study was aimed at using artificial neural network 

models to simulate and predict the influences of process parameters on the mechanical 

properties of thermally modified wood. On this basis, the relationship between the 

process parameters of thermal modification and the mechanical properties of the 

modified wood can be established. Thus, a scientific basis is laid for the exploration of 

the optimal process parameters and reasonable application of thermally modified wood. 

 

 

THEORETICAL BASIS OF NEURAL NETWORK MODELING 
 
Brief Introduction of Neural Network 

An artificial neural network is a data treatment model whose construction is 

inspired by biological neural networks. Artificial neural networks have become a mature 

type of algorithm applied in every sector of production. Artificial neural networks exhibit 

powerful pattern recognition and data fitting capacity (Bhuvaneswari and Sabarathinam 

http://scholar.cnki.net/result.aspx?q=%e4%bd%9c%e8%80%85%3a(S.+Bhuvaneswari)
http://scholar.cnki.net/result.aspx?q=%e4%bd%9c%e8%80%85%3a(J.+Sabarathinam)
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2013). There are a variety of neural networks that have been found to be useful for 

resolving different problems, and their excellent non-linear approximation performance 

makes them outstanding tools in many applications (Hagan and Demuth. 2002). 

 

BP Neural Network 
BP neural networks are the core of feedforward neural networks and the essence 

of the entire artificial neural networks, which are widely used in classification, 

recognition, approximation, regression, and compression. The BP neural network is a 

multi-layer perceptron consisting of several hidden layers in addition to an input layer 

and an output layer. Different layers are related to each other through full connections, 

but there are no connections between the neurons of a particular layer. This multi-layer 

design enables the mining of more information for more complex tasks from the input by 

using a BP neural network. The BP neural network generally uses a Sigmoid or linear 

function as its transfer function. Typically, the Sigmoid function is adopted as the transfer 

function for the hidden layer and linear function is for the output layer (Tiryaki and 

Aydın 2014). In BP neural networks, data are transmitted from the input layer and 

through the hidden layer in a downward manner. When the weight of the network is 

trained, the connection weights of the network are modified from the output layer 

towards the upper layers in an upward manner; this is the direction along which the error 

can be reduced. With continued learning, the final error gradually decreases. However, 

the BP neural network is a universal approximation network with slow learning speed 

and cannot meet real-time requirements (Datta and Banerjee 2006). 

 

RBF Neural Network 
The RBF neural network has been extensively applied in different fields due to its 

simple structure, high convergence speed, and its ability to approximate any non-linear 

function. The RBF network is a feedforward network consisting of 3 layers. The first 

layer is the input layer, where the number of nodes is equal to the dimensionality of the 

input data. The second layer is the hidden layer, where the number of nodes depends on 

the complexity of the problem.The third layer is the output layer, where the number of 

nodes is equal to the dimensionality of the output data. The RBF network is different 

from the multi-layer perception in that each layer fulfills different functions. The hidden 

layer is non-linear and uses RBF as the basis function. In this way, the vector space of the 

input is converted into the space of the hidden layer such that the linearly inseparable 

problem becomes linearly separable, and the output layer is linear. 

 

 

EXPERIMENTAL 
 

Materials and Methods 
Sawn Larix gmeliniitimber with thickness 22 mm was chosen for the experiments. 

The processing temperature was 120 to 210°C, the pressure was 0.1 to 0.9 MPa, and the 

processing time was 0.5 to 3h in saturated or superheated steam. The processed timber 

was placed in a controlled environment with (65±3)% relative humidity(RH) at(20±2)°C. 

The mechanical properties were determined after the equilibrium moisture content was 

reached (compressive strength parallel to grain; bending strength, MOR; modulus of 

elasticity, MOE; hardness of transverse section; and hardness of longitudinal section). 

http://scholar.cnki.net/result.aspx?q=%e4%bd%9c%e8%80%85%3a(Ayta%c3%a7+Ayd%c4%b1n)
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Mechanical property determinations were carried out according to the Method of 

Testing in Compressive Strength Parallel to Grain of Wood (GB/T1935-2009; Jiang et 

al.2009), the Method of Testing in Bending Strength of Wood (GB/T1936.1-2009; Luo et 

al.2009a), the Method for Determination of the Modulus of Elasticity in Static Bending 

of Wood (GB/T1936.2-2009; Luo et al.2009b), and with the Method of Testing in 

Hardness of Wood (GB/T1941-2009; Wang et al.2009). The arithmetic mean of 3 

parallel experiments was calculated for each determination and reported as the final 

result. 

 

Results and Analysis 
The mechanical properties of the wood were detected, and the results are shown 

in Table 1. 

 

Table 1. Process Parameters of Thermal Modification and Mechanical Properties 
of Larix gmelinii 

Experiment 
Temperature 

(°C) 

Time 
(h) 

RH 
(%) 

Average of Sample Data 

Compressive 
Strength 
Parallelto 

Grain 
(MPa) 

MOR 
(MPa) 

MOE 
(GPa) 

Hardness 
of 

Transverse 
Section 
(MPa) 

Hardness of 
Longitudinal 

Section 
(MPa) 

Untreated wood   33.8 68.6 9.135 12.04 13.61 
120 0.5 0 39.2 67.4 9.093 14.12 15.56 
120 0.5 40 39.1 65.3 9.038 13.02 14.69 
120 0.5 60 38.0 69.7 9.1 14.67 15.08 
120 0.5 100 36.7 67.2 8.845 14.65 15.45 
120 1 0 38.4 67.8 8.649 13.98 14.36 
120 1 40 37.6 66.4 8.752 12.98 15.59 
120 1 60 38.6 67.8 9.245 13.78 15.32 
120 1 100 38.1 63.1 7.895 14.55 14.23 
120 2 0 39.5 66.9 9.074 13.33 14.23 
120 2 40 38.6 68.2 8.945 12.55 14.58 
120 2 60 36.5 65.2 8.854 13.25 14.89 
120 2 100 41.9 63.2 8.933 13.36 14.56 
120 3 0 37.5 66.5 8.9 13.56 14.78 
120 3 40 39.8 67.6 8.963 13.45 14.45 
120 3 60 37.6 66.6 8.745 13.01 14.69 
120 3 100 38.9 64.2 8.745 12.45 14.78 
140 0.5 0 36.7 66.7 8.978 14.69 15.56 
140 0.5 40 36.9 67.5 8.845 13.06 15.02 
140 0.5 60 35.8 66.8 9.155 14.02 14.23 
140 0.5 100 38.4 65.3 8.877 15.02 15.01 
140 1 0 37.4 66.5 9.179 14.16 15.68 
140 1 40 36 64.5 9.137 13.05 15.01 
140 1 60 37.2 67.2 9.024 13.49 15.17 
140 1 100 37.5 63.1 8.823 13.45 15.48 
140 2 0 37.9 66.3 8.823 13.54 14.69 
140 2 40 38.5 65.7 8.852 14.69 14.58 
140 2 60 37.6 67.1 8.799 13.99 14.74 
140 2 100 35.5 62.7 8.9 14.28 15.63 
140 3 0 36.9 65.4 8.811 14.39 14.23 
140 3 40 38.9 64.6 8.934 13.23 14.56 
140 3 60 38.2 65.5 8.654 14.23 13.65 
140 3 100 39.2 62.1 8.798 13.56 14.02 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Yang et al. (2015). “Model of wood properties,” BioResources 10(3), 5758-5776.  5762 

160 0.5 0 36.9 66.3 8.788 14.89 14.99 
160 0.5 40 39.1 66.9 9.011 14.87 14.36 
160 0.5 60 37.1 66.3 8.745 14.58 14.78 
160 0.5 100 38.9 65.8 8.712 14.69 15.69 
160 1 0 39.1 62.4 8.679 13.42 14.56 
160 1 40 39.7 61.4 8.645 14.09 15.3 
160 1 60 37.8 62.2 8.798 14.69 15.9 
160 1 100 38.7 62.8 8.679 13.58 15.63 
160 2 0 35.9 62.2 8.727 14.63 13.92 
160 2 40 35.8 62.1 8.557 14.02 14.17 
160 2 60 36.6 63.1 8.687 15.17 14.28 
160 2 100 38.2 60.9 8.611 14.65 15.09 
160 3 0 37.2 61.9 8.611 13.65 14.36 
160 3 40 39.1 61.5 8.534 13.47 14.56 
160 3 60 39.5 60.8 8.601 13.58 13.89 
160 3 100 37.3 60.5 8.552 13.69 14.36 
180 0.5 0 38.9 65.9 8.601 15.21 14.03 
180 0.5 40 39.1 65.3 8.689 15.98 14.56 
180 0.5 60 37.6 66.1 8.645 16.01 13.97 
180 0.5 100 36.1 65.7 8.599 14.32 14.33 
180 1 0 38.2 65.4 8.623 15.09 13.79 
180 1 40 39.4 64.9 8.645 14.98 14.25 
180 1 60 37.6 66.3 8.579 15.45 14.08 
180 1 100 38.1 64.8 8.545 14.33 13.64 
180 2 0 39.5 65.1 8.574 14.65 13.69 
180 2 40 38.7 65.8 8.6 14.13 13.59 
180 2 60 38.2 64.5 8.532 13.99 14.49 
180 2 100 37.1 64.2 8.544 15.1 13.54 
180 3 0 38.1 64.1 8.6 14.21 14.06 
180 3 40 37.5 64.2 8.541 13.99 14.21 
180 3 60 37.8 64.8 8.456 14.58 13.98 
180 3 100 38.5 63.8 8.499 14.99 13.69 
200 0.5 0 36.5 62.1 8.483 12 13.6 
200 0.5 40 35.4 60.6 8.475 11.96 12.99 
200 0.5 60 35.1 59.9 8.399 11.45 13.21 
200 1 0 34.5 61.9 8.422 11.69 12.98 
200 1 40 35.8 60.8 8.489 11.46 12.64 
200 1 60 34.1 61.2 8.321 11.54 12.35 
200 2 0 34.6 61.2 8.369 11.99 13.02 
200 2 40 35.4 60.8 8.354 11.15 12.69 
200 2 60 34.5 60.5 8.211 10.65 12.49 
200 3 0 34.1 60.9 8.249 10.68 12.73 
200 3 40 34.2 59.8 8.231 11.05 12.57 
200 3 60 33.8 58.2 8.011 10.22 12.37 
210 0.5 0 34.1 50.1 7.856 10.23 10.98 
210 0.5 40 33.2 50.8 7.789 10.59 9.98 
210 0.5 60 32.1 49.9 7.865 10.55 10.23 
210 1 0 33.9 50.6 7.765 10.21 10.65 
210 1 40 32.9 49.8 7.712 9.98 10.21 
210 1 60 32.8 48.9 7.498 10.01 10.65 
210 2 0 32.9 49.1 7.689 9.98 9.64 
210 2 40 32.5 49.5 7.712 9.65 9.35 
210 2 60 31.8 49.6 7.623 10.03 9.67 
210 3 0 31.5 47.8 7.5 9.21 8.91 
210 3 40 30.5 46.5 7.412 9.1 8.21 
210 3 60 30.8 45.1 7.321 9.03 8.99 
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The influence of the thermal modification process parameters on the compressive 

strength parallel to the grain was considered. Compared with unmodified wood, the 

compressive strength parallel to the grain in the modified wood increased overall. 

Temperature had a more significant influence than the treatment time. As the temperature 

and relative humidity continued to rise, the rate of increase decreased;200 °C was the 

dividing line after which the compressive strength parallel to the grain decreased slightly, 

which is consistent with the results drawn by Ding et al. (2011) 

The influence of the thermal modification process parameters on the bending 

strength was as follows: the bending strength of the thermally modified wood decreased 

significantly compared to that of the unmodified wood. Below 200°C, such variation was 

milder, but there was an abrupt change as the temperature exceeded 200°C. The influence 

of temperature was greater than that of the treatment time (Ding 2010). 

The influence of the process parameters of thermal modification on the modulus 

of elasticity was as follows: compared with that of unmodified wood, the modulus of 

elasticity of the modified wood generally decreased to a small extent. Moreover, the 

influence of temperature was greater than that of the treatment time. The relative 

humidity had a less significant effect. The rate of decrease increased at temperatures 

above 200°C. 

The influence of thermal modification process parameters on hardness was as 

follows: with increasing treatment temperature and prolonged treatment time, the 

hardness of the modified wood first increased and then decreased compared to that of 

unmodified wood. The relative humidity had a smaller influence. The hardness dropped 

considerably at temperatures above 200°C. 

The above results indicate that thermal modification had an influence on the main 

performance indicators of wood, including the compressive strength parallel to the grain, 

bending strength, modulus of elasticity, and hardness (though the degree of the change in 

hardness was insignificant). The influence of high-pressure steam on the mechanical 

properties of wood was greater than that of normal-pressure steam, but not significantly. 

The influence of temperature on thermal modification was more significant than that of 

treatment time. As long as appropriate thermal modification process parameters are 

chosen, the decrease in mechanical properties will not influence the use of thermally 

modified wood (Tiryaki and Hamzaçebil 2014). 

 

 

RESULTS AND DISCUSSION 
 
Samples for Model Construction 

The goal of model construction was to studyLarix gmelinii thermal modification 

process at high temperature and pressure as affected by three important parameters(time, 

temperature, and relative humidity) and to determine their relationships between the five 

important mechanical properties of wood(compressive strength parallel to grain, bending 

strength, modulus of elasticity, hardness of the transverse section, and hardness of the 

longitudinal section).To verify the original data, the neural network model was used for 

the sample data under the condition of each in 3 groups(a total of 264 sets of data); then, 

100 groups were randomly chosen as the training data and 30 groups were chosen as 

testing data. 

 

 

http://www.sciencedirect.com/science/article/pii/S0263224113006167##
http://www.sciencedirect.com/science/article/pii/S0263224113006167##
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Parameter Selection for Model Construction 
Several factors influence the thermal modification of wood at high temperature 

and pressure, including temperature, time, pressure, humidity, the protective medium of 

thermal modification, and the wood species. Among these factors, humidity has a certain 

connection with pressure. Higher humidity facilitatessteam of greater pressure. A large 

number of experiments showed that thermal modification temperature had the greatest 

influence on the material. Treatment effectssimilar to those obtained under high 

temperatureswere barely achieved by prolonging the treatment time alone at low 

temperature. In the present study, the input parameters of model were the 3 parameters 

with the greatest influences: time, temperature, and relative humidity. The outputs were 

the five indicators of the mechanical properties of the wood. The general framework of 

the model, showing the relationships between the process parameters and the mechanical 

properties, is shown in Fig. 1. 

 

 
Fig. 1. The relational model between the process parameters of thermal modification and the 
mechanical properties of the wood 

 

Construction of Neural Network Model and Checking 
Construction of BP neural network model and checking 

MATLAB software was employed for the construction and checking of the neural 

network model. Due to the differences in units, the data used for modeling were 

pretreated before modeling. Normalization was carried out for all training and testing 

data. It should be kept in mind that anti-normalization was necessary after model 

construction (Sola and Sevilla1997). Based on the experimental data collected, the BP 

neural network was configured with three input layer nodesand five output layer nodes. 

The number of hidden layers was adjusted based on the experimental situation. After 

repeated experiments, the optimal number of hidden layer nodes was set to 12. The tansig 

function was adopted as the function of the hidden and the output layers, and the trainlm 

function was adopted as the training function. The maximum number of iterations was 

10000, and the training precision was 0.00001. If there was difficulty in convergence 

during training, the precision was adjusted to 0.0001. The initial learning rate was set to 

0.1. The neural network was constructed using the newff()command in the toolkit. Then, 

the training of the network began. The results of the training are given below: 

 

TRAINLM, Epoch 0/10000, MSE 0.55001/1e-005, Gradient 41.2702/1e-010 

http://scholar.cnki.net/result.aspx?q=%e4%bd%9c%e8%80%85%3a(Sola%2c+J.)
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TRAINLM, Epoch 50/10000, MSE 0.000288959/1e-005, Gradient 0.0260177/1e-010 

TRAINLM, Epoch 81/10000, MSE 9.69248e-006/1e-005, Gradient 0.0551585/1e-010 

TRAINLM, Performance goal met. 

 

The computation of the neural network ended after 81 iterations, when the preset 

precision was reached. The experiments indicated that the model had a fast convergence 

speed. The training procedures are shown in Fig. 2. 

 

 

 
 

Fig. 2. BP network training results 
 
 

After training ended, 30 sampling points were randomly selected to validate the 

efficiency of the network prediction. Table 2 presents the measured values and the 

predicted values of the mechanical properties after thermal modification in some samples 

and the corresponding prediction errors. As indicated by Table 2, the BP neural network 

model established in this study was effective predicting the mechanical properties of the 

thermally modified wood.  

The maximum absolute value relative error was smaller than 9%, and the average 

relative error was 4.4%. Thus, the basic requirements for the prediction of the 

relationship between the thermal modification process parameters and the mechanical 

properties were satisfied. 

Figure 3 is a comparison of the measured values of 30 samples and the values 

predicted by the BP neural network. Except for some large errors in individual samples, 

the sample values output from most networks were close to the measured values. This 

indicates that the BP neural network model established in this study effectively reflected 

the real system and had good generalization ability. 
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Table 2. Thermal Modification of Wood’s Mechanical Properties: Test Values 
Compared with the BP Neural Network Predicted Values 

Experiment 
Temperature 

(°C) 

Time 
(h) 

RH 
(%) 

Project 

Compressive 
Strength 

Parallel to 
Grain 
(MPa) 

MOR 
(MPa) 

MOE 
(GPa) 

Hardness 
of 

Transverse 
Section 
(MPa) 

Hardness of 
Longitudinal 

Section 
(MPa) 

200 0.5 60 

Test Values 35.10 59.90 8.40 11.45 13.21 

PredictedValues 34.94 58.89 8.38 11.38 12.11 

Error(%) -0.45 -1.69 -0.27 -0.61 -8.35 

200 1 0 

Test Values 34.50 61.90 8.42 11.69 12.98 

Predicted Values 35.25 62.16 8.41 11.82 12.97 

Error(%) 2.17 0.42 -0.13 1.08 -0.08 

180 3 60 

Test Values 37.80 64.80 8.46 14.58 13.98 

Predicted Values 34.75 64.12 8.53 14.00 14.28 

Error(%) -8.08 -1.05 0.82 -3.97 2.16 

200 0.5 40 

Test Values 35.40 60.60 8.48 11.96 12.99 

Predicted Values 34.75 59.22 8.42 11.97 13.46 

Error(%) -1.85 -2.27 -0.61 0.11 3.59 

200 0.5 0 

Test Values 36.50 62.10 8.48 12.00 13.60 

Predicted Values 37.87 59.86 8.45 12.03 13.06 

Error(%) 3.76 -3.60 -0.35 0.24 -3.95 

200 1 40 

Test Values 35.80 60.80 8.49 11.46 12.64 

Predicted Values 35.28 61.77 8.44 11.79 13.67 

Error(%) -1.46 1.60 -0.61 2.90 8.14 

180 3 100 

Test Values 38.50 63.80 8.50 14.99 13.69 

Predicted Values 35.25 64.16 8.51 14.47 14.13 

Error (%) -8.44 0.57 0.15 -3.45 3.19 

180 2 60 

Test Values 38.20 64.50 8.53 13.99 14.49 

Predicted Values 34.75 64.72 8.53 13.52 14.13 

Error (%) -9.04 0.34 0.00 -3.33 -2.47 

160 3 40 

Test Values 39.10 61.50 8.53 13.47 14.56 

Predicted Values 37.87 64.68 8.54 14.69 14.55 

Error (%) -3.14 5.17 0.08 9.07 -0.04 

180 3 40 

Test Values 37.50 64.20 8.54 13.99 14.21 

Predicted Values 35.28 64.09 8.53 13.72 14.49 

Error (%) -5.93 -0.16 -0.12 -1.94 1.94 
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(a)          (b) 

 

(c)          (d) 

(e) 
 

Fig. 3. BP network test sample points of the actual value compared with the predicted value 
curve 
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Establishment of RBF neural network and checking 

For convenient comparison, the training samples and testing samples used in the 

RBF network were the same as those used in the BP network. The network parameters 

were configured as follows: the number of nodes in the input and the output layerswere 

the same as those in the BP networkat 3 and 5, respectively. The initial number of hidden 

layers was set to 10 and was adjusted automatically depending on the demands. The 

precision of network training was set as 0.00001. The function of the RBF network was 

set as net=newrb (p, t, goal, spread, M, D). Moreover, special attention should be given to 

the setting of the ‘spread’ factor. For functions with large variation, if the ‘spread’ is too 

large, the result of network approximation could be too rough. For functions with mild 

variation, too small a spread may lower the smoothness of the approximated function, 

leading to overlearning and decreasing generalization ability (Fredric 2003). As validated 

in this study, the spread was finally set as 1.6, at which optimal comprehensive network 

performance was achieved. As shown in Fig. 4, the computation ended after only 29 

iterations, with the preset precision reached. 

 

 

Fig. 4. RBF network training results 

 

The RBF network performance was validated by applying the same 30 sampling 

points as in the BP network for the predictions. The measured and predicted values of 

some testing samples, and the corresponding relative errors, are given in Table 3. The 

maximum absolute value of the relative error between the 30 samples’measured and 

predicted values was 6.24% and the average relative error was 2.4%. This indicates that 

the model could effectively fit the predicted data. 
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Table 3. Thermal Modification of Wood’s Mechanical Properties: Test Values 
Compared with the RBF Neural Network Predicted Values 

Experiment 
Temperature 

(°C) 

Time 
(h) 

RH 
(%) 

Project 

Compressive 
Strength 

Parallel to 
Grain 
(MPa) 

MOR 
(MPa) 

MOE 
(GPa) 

Hardness of 
Transverse 

Section 
(MPa) 

Hardness of 
Longitudinal 

Section 
(MPa) 

200 0.5 60 

Test Values 35.10 59.90 8.40 11.45 13.21 

Predicted Values 34.78 59.18 8.37 10.77 12.87 

Error (%) -0.91 -1.20 -0.33 -5.94 -2.55 

200 1 0 

Test Values 34.50 61.90 8.42 11.69 12.98 

Predicted Values 35.23 60.89 8.39 11.57 13.16 

Error (%) 2.13 -1.63 -0.34 -0.99 1.41 

180 3 60 

Test Values 37.80 64.80 8.46 14.58 13.98 

Predicted Values 37.80 64.76 8.47 14.18 14.31 

Error(%) -0.01 -0.06 0.20 -2.71 2.33 

200 0.5 40 

Test Values 35.40 60.60 8.48 11.96 12.99 

Predicted Values 35.32 60.57 8.47 11.53 13.10 

Error(%) -0.22 -0.04 -0.02 -3.57 0.86 

200 0.5 0 

Test Values 36.50 62.10 8.48 12.00 13.60 

Predicted Values 36.41 61.52 8.47 11.59 13.39 

Error (%) -0.25 -0.94 -0.21 -3.43 -1.54 

200 1 40 

Test Values 35.80 60.80 8.49 11.46 12.64 

Predicted Values 35.16 60.54 8.39 11.53 13.01 

Error (%) -1.79 -0.42 -1.19 0.61 2.91 

180 3 100 

Test Values 38.50 63.80 8.50 14.99 13.69 

Predicted Values 38.41 64.46 8.53 15.46 13.88 

Error (%) -0.23 1.03 0.31 3.14 1.42 

180 2 60 

Test Values 38.20 64.50 8.53 13.99 14.49 

Predicted Values 38.29 64.42 8.55 14.19 14.14 

Error (%) 0.25 -0.13 0.19 1.41 -2.39 

160 3 40 

Test Values 39.10 61.50 8.53 13.47 14.56 

Predicted Values 39.09 62.12 8.59 13.44 14.40 

Error (%) -0.02 1.00 0.68 -0.24 -1.11 

180 3 40 

Test Values 37.50 64.20 8.54 13.99 14.21 

Predicted Values 37.46 64.31 8.54 14.10 14.15 

Error (%) -0.10 0.17 -0.04 0.78 -0.41 

 

 

Figure 5 shows the comparison of the measured values versus the predicted values 

of 30 testing samples. The model realistically reflected the real values of the testing 

samples. Thus, the RBF neural network can be applied in the prediction of the 

mechanical properties of thermally modified wood with high precision. 
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(e) 

 

 
 
Fig. 5. RBF network test sample points the actual value compared with the predicted value curve 

 

 

Summary of the performance of BP and RBF neural networks 

Models were established for the prediction of the mechanical properties of 

thermally modified wood based on BP and RBF neural networks, respectively, in this 

study. The maximum relative error between the output of the BP neural network over 

between testing samples and the measured values was 9.2%, the minimum relative error 

was 0.12%, and the average relative error was 4.4%. The maximum relative error 

between the output of the RBF model and the measured values was 6.24%, the minimum 

relative error was 0.10%, and the average relative error was 2.4%.  

The same testing samples and precision were set for each of the two models. The 

BP network converged after 81 iterations, while the RBF network reached the preset 

precision after only 29 iterations. The number of nodes in the hidden layer of the RBF 

neural network could be determined by training. However, the number of nodes in the 

hidden layer of the BP neural network had to be determined upon initialization. If the 

number of hidden layers was repeatedly changed until reaching the preset precision, the 

modeling time would be longer and the difficulty would be higher than that of that RBF 

neural network. 

In summary, the RBF neural network was easier and more convenient to establish 

than the BP neural network. The former had stronger generalization ability and better 

prediction performance. With more powerful numerical approximation ability and higher 

superiority in its comprehensive performance, the RBF neural network can be regarded as 

preferable(Song and Zhang2001). 

 

Optimization and Analysis of Process Parameters of Wood Thermal 
Modification in Light of the Influence on Mechanical Properties 

Based on the experimental data collected, a relational model of the process 

parameters of the thermal modification of wood was established. The model was used to 

http://scholar.cnki.net/result.aspx?q=%e4%bd%9c%e8%80%85%3a(R.G+Song)&uid=WEEvREcwSlJHSldTTEYyQW5LeUttQTlhYmozV3NXU1pFTzZtMk42SG50ZVZ1U1dnYkMvdnVzWVkwRU95YzVYbVZnPT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&UID=WEEvREcwSlJHSldTTEYyQW5LeUttQTlhYmozV3NXU1pFTzZtMk42SG50ZVZ1U1dnYkMvdnVzWVkwRU95YzVYbVZnPT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!
http://scholar.cnki.net/result.aspx?q=%e4%bd%9c%e8%80%85%3a(Q.Z+Zhang)&uid=WEEvREcwSlJHSldTTEYyQW5LeUttQTlhYmozV3NXU1pFTzZtMk42SG50ZVZ1U1dnYkMvdnVzWVkwRU95YzVYbVZnPT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&UID=WEEvREcwSlJHSldTTEYyQW5LeUttQTlhYmozV3NXU1pFTzZtMk42SG50ZVZ1U1dnYkMvdnVzWVkwRU95YzVYbVZnPT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!
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predict the mechanical properties of thermally modified wood. Moreover, the model 

showing the relationship between the mechanical properties of the thermally modified 

wood and the process parameters was established. Thus, a scientific basis was provided 

for the optimization of the thermal modification process parameters in light of their 

influence on the mechanical properties. 

The inverse model showing the relationships between the thermal modification 

process parameters and the mechanical properties of wood was built using the 

experimental data shown in Table 1. The RBF neural network, with its simple structure 

and good generalization ability, was selected for further modeling. The input parameters 

of the network were five main mechanical properties: the compressive strength parallel to 

grain, bending strength, modulus of elasticity, hardness of transverse section, and 

hardness of longitudinal section. The output parameters were three important thermal 

modification parameters: the temperature, time, and relative humidity. 

Figure 6 shows the measured and predicted temperature values corresponding to the 

desired mechanical properties of the thermally modified wood. The maximum absolute 

value of the relative error was 6.49% and the minimum relative error was 0.34%. The 

average relative error was 1.35%. 

 

 
Fig. 6. The comparison of network output and the actual output temperature 

 

Figure 7 shows the measured and predicted values of time corresponding to the 

desired wood mechanical properties. The maximum relative error between the measured 

and the predicted values was 9.38%. The minimum relative error was 1.88%, and the 

average relative error was 3.44%. 
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Fig. 7. The comparison of network output and the actual output time 

 

Figure 8 shows the measured and predicted values of relative humidity 

corresponding to the desired wood mechanical properties. The maximum relative error 

was 9.08%, the minimum relative error was 0.14%, and the average relative error was 

5.68%. 

 

 
Fig. 8. The comparison of network output and the actual output relative humidity 

 

This model describes the relationships between the mechanical properties of 

thermally modified wood and the process parameters (Kerh and Yee2000). Using the 
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mechanical properties of the modified wood as the inputs and the process parameters as 

the outputs, the inverse model can provide the process parameter values corresponding to 

the desired mechanical properties. The analysis indicates that the process parameters can 

be inversely optimized according to the target wood properties. In this way, the thermal 

modification process can be optimized to achieve the desired mechanical properties, 

which is very important for the reasonable utilization of wood, improvement of the 

efficiency of thermal modification, and reduction of experiment duration. 

 

 

CONCLUSIONS 
 
1. Larix gmelinii was subjected to high-temperature, high-pressure thermal 

modification. Variations in the mechanical properties of the wood after thermal 

modification were explored. The process parameters could be optimized in terms of 

their influence on the mechanical properties, which providesa scientific basis for the 

reasonable use of Larix gmelinii.  

2. An artificial neural network model was employed in this study to discuss the 

influences of time, temperature, and relative humidity on the mechanical properties of 

thermally modified wood. The developed network exhibited high precision and good 

generalization ability.It was a novel attempt to use the artificial neural network model 

for the thermal modification of wood.  

3. A comparison was made between the BP and RBF neural network models. The RBF 

neural network model had higher comprehensive performance in predicting the 

relationships between the process parameters and the mechanical properties of the 

wood.  

4. The inverse neural network model established in this study can be used to inversely 

optimize the process parameters with high precision. If people want to establish 

relational and inverse models between the process parameters and mechanical 

properties of other wood species, they would only need to input the relevant data into 

the developed network.  

5. In actual production, the thermal modification process parameters can be optimized 

according to the desired wood product applications and mechanical property 

requirements, which allows for more scientific, rational use of wood. 
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