
Reflash: practical ActionScript3
instrumentation with RABCDAsm

Jarkko Turkulainen

F-Secure
jarkko.turkulainen@f-secure.com

June 16, 2016

Abstract

Adobe Flash has been announced dead for almost ten years now. But it is still here, installed on almost
every computing device on Earth, and it is getting more attention because of the alarming rate of zero-day
vulnerabilities we have been witnessing over the past few years. Even though the Flash platform is such
wide spread, it is still lacking comprehensive binary analysis tools.

In this paper we try to address this shortcoming with a set of tools and techniques for dynamic Action-
Script3 (AS3) instrumentation and analysis. The techinques described in the paper covers generic AS3
opcode instrumentation and stack trace generation, and finally a toolchain to operate generated data
outside the AS3 execution environment is presented.

The presented toolchain consists of a service component that listens on active network connections and
attempts to inject an instrumentation module to flash files on the wire. The instrumentation module
produces a generic stack trace that is sent back to the service for offline analysis. The last component of
the framework is a set of tools for building and manipulating a SQL database of stack events. The paper
shows that the presented client/server-architecture is scalable and relatively stable in a hostile execution
environment.

I. Introduction

Adobe Flash platform is a very common
target for malicious software. It has a
huge install base, it is still enabled by

default on most browsers and as a very compli-
cated interpreted software platform it also has
many bugs. Writing software for the Flash plat-
form is relatively fast and its deep interaction
with other Web tehnologies, such as JavaScript
and VBScript, offers attractive opportunities for
malicious actors.

It is quite common to include Flash compo-
nents in so-called Exploit Kits, either as a form
of payload delivery mechanism, or as a main
target for vulnerability exploitation. As a part
of Exploit Kit (EK), the malicious Flash can au-
tomate exploitation, obfuscate the EK actions,
collect statistics and steal personal information

from target systems.
Reverse engineering a complicated software

stack including web pages, JavaScript, Flash
and possibly other interpreted languages, end-
ing up to a physical CPU using software bug, is
a challenging and time-consuming task. Flash
files usually contain several layers of embed-
ded Flash files for further obfuscating the pur-
pose of their existence. The nature of such
interpreted environments offer good opportu-
nities for complicated code obfucation, but on
the other hand, it also lacks the control com-
pared to native execution environments.

For complicating the matter even further,
Flash is usually run on a Web environment,
and it is dependent on external resources, such
as JavaScript and other Web content. This again
creates a twofold situation. On the other hand,
having the entire Internet as a computing re-

1

mailto:jarkko.turkulainen@f-secure.com

Reflash: practical ActionScript3 instrumentation with RABCDAsm

source creates reverse engineering problems
that are theoretically very difficult to solve [1]
but it also rules out some problems existing
on native platforms, such as timing attacks
because timing network connections is not reli-
able.

The research described on this paper con-
centrates exclusively on the Flash part of this
complete picture. One of the challenges the
author had to face was almost complete non-
existence of binary analysis and debugging
tools for the Flash platform. For native plat-
forms, such as Intel x86/x64, there exists al-
ready multitude of good binary research tools,
but not so much for the Flash platform. As an
interpreted execution environment, the Flash
relies a lot on the native execution runtime li-
braries, which do offer very good debugging
support, but in order to use them, one would
have to compile the software with debugging
information. Once compiled, the code can-
not anymore directly manipulate its instruc-
tion stream, which means that Flash software
without debugging information is out of reach
of debuggers and other profiling tools. This
again is a clear difference to native platforms,
where one loses a lot of information without
debugging symbols, but it is still possible to
manipulate the code, for example insert break-
point instruction (INT3 on Intel) and catch the
exception with external debugger tools.

One of the main motivations for the author
was to create a set of tools analogous to famil-
iar native platforms debugging tools. The very
basic requirement for such a tool is the abil-
ity to run without any debugging information.
This is absolutely required, since the malicious
software usually leaves out such reverse engi-
neering aids. The other major requirement is
stablility and efficiency because malicious soft-
ware quite often exploits the limits of execution
and uses exotic platform features.

Proof of concept of this research is called
Reflash. It is a set of tools for analyzing binary
Flash files without any debugging information.
Reflash grew out of curiosity for a quite promis-
ing platform. It is not limited only to reverse
engineering use, altough that is its main pur-

pose.
Reflash can run Flash files written in Ac-

tionScript, targeting the Adobe ActionScript
Virtual Machine version 2.

i. ActionScript 2/3

The language used to write software for the
Flash platform is called ActionScript. Its cur-
rent version is 3. ActionScript is an object-
oriented language originally designed by Gary
Grossman [4]. ActionScript is a dialect of
ECMAScript, standardized scripting language
specification. Other known dialects include
JavaScript and JScript.

Reflash operates on a lower level, using the
underlying Virtual Machine instruction set and
features. However, some parts of the instru-
mentation module is written in ActionScript,
for conveniece.

The underlying parsing engine RABCDAsm
[3] supports ActionScript 2 and 3, but pro-
grams written in version 2 has not been tested
in the context of Reflash.

ii. Adobe AVM2

The execution environment for ActionScript
sofware is ActionScript Virtual Machine,
shortly AVM. For ActionScript 2/3, the exe-
cution environment is called AVM version 2,
shortly AVM2.

AVM2 is a stack-based machine, unlike
most native platforms and also some inter-
preted platforms such as Dalvik [5]. AVM2
instruction set consists of up to 256 different
opcodes, most of them handling data values
on stack, such as arithmetic operations.

AVM2 execution environment consists of
method body (instructions), data stack, heap,
local registers and scope stack. Of these the
most relevant parts for Reflash are the actual
instructions, data stack and local registers.

Instructions are a stream of binary opera-
tion codes (opcodes), such as ADD, CALL or
JUMP. AVM2 instruction are high-level opcodes,
meaning they can operate directly with Action-
Script language constructs, such as classes and
arrays.

2

Reflash: practical ActionScript3 instrumentation with RABCDAsm

Data stack is a memory area used for arith-
metic operations, call parameters and other
data. AVM2 stack operates on a familiar con-
cept of pushing and popping data from the
stack. There is no direct way to manipulate
stack pointer.

Local registers are quite similar to stack,
but instead of indirect data manipulation, data
is moved in and out of local registers with spe-
cific opcodes (GETLOCAL/SETLOCAL). Both
stack and local register can hold any type of
value.

Heap is a data area managed by the run-
time and it cannot be addressed directly from
the AVM2. Only way to observe data in heap is
through the objects created on the heap, such
as new classes.

For more comprehensive introduction to
AVM2, Adobe’s AVM2 overview is a good ref-
erence [2]

iii. Reflash

Reflash toolkit consist of several components.
In the following sections Reflash refers both to
the instrumentation engine and to the overall
concept. If there is a need to distinguish the
two, it will be indicated clearly. When referring
to the instrumentation engine, a term Reflash
executable is used.

• Reflash executable is the actual underly-
ing instrumentation engine. It is imple-
mented as a standalone executable that
can also be be used independently from
other components.

• Instrument is an instrumentation module
injected by the Reflash executable to all
analyzed flash files. It is responsible for
generating stack trace of instrumented
flash program.

• Proxy is a service component acting as
a HTTP proxy. It attempts to capture
any flash file requests and executes Re-
flash executable before returning the ac-
tual flash content to the client.

• Dbtool is used for building a SQL
database from stack trace. There are also

some useful features in Dbtool, for ex-
ample it can run YARA [10] over the
database or produce a human readable
decompilation from the stack trace.

• Replay is a graphical frontend for the SQL
database. It presents a debugger-like in-
terface that can be used for analyzing the
database.

• reflasher.py is a driver script that binds
together Proxy and Dbtool for automatic
stack data collection.

In the following sections, some of the above
components are described with details.

II. Reflash executable

Reflash is the main component of the
toolkit. It is a standalone executable,
written in D-language [6]. The choice

of programming language was natural, since
Reflash interfaces the RABCDAsm [3] classes
directly. Reflash has an integrated disassem-
bler, assembler and generic flash file injection
mechanism. The purpose of flash file injec-
tion is to have a flexible approach for writing
instrumentation modules.

i. Opcode instrumentation mecha-
nism

When Reflash is instructed to perform opcode
instrumentation, it will disassemble all instruc-
tions in a given flash file and replace opcodes
with a generated assembly code that collects
the stack arguments and transfers them to an
instrumentation module written with Action-
Script. Instrumentation decision is made by
consulting a user-supplied configuration file
where user can define a list of regular expres-
sions that are evaluated against the opcode
names during the disassembly. In the most
generic setup, only one hook may be defined,
a wild card ".*".

Opcode names correspond directly to
names presented in the Adobe AVM2 docu-
ment [2]. In addition to the normal opcodes,
there is one pseudo opcode, method_entry avail-
able for instrumentation. This hooks the

3

Reflash: practical ActionScript3 instrumentation with RABCDAsm

method prolog but instead of stack arguments,
it collects arguments from local registers ac-
cording to a protocol described in [2]: this
pointer is always in the first local register, and
rest of the arguments are placed to following
local registers.

If an opcode was selected for instrumenta-
tion, certain preconditions needs to be specified
before the actual code injection:

• Amount of stack items to be evaluated.
This can be reliably determined from
static compile time information, such as
the actual operation the opcode is per-
forming (for example: ADD always adds
two top values on stack) or the amount
of arguments for function calls.

• How many of the stack items are ob-
ject arguments and function arguments.
Object arguments are usually the this
pointer, namespace and/or name infor-
mation for runtime multinames [2] and
other runtime-specific stack values, or for
example arithmetic operation arguments.
Function arguments are arguments for
method calls and class constructors. Ob-
ject arguments are never modified, but
function arguments can be modified by
the instrumentation module. There are
always at least one object argument.

• Session context for the opcode. Session
consists of symbolic user-defined prefix
(usually just a single character, such as
"s"), a number indicating flash file run in
the session, a unique method identifier
and an opcode index. This information is
later sent back from instrumentation for
connecting a specific dynamically gener-
ated stack event to statically generated
data, such as disassembly.

• Available local registers. Instrumenta-
tion needs to be aware of local registers
used by the code for avoiding collisions
with the original code. This information
is always available statically in flash file
method body structure.

• Instrumentation module API. Instrumen-
tation code needs to refer to the Action-
Script module with a specific API that

consists of user-defined package name, a
fixed class Instrument and a fixed method
name InstrumentStack. Method Instru-
mentStack takes three parameters: ses-
sion context, amount of object arguments
and an array of stack items. Instru-
mentStack returns back an array consist-
ing of function arguments. If an argu-
ment was not modified, item in the array
is undefined.

With the information defined above, a generic
form of opcode instrumentation can be pre-
sented as following listing:

1 _ s t a r t :
2 s e t l o c a l A+1
3 s e t l o c a l A+2
4 . .
5 s e t l o c a l A+N
6 g e t l o c a l A+N
7 . .
8 g e t l o c a l A+2
9 g e t l o c a l A+1

10 newarray [N]
11 s e t l o c a l A
12 g e t l e x PACKAGE: Instrument
13 pushstr ing SESSION_ID
14 pushint X
15 g e t l o c a l A
16 c a l l p r o p e r t y : InstrumentStack (3)
17 s e t l o c a l A
18 g e t l o c a l A+N
19 . .
20 g e t l o c a l A
21 c a l l p r o p e r t y : pop (0)
22 dup
23 pushundefined
24 i f e q L2
25 jump L3
26 L2 :
27 pop
28 g e t l o c a l A+2
29 L3 :
30 g e t l o c a l A
31 c a l l p r o p e r t y : pop (0)
32 dup
33 pushundefined
34 i f e q L4
35

36 jump L5
37 L4 :
38 pop
39 g e t l o c a l A+1
40 L5 :
41 OPCODE

Listing 1: Generic instrumentation opcodes

4

Reflash: practical ActionScript3 instrumentation with RABCDAsm

Explanation of code listing line by line:

• lines 2-5 Store stack items to local regis-
ters. Symbol A refers to first available
local register, used later for saving the
stack items as an array. Symbol N is the
total number of stack items determined
statically.

• lines 6-9 Push back local registers to stack
in reverse order.

• line 10 Create an array of N items.
• line 11 Store created stack item array to

local register A.
• line 12 Get PACKAGE.Instrument where

PACKAGE is a user-defined package
name corresponding the the package
name used in instrumentation Action-
Script module. Instrument is a fixed func-
tion name.

• line 13 Push the session identifier to stack.
• line 14 Push the number of object argu-

ments to stack.
• line 15 Push the stack item array to stack.
• line 16 Call InstrumentStack with three

parameters(array, object argument count,
session identifier).

• line 17 Store the returned array in A.
• line 18 Start pushing the object arguments

from local registers to stack, up to X. In
this procedure, there is no need for any
type checking.

• lines 20-21 After X object arguments, pop
first function argument to stack.

• line 22 Duplicate the stack item.
• line 23 Push undefined to stack.
• line 24 If the stack items are equal, branch

to L2.
• line 25 If the stack items are not equal,

branch to L3, leaving stack item intact.
• line 27 Pop undefined from stack.
• line 28 Push function argument from local

register.
• lines 30-39 Repeat steps at 20-28, ending

up to last function argument A+1.
• line 41 Call original opcode.

This method of moving stack arguments as an
array was originally deviced by Jeong Wook
Oh with his tool FlashHacker [7]. The reason

why stack items has to be recycled using local
registers is to retain the types. First version of
Reflash was executing NEWARRAY and sav-
ing the full array returned by InstrumentStack
directly to stack, without any type coercion,
which led to obscure failures. Second revi-
sion was doing some manual type coercion for
values indicated by debug Flash Player, but it
proved to be futile. The current implementa-
tion is very careful to store only modified func-
tion arguments to stack from returned array,
all other items are restored from local registers.

ii. Opcode relocations

When Reflash executable is inserting instru-
mented code blocks to the instruction stream,
it has to relocate some of the branch targets and
exception handler targets in the method body.
This procedure is straightforward: if the target
is after inserted code block, it needs to be ad-
justed with the size of the inserted block. This
needs to be done to all branch targets, after
each instrumentation. The following diagram
illustrates the procedure:

Figure 1: Branch target relocations

5

Reflash: practical ActionScript3 instrumentation with RABCDAsm

iii. Flash injection mechanism

Flash injection mechanism is generic mecha-
nism for including the Instrument to the ana-
lyzed flash file. It is implemented using the
built-in RABCDAsm engine [3]. When the ana-
lyzed flash file is being disassembled on disk,
the injected flash is also disassembled to a sub-
directory and its class files are included with
RABCDAsm include-directive.

Injection mechanism is completely agnos-
tic about the underlying API so it cannot do
any verification for instrumentation engine and
injected flash code interoperation. That is com-
pletely the responsibility of the user.

1

2 # include " wrutrofsoudkqvr . s c r i p t . asasm "
3 # include " g/ c d x j k y j r l a v . s c r i p t . asasm "
4 # include " g/ i e p f k n f p d j n g r r r . s c r i p t . asasm "
5 # include " g/ekxapdubdwhxqmz . s c r i p t . asasm "
6 . .
7 # include " . . / sub/Instrument . s c r i p t . asasm "

Listing 2: Example includes

iv. Metadata

In order to later correlate stack trace to the
originally disassembled code, specific meta-
data is generated by the Reflash executable.
This metadata is a simple stream disassembly
of the original code.

1

2 0 −0:4: wrutrofsoudkqvr/ i n s t a n c e / i n i t :
3 00000000 g e t l o c a l 0
4 00000001 pushscope
5 00000002 pushbyte 0
6 00000003 s e t l o c a l 11
7 00000004 pushbyte 0
8 00000005 s e t l o c a l 7
9 . .

Listing 3: Example disassembly metadata

In the above listing, 0-0 is the Session identi-
fier. Leftside column is an opcode index in
the unique method body 4; wrutrofsoudkqvr/in-
stance/init. Later when the Instrument returns
stack event, it can be correlated to the metadata
for presenting contextual background for the
event.

v. Performance

For evaluating Reflash executable performance,
we selected three files based on file size and
features. These files were instrumented with
four different configurations. The execution
time was measured with Unix time command.

Small file is a malicious file of 717 bytes.
It does nothing else than load additional
flash payload from network using method
flash.display.Loader::load(). This is fairly typical
procedure used by flash components in Exploit
Kits and other malware.

Typical file presents the most common type of
flash malware. It is a compressed file with
size of 69,5KB, consisting of 10138 opcodes.
It is loading two embedded flash files with
flash.display.Loader::loadBytes(). The final flash
payload attempts to exploit vulnerability in the
Flash Player. Embedded payloads are extracted
and prepared with various manipulations over
ByteArrays.

Large file is a benign game file of 13,0MB. The
file contains total of 730608 opcodes.

Configurations present sets of instrumented
opcodes.

First configuration is very minimalistic set of
hooks instrumenting only CALL instructions.

Second configuration is a conservative set con-
sisting of the following regular expressions:

1

2 " method_entry " ,
3 " c a l l . ∗ " ,
4 " i n i t . ∗ " ,
5 " setprop . ∗ " ,
6 " c o n s t r u c t . ∗ "

Listing 4: Configuration 2

Third configuration is comprehensive set of
hooks instrumenting arithmetic operations, bit-
wise manipulations and other typical opcodes
in addition to the second set.

Fourth configuration is hooking only pseudo
instruction method_entry, used for evaluation
of the raw performance.

6

Reflash: practical ActionScript3 instrumentation with RABCDAsm

Table 1: Small file

Conf Instrumented Size Time

1 3/59 3611 bytes 0, 0s
2 8/59 3702 bytes 0, 0s
3 14/59 3776 bytes 0, 0s

Table 2: Typical file

Conf Instrumented Size Time

1 74/10138 73,0K 0, 1s
2 263/10138 74,8K 0, 1s
3 3487/10138 96,2K 0, 5s

Table 3: Large file

Conf Instrumented Size Time

1 9763/730608 13,5M 5.79s
2 97714/730608 18,5M 44.5s
3 267455/730608 26,8M 238.0s
4 1742/730608 12,8M 3.6s

The results show that Reflash executable
performs well in typical situations, but the
performance starts to deteriorate when the
amount of instrumented opcodes is in range
5000-10000. The execution time appears to
grow linearly, which indicates there is room
for optimization in the instrumentation algo-
rithm itself. The underlying parsing engine
RABCDAsm [3] performs reasonably well even
in extreme situations, as we can see from large
file configuration 4.

It should be noted that this section dis-
cusses only the perfomance of executing the
static instrumentation. The performance of in-
strumented files is discussed in the following
section.

III. Instrument module

Iinstrument module is the code injected by
Reflash executable. It is written in Action-
Script and compiled as a standard flash

file.

As with any Internet content, flash is de-
signed to run untrusted content over the net-
work. This places some difficult restrictions on
the data collection. For example, we cannot
access disk directly for efficient data logging.
Flash player also runs out of memory and CPU
time if the data collection requires too much
resources. All this makes the Instrument data
collection a challenging task.

Typically, similar applications collect data
on disk and do some preprocessing over the
data, such as presenting textual information in
readable form. Because disk access is restricted
and any preprocessing require VM resources,
we have developed a method for minimizing
the amount of processing inside the VM. Stack
argument processing has been divided in two
parts: first the arguments are collected and
packed in binary format and transferred over
a binary TCP connection. After that the data is
processed outside the VM.

i. Argument collection

Arguments are transferred from the instrumen-
tation hook as an array of stack items. This
array is rearranged to a new array consisting
of:

Table 4: Returned Array

Index Item

0 Session
1 Type of argument 0
2 Argument 0 as ByteArray
3 Type of argument 1
4 Argument 1 as ByteArray
N*2 - 1 Type of argument N
N*2 Argument N as ByteArray

All arguments are presented as ByteArray
because AS3 ByteArray method writeObject is
used for formatting the argument in Action
Message Format [8].

7

Reflash: practical ActionScript3 instrumentation with RABCDAsm

The argument collection can be presented
as the following ActionScript-like pseudo code:

1 func t ion GetArguments (array , s e s s i o n)
2 {
3 var len : i n t = array . length ;
4 var ba : ByteArray = new ByteArray () ;
5 var r e t : Array = new Array ((len ∗2) +1) ;
6

7 r e t [0] = s e s s i o n ;
8 f o r (var i : i n t = 0 ; i < len ; i ++)
9 {

10 ba . wr i teObjec t (array [i]) ;
11

12 r e t [(i ∗2) +1] = ArgumentType ;
13 r e t [(i ∗2) +2] = ba ;
14 }
15 re turn r e t ;
16 }

Listing 5: Argument collection

session in the above listing is the session con-
text prepared by Reflash executable for the
particular hook. ArgumentType is class name as
retuned by getQualifiedClassName().

Instrument module tracks the visited code
locations based on the session identifier for lim-
iting the amount if collected stack data. If the
amount of visits on particular location exceeds
a preconfigured threshold (by default 20), data
is not collected. This is to prevent exhausting
the AVM2 resources, while still providing some
details about loops. With the default settings,
it is still possible to get an idea on what the
target is running inside loops.

In the actual implementation, only safe
types are written directly with writeObject. Safe
types include final classes, like String and In-
teger, and classes from package flash.*. This
safety measure is to prevent infinite loops in
class getters. If the class is not safe to write,
explicit coercing to ByteArray is tried and if
that fails, zero-sized ByteArray is written to
the return array.

ii. Logging

After preparing the return Array, Instru-
ment module packs up the Array again with
writeObject() and then sends the packed object
over a binary TCP connection to Proxy mod-
ule. In effect, there is no log format or protocol

present. The log simply consists of series of
AMF-packed data objects that can be later un-
packed with standard tools.

iii. loadBytes instrumentation

In addition to raw data logging, the Instru-
ment module can also manipulate call argu-
ments. This feature is utilized in one particular
use case, namely instrumentation of embed-
ded flash content. Many malware uses embed-
ded flash files as a form of obfuscation, so it
is essential for Reflash to detect this and run
Reflash executable also for any detected em-
bedded flash content, otherwise it will lose its
visibility to the overall execution.

Embedded flash content loading is
supported in ActionScript with method
flash.display.Loader::loadBytes, which loads con-
tent from ByteArray. In practise, this method is
always executed with CALL opcode, so the ab-
solute minimum configuration should include
all calls. Instrument module will detect CALL
instructions with flash.display.Loader object
and ByteArray argument. If this condition is
present, it sends the ByteArray over a HTTP
connection back to Proxy module for instru-
mentation. After receiving back instrumented
content, the ByteArray argument is replaced
with the new content.

This concept is simple in principle, but
quite challenging to implement in the concur-
rent Flash Players. Flash Player runs AS3 code
usually in a single thread and all networking
is asynchronous, based on callbacks. Because
the ByteArray content needs to be replaced
synchronously, there is no definitive way to
accomplish this task. The current implementa-
tion of Instrument uses AS3 ExternalInterface,
which enables synchronous remote procedure
calls from AVM2. The embedded flash content
is wrapped as an argument to JavaScript func-
tion in the context of browser and the JS code
can then perform synchronous HTTP request
to Proxy.

8

Reflash: practical ActionScript3 instrumentation with RABCDAsm

iv. Performance

The performance of instrumented files is not
trivial to measure, because there are too many
details involved. For that reason, a simple test
file was prepared. The test file runs a series of
simple loops, copying bytes from ByteArray to
another:

1 var ba : ByteArray = new ByteArray () ;
2 var bb : ByteArray = new ByteArray () ;
3

4 var len : i n t = ba . length ;
5

6 var s t a r t : Number = getTimer () ;
7 var i : i n t ;
8 var j : i n t ;
9 var x : i n t ;

10

11 f o r (i = 0 ; i < N; i ++)
12 {
13 ba . p o s i t i o n = 0 ;
14 bb . p o s i t i o n = 0 ;
15 f o r (j = 0 ; j < len ; j ++)
16 {
17 x = ba . readByte () ;
18 bb . wri teByte (x) ;
19 }
20 }
21 . .
22 [repeated Round times]
23 . .
24 f o r (i = 0 ; i < N; i ++)
25 {
26 ba . p o s i t i o n = 0 ;
27 bb . p o s i t i o n = 0 ;
28 f o r (j = 0 ; j < len ; j ++)
29 {
30 x = ba . readByte () ;
31 bb . wri teByte (x) ;
32 }
33 }
34

35 t r a c e (getTimer () − s t a r t) ;

Listing 6: Perfomance test loop

The fixed number N is the threshold for Instru-
ment loop counter. This test procedure was
repeated 10, 100, 1000 and 10000 times, produc-
ing the following results when measuring the
execution time with getTimer():

Table 5: Instrumented code performance test

Rounds Instrumented Time

10 96/375 40ms
100 726/2985 375ms
1000 7030/29095 3, 6s
10000 70030/290095 37, 1s

The test run with 10000 rounds was a good
stress test also for the Reflash executable. The
instrumented main class contained a method
body with around 1,2 million instructions. As
expected, the execution time grows linearly.

IV. Proxy module

Proxy module has two operational modes:
a sandbox mode, which only serves
the initial flash file to the browser

and a live mode, which passes all connections
through. When the Proxy detects a request
to flash file, it will run the Reflash executable
and return instrumented content instead of the
original flash file.

In addition to the flash instrumentation, the
Proxy is collecting the AMF-packed log gener-
ated by the Instrument.

Proxy is implemented as an inline mitm-
proxy script [9] .

V. Dbtool

Dbtool is a python module responsible
for parsing the AMF-packed binary
log, populating a SQL database from

the parsed stack events and other tasks, such as
producing readable reports from the database.
In addition to stack events, other data, such as
the metadata produced by Reflash executable,
is written to the database.

9

Reflash: practical ActionScript3 instrumentation with RABCDAsm

1 nw22/ i n s t a n c e /nw22/g e t _ s k o t i n a :
2 {
3 [00005586] (propvoid) : : wr i teBytes
4 (
5 obj : ByteArray : ’ ’
6 arg : ByteArray : ’ \ xeb\x12X1\xc9f [. . .]
7 arg : I n t e g e r : ’ 0 ’
8 arg : I n t e g e r : ’ 1 4 2 6 ’
9)

10 [00005587] (propvoid) : : wri teMult iByte
11 (
12 obj : ByteArray : ’ \ xeb\x12X1\xc9f [. . .]
13 arg : S t r i n g : ’ uqmyijenjr ’
14 arg : S t r i n g : ’ iso −8859−1’
15)
16 [00005588] (propvoid) : : wri teByte
17 (
18 obj : ByteArray : ’ \ xeb\x12X1\xc9f [. . .]
19 arg : I n t e g e r : ’ 3 4 ’
20)

Listing 7: Example database report

VI. Replay

Replay is a graphical frontend for the SQL
database prepared by Dbtool. With

the stack events and metadata in SQL
database, it can present a coherent view of AS3
execution. Replay was modelled after popular
debugging tools for presenting a disassembly
view, stack view and a hex data view. Some of
the features included in Replay:

• Present a stream disassembly of the cur-
rent stack event’s method.

• Search textual data over stack items and
disassembly.

• Step forward and backward the stack
events.

• Go to specific stack item.
• View selected stack item in hex view.
• Save data from hex view to disk.
• Set breakpoints on stack events, run, sin-

gle step.
• Run YARA [10] over stack items and dis-

assembly.
• IDA-style [11] disassembly navigation us-

ing ENTER and ESC keys.

Figure 2: Replay graphical database frontend

10

Reflash: practical ActionScript3 instrumentation with RABCDAsm

VII. Future development

Reflash is still very early in its development,
and there are many things that can be im-
proved. One of the culprits in the current im-
plementation is the instrumentation of embed-
ded flash content. Relying on ExternalInterface
is somewhat fragile, because there is no guar-
antee that it will remain synchronous in any
given situation. It appears to be reliable, but
that can change with any Flash Player release.

There is no obvious solution to this prob-
lem, because essentially it requires to trans-
form the asynchronous nature of AS3 to syn-
chronous, for that particular case. If External-
Interface suddenly stops working, one of the
possible solutions could be including an instru-
mented code in the Instrument module. That
would require a two-step approach. First detect
the attempt to load embedded content, then
instrument the content, rebuild a new Instru-
ment module embedding the new content and
finally restart the execution. That is somewhat
problematic to fully automate and it cannot be
done to polymorphic payloads.

Another possible solution to the embedded
content problem could be using a method de-
viced by Timo Hirvonen with his tool Sulo [12].
Sulo is instrumenting the Flash Player outside
the AS3 context, so it can see all calls to load-
Bytes no matter how many layers of embedding
there is. On the other hand, it is still unknown
if it is possible to feed back modified flash us-
ing the Sulo tracing approach.

Next target for development is the Instru-
ment logging, which can never be efficient
enough. Here also the Sulo approach could
be interesting. Instead of sending the AMF-
packed data over to a TCP connection, just
fetch them off the AVM2 using Sulo.

There are also some interesting things that
could be done with the Replay frontend. In
the current implementation, there is no exe-
cution logic interception - it is just a dummy
database frontend. It should be perfectly possi-
ble to implement an AVM2 emulation for stack
data manipulation. In that scenario, only the
instructions that require AVM2 runtime, such

as class constructors and method calls, would
be instrumented. The resulting stack values
could be migrated to the emulation, thus creat-
ing a hybrid, or assisted emulator. Functionality
that is not trivial to implement would be run
on a real Flash Player, but all trivial operations
would be emulated over the database. Example
of such trivial functionality could be a simple
ADD operation. It is not necessary to instru-
ment that, thus saving precious AVM2 CPU
cycles.

One interesting future development possi-
bility is to replace Reflash stack data generation
backend with Mozilla Shumway [13]. In that
setup, Reflash instrumentation stack trace gen-
eration would be implemented directly to the
Shumway runtime. Reflash executable’s role
would be reduced to provide only contextual
information and metadata to the database, and
Shumway would generate stack items. That
should provide better performance and sta-
bility as there is no instrumentation involved.
This approach sounds very promising in prin-
ciple, but there would be a lot of compatibility
issues with concurrent malware and exploit
kits. They tend to require a very specific and
realistic environments.

Finally, there is an interesting, albeit some-
what speculative analogy from native plat-
forms instrumentation platforms, such as Intel
Pin [14] . With that approach, Reflash would
instrument entire method body instead of in-
dividual opcodes. There is already the pseudo
opcode method_entry that could be extended for
providing emulated instrumentation for the en-
tire method body. Because AS3 code cannot
access directly the opcode level, intermediate
code could be provided forehand by the static
instrumentation code. With this intermediate
code, the method instrumentation code could
emulate stack manipulation and proxy all op-
codes requiring flash runtime, such as object
manipulation on heap and all native methods.
This could provide better perfomance and cov-
erage.

11

Reflash: practical ActionScript3 instrumentation with RABCDAsm

VIII. Related work

The basic concept of dynamic instrumentation
of flash files for malware analysis was intro-
duced by Jeong Wook Oh in his 2012 presenta-
tion, AVM Inception. In the original presenta-
tion, a concept of class hooking was presented,
but later he has also released a tool called Flash-
Hacker [7] that uses the RABCDAsm [3] tools
for instrumenting flash files, creating call traces
and other manipulations. Reflash can be con-
sidered as a continuation of that work, extend-
ing and automating the approach.

F-Secure Sulo by Timo Hirvonen is also
somewhat related to what Reflash is doing.
Reflash’s emphasis is in data postprocessing,
and it could be beneficial to start using Sulo
approach for data collection, instead of flash
file instrumentation. The trade-off would be
losing the portability of Reflash AS3 instru-
mentation, but there would be huge benefits in
performance.

IX. Conlcusion

This paper shows that large-scale instrumen-
tation of flash files is not only possible, but
a practical solution for dynamic ActionScript
analysis. The novel client/server-architecture
used in the solution also opens up other possi-
bilities for even more efficient stack trace col-
lection in the future.

References

[1] TrendLabs Security Intelligence blog. How
Exploit Kit Operators are Misusing Diffie-
Hellman Key Exchange (2015).

[2] Adobe Systems inc. ActionScript Virtual
Machine 2 (AVM2) Overview (2007).
https://www.adobe.com/content/

dam/Adobe/en/devnet/actionscript/

articles/avm2overview.pdf

[3] Vladimir Panteleev. Robust ABC (Action-
Script Bytecode) [Dis-]Assembler. https:
//github.com/CyberShadow/RABCDAsm

[4] Gary Grossman, Emmy Huang. Action-
Script 3.0 overview (2006). https://

www.adobe.com/devnet/actionscript/

articles/actionscript3_overview.

html

[5] Dan Bornstein. Dalvik VM Internals
(2008). https://sites.google.com/

site/io/dalvik-vm-internals

[6] The D programming language. https:

//dlang.org/

[7] Jeong Wook Oh. FlashHacker ActionScript
Bytecode instrumentation framework.
https://github.com/ohjeongwook/

FlashHacker

[8] Adobe Systems inc. Action Message
Format (2013). http://wwwimages.

adobe.com/www.adobe.com/content/

dam/Adobe/en/devnet/amf/pdf/

amf-file-format-spec.pdf

[9] mitmproxy, the Man-In-The-Middle proxy.
https://mitmproxy.org/

[10] YARA, The pattern matching swiss
knife for malware researchers. https://
virustotal.github.io/yara/

[11] IDA, a multi-processor disassembler and
debugger. https://www.hex-rays.com/

products/ida/

[12] Timo Hirvonen. Sulo: Dynamic instru-
mentation tool for Adobe Flash Player
built on Intel Pin. https://github.com/
F-Secure/Sulo

[13] Mozilla. Shumway: HTML5 technology
experiment that explores building a faith-
ful and efficient renderer for the SWF
file format without native code assistance.
https://github.com/mozilla/shumway

[14] Intel. Pin: A Dynamic Binary Instrumenta-
tion Tool https://software.intel.com/
en-us/articles/pintool

12

	Introduction
	ActionScript 2/3
	Adobe AVM2
	Reflash

	Reflash executable
	Opcode instrumentation mechanism
	Opcode relocations
	Flash injection mechanism
	Metadata
	Performance

	Instrument module
	Argument collection
	Logging
	loadBytes instrumentation
	Performance

	Proxy module
	Dbtool
	Replay
	Future development
	Related work
	Conlcusion

