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Abstract
Background: Promoter identification is a first step in the quest to explain gene regulation in
bacteria. It has been demonstrated that the initiation of bacterial transcription depends upon the
stability and topology of DNA in the promoter region as well as the binding affinity between the
RNA polymerase σ-factor and promoter. However, promoter prediction algorithms to date have
not explicitly used an ensemble of these factors as predictors. In addition, most promoter models
have been trained on data from Escherichia coli. Although it has been shown that transcriptional
mechanisms are similar among various bacteria, it is quite possible that the differences between
Escherichia coli and Chlamydia trachomatis are large enough to recommend an organism-specific
modeling effort.

Results: Here we present an iterative stochastic model building procedure that combines such
biophysical metrics as DNA stability, curvature, twist and stress-induced DNA duplex
destabilization along with duration hidden Markov model parameters to model Chlamydia
trachomatis σ66 promoters from 29 experimentally verified sequences. Initially, iterative duration
hidden Markov modeling of the training set sequences provides a scoring algorithm for Chlamydia
trachomatis RNA polymerase σ66/DNA binding. Subsequently, an iterative application of Stepwise
Binary Logistic Regression selects multiple promoter predictors and deletes/replaces training set
sequences to determine an optimal training set. The resulting model predicts the final training set
with a high degree of accuracy and provides insights into the structure of the promoter region.
Model based genome-wide predictions are provided so that optimal promoter candidates can be
experimentally evaluated, and refined models developed. Co-predictions with three other
algorithms are also supplied to enhance reliability.

Conclusion: This strategy and resulting model support the conjecture that DNA biophysical
properties, along with RNA polymerase σ-factor/DNA binding collaboratively, contribute to a
sequence's ability to promote transcription. This work provides a baseline model that can evolve
as new Chlamydia trachomatis σ66 promoters are identified with assistance from the provided
genome-wide predictions. The proposed methodology is ideal for organisms with few identified
promoters and relatively small genomes.
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Background
Identifying mechanisms that regulate gene expression in
bacteria is essential for understanding and eventually con-
trolling their pathogenicity. All known bacteria share a
well conserved transcriptional holoenzyme, RNA
polymerase (RNAP). The RNAP is comprised of a 3-subu-
nit catalytic core plus a variable σ-factor subunit that pro-
vides DNA binding specificity. One of these σ-factors, σ70

in Escherichia coli, participates in the transcription of a
majority of genes including those with housekeeping
functions.

E. coli is the best studied bacterial model with regard to
promoter identification and prediction. As such, most
promoter predictions are based upon the analysis of E. coli
σ70 promoter data. The earliest collections of E. coli σ70

promoters revealed the -35 and -10 hexamer consensus
motifs, TTGACA and TATAAT, that serve as recognition
sites for the 2.4 and 4.2 domains of σ70 [1-3].

Position weight matrices (PWMs) were the first models to
quantify the hexamer motifs [4]. PWM models were
expanded to quantify the variable-length spacer region
between hexamers [5-7], which is important in orienting
the hexameric motifs for interaction with the sigma bind-
ing factors [8]. Challenges encountered by PWM models
include defining thresholds that are sensitive enough to
include known promoters without predicting numerous
false positives.

Most of the quantitative modeling efforts that ensued
require training sets comprised of both positive and nega-
tive sequences. Artificial neural networks (ANNs) [9] have
been trained on sequences of identified E. coli promoters
and non-promoters. A hidden layer in the ANN architec-
ture quantifies interactions among pairs and triplets of
nucleotides. The resulting ANN scans and scores overlap-
ping sequences, and reports a score in the range (0, 1) that
indicates the likelihood of the sequence being a promoter.
A time-delay neural network (TDNN) can combine two
simple ANNs (one for each hexamer) with a variable-
length spacer region [10].

Burden et al (2005) [11] measured the distance from the
transcription start site (TSS) to the translation start site
(TLS) of 771 E. coli promoters. They showed that the dis-
tribution peaks sharply around 30 nt, and that combining
the TSS-TLS distribution with the NNPP2.2 TDNN [10]
significantly enhances the specificity of the prediction.

In another machine learning approach that has been
applied to model promoters, support vector machines
(SVMs) were trained on E. coli promoter sequences of
length 200 [12]. Although the SVM approach has the
advantage of comprehensively quantifying the primary

structure of the upstream region, it does not examine
structures of higher order that motivate our approach.

A natural extension to PWMs that explicitly models an
empirical spacing distribution between motifs is given by
duration hidden Markov models (HMMs). Here "dura-
tion" refers to this explicit representation of a spacer
length distribution, as opposed to the geometrically dis-
tributed lengths that are expected from components of
profile hidden Markov models [13]. Although the varia-
ble-length spacer region between hexamers has been
incorporated into promoter modeling and predictors
before [5-7], none of these earlier efforts have integrated
an explicit probabilistic representation of the spacer distri-
bution into a reusable predictor as a duration HMM,
which is arguably its most natural representation. On the
other hand, while duration HMMs have been introduced
into genome analysis (for example, in intron-exon mode-
ling, see Winters-Hilt 2006 http://www.biomedcen
tral.com/1471-2105/7/S2/S14), they have not to our
knowledge been applied to modeling transcriptional or
translational signals before.

Bacteria of the genus Chlamydia are obligate intracellular
parasites that were genetically isolated from other bacteria
nearly a billion years ago when they moved into their
intracellular environment [14]. In humans, Chlamydia
infections are responsible for infertility, blindness, arthri-
tis and cardiovascular disease [15]. Because chlamydiae
have an intracellular life-cycle, standard genetic tech-
niques are often insufficient to study gene regulation [16].
Hence, only 30 to 40 promoters have been experimentally
verified [16-19]. However, with a small genome of only
about 1 Mbp and 895 genes, Chlamydia trachomatis (CT)
makes a good candidate for in silico analysis.

Surveys of known bacterial promoters suggest that their
structures are relatively diverse [8]. Additionally, estab-
lished CT promoters display obvious differences from the
established consensus hexamers of E. coli [16-19].
Although σ66, the CT analog of E. coli σ70, has DNA bind-
ing domains homologous to domains 2.4 and 4.2 in σ70,
sequence based phylogenetic analysis of bacterial RNAP
subunits has shown discernable evolutionary distance
between the CT and E. coli RNAP subunits [20]. Therefore,
it is plausible that an organism-specific model is appropri-
ate for CT.

Phylogenetic footprinting takes advantage of relative con-
servation of motifs among related species. Grech et al
(2007) [17] developed an algorithm that combines E. coli
trained PWMs and chlamydial phylogenetic footprinting.
CT upstream regions are screened with the PWMs and the
potential promoter hexamers are filtered with an algo-
rithm that accepts only conserved sequences in a consen-
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sus of C. trachomatis, C. pneumoniae and C. caviae.
Although this is a promising approach, because they used
an E. coli trained PWM, their results may be strongly influ-
enced by prior expectations that all bacterial promoters
are structured as in E. coli. We believe that more develop-
ment is needed in ab initio approaches for predicting pro-
moters using sequence information directly from the
organism under study (and perhaps from close phyloge-
netic relatives) in combination with biophysical metrics
that derive from known models about the biology of tran-
scription in general.

This study aims to develop CT promoter models using
only known CT promoters. To do so, it considers DNA sta-
bility and topological features of the upstream region as
well as RNAP σ-factor/DNA binding. As Hertz and Stormo
(1996) [5] aptly wrote "... the polymerase needs to bind
the DNA, open the DNA, initiate transcription, and
release the promoter for elongation." The TDNNs and
SVMs that consider extended promoter sequences are
addressing this issue from a sequence perspective. This
study utilizes measures that have been developed to quan-
tify stability and other aspects of DNA structure. Evidence
from the profiling of DNA curvature, bendability, twist,
stability and propensity for stress-induced destabilization
in E. coli, B. subtilis, C. trachomatis, plants and vertebrates
[21-23] suggests that there are peaks for these measures
near the TSS. Here we use a stochastic model building pro-
cedure that allows for the combination of relevant predic-
tive measures selected from RNAP σ-factor/DNA binding
propensity, as quantified by duration HMMs, and struc-
tural features of the upstream region, as quantified by bio-
physical metrics.

Methods
Stochastic Model Building
Stepwise Binary Logistic Regression (SBLR) [24,25], as
implemented in SPSS version 17.0 statistical software
(SPSS Inc., Chicago, IL), selects an optimal set of inde-
pendent variables (continuous and/or categorical) to clas-
sify observations into two populations. Logistic regression
does not assume a linear relationship between the
dependent and independent variables, normal distribu-
tions, or homoscedasticity (equal variances). It does, how-
ever, assume independence of observations. We address
this requirement in a separate section describing the selec-
tion of non-redundant observations.

The mathematical model (prediction equation) fitted by
SBLR has the form

where i is the number of steps, v1 through vi are the predic-
tor variables selected, and b0 through bi are coefficients
determined by the analysis.

u is the logit for the dependent variable, which means that

Here, the event is class membership. When P denotes the
prob(class membership), the equation can be rewritten as

Selecting a cutoff for P, most commonly 0.5, converts P
into a classifier. When 0.5 is the probability threshold, eu

= 1 and the classification threshold for u is 0. The effec-
tiveness of a model can be evaluated by its ability to cor-
rectly classify the training data.

The SPSS SBLR analysis procedure provides many user-
defined options. We selected the Forward Conditional
stepwise procedure for all analyses. At each step, a score
statistic is calculated for each variable excluded from the
model. The score statistic is based on Maximum-Likeli-
hood Estimation criteria and is asymptotically distributed
as a χ2 variable [25]. The variable with the highest signifi-
cant χ2 value is entered into the model. If no significant
variables remain, then the procedure stops with the cur-
rent model. Similarly there is a mechanism for stepwise
removal. After a new model has been generated, score sta-
tistics are calculated for all variables in the model. If the p-
value for any variable in the model is greater than the
probability for stepwise removal, then the variable is
removed from the model. We retained the default proba-
bilities for stepwise entry (.05) and removal (.10), thus
ensuring that the significance of all model variables is less
than 0.10.

Potential Observations and Dependent Variable
A significant challenge for bioinformaticians is to model
data that has been collected by multiple laboratories using
different assays, protocols and equipment. This phenom-
enon is compounded in the study of CT where the organ-
ism is metabolically active only inside an infected host-
cell. One way to minimize the use of conflicting and/or
controversial data is to rely upon reviews written by
informed biologists. For this reason, we consulted the
reviews of Mathews & Timms (2006) [19] and Tan (2006)
[16] to compile a list of 16 experimentally verified σ66 pro-
moters. To this list we added 13 promoters that were
experimentally verified by Grech et al (2007) [17] and
Hefty et al (2007) [18] after the previously cited reviews
were written. For the purposes of this study, we consider
these 29 sequences to be the known CT σ66 promoters.

Table 1 describes the 29 experimentally verified σ66 pro-
moters from 27 genes that form the basis of the training
set for this study. We derived potential observations for
analysis according to the following procedure:

u = + + + +b b v b v b vi i0 1 1 2 2 … ,

u = =
=

ln( ( )) ln( ( ) / ( ))

ln( (

odds event prob event prob nonevent

prob evvent prob event) /[ ( )]).1 −

u u u u u= − = − = + = + −ln( /( ); /( ); /( ) /( ).P P e P P  and P e e e1 1 1 1 1
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1. Files containing the CT genome (NC_000117.fna)
and genome table (NC_000117.ptt) were retrieved
from the NCBI website, ftp://ftp.ncbi.nlm.nih.gov/
genomes/Bacteria/, on July 2, 2007 and last modified
by NCBI on January 23, 2007. An R script was written
to extract the 600 nt upstream regions of all 895 pro-
tein-coding genes as annotated in the genome table.
The regions were verified at several stages throughout
the research with other sources, including a CT
genome database previously available from Los Ala-
mos National Laboratories and comparable predic-
tion algorithms. Table 1 displays the distance from
promoter to TLS for all training set genes. Since the
maximum distance is 296 nt, 325 nt was set as the
upper limit for data analysis. Then, the upstream
region was defined as 600 nt to allow for biophysical
structures 275 nt upstream from a predicted promoter.

2. For each of the 27 genes listed in Table 1, the 600 nt
upstream region was parsed into overlapping sliding
window sequences of length 32 (6 nt for each hexamer
and maximum spacer of 20 nt) and step-size 1. Each
subsequence (SEQ32) was labeled according to its
parent gene and position occupied in the upstream
region: e.g. the first SEQ32 was labeled CT046_600
because the initial nt is found 600 nts upstream from
the CT046 TLS.

3. The dependent variable, PROMOTER, was assigned
a 1 if a promoter sequence listed in Table 1 was totally
contained in SEQ32, and 0 otherwise. Thus, 1's iden-
tify potential promoter observations and 0's identify
potential non-promoter observations.

4. Cases with upstream positions ≥ 40 and ≤ 325 were
selected as potential observations to restrict the analy-
sis to the range of the training set data. The upper
bound is 30 nt upstream of the furthest upstream
training set promoter and the lower bound is equal to
the furthest downstream training set promoter.

Independent Variables
The primary variable for promoter prediction is the pat-
tern that characterizes the binding between the RNAP σ-
factor and DNA. Here we use duration HMMs to describe
and quantify RNAP-σ66/DNA binding. After a set of
known promoters is used to train a duration HMM, the
duration HMM scans a new sequence to identify the hex-
amer-spacer-hexamer subsequence that scores the highest
with regard to potential binding. The variable
HMM_SCORE is assigned the score associated with the
highest scoring subsequence, while the variable START
denotes the position of the lead nucleotide in the -35 hex-
amer and END denotes the position of the last nucleotide
of the -10 hexamer.

Specifically, a training set of promoter sequences was
placed in the file ts.txt. The initial ts.txt contained the con-
tents of Table 1, columns "-35 Hex", Spacer and "-10
Hex". This file was supplied as input to durahmmer
(Ardell D.H., in preparation) which was used to create a
duration HMM with the command: durahmmer -5 6 -3 6
-s 16 -S 20 -p 1 -u 28.5:21.5:21.5:28.5 -C ts.txt > ts.hmm.
The options to the command specify the following model
parameters: 6 matched states (hexamers) at the 5' and 3'
sequence ends; minimum and maximum spacer lengths
of 16 and 20 respectively; a background compositional
model of 28.5% A, 21.5% C, 21.5% G, and 28.5% T; and
spacers should be modeled to have their empirical com-
position in the training set (which in this case was: 38%
A, 12% C, 17% G, 33% T). The program durahmmer pro-
duces a valid HMMer 2.3.2 [13] model file representing a
duration HMM. For the final model of this study, the
model file and the input data file are provided as Addi-
tional Files 1 and 2. All 16,200 SEQ32 observations from
the 27 genes were placed in the file all.txt so that optimal
promoters and HMM scores could be calculated by
hmmsearch [13] with the command: hmmsearch -E
9000 ts.hmm all.txt. We ran hmmsearch with a high E-
value because we were interested in combining the score
of the maximum scoring hit with other metrics in a com-
posite procedure regardless of its magnitude.

In combination with the duration HMM model score
described above, we also used the following biophysical
metrics of promoter position and structure as possible
independent variables for the SBLR model:

1. POSITION, which indicates the location of SEQ32
in the upstream region relative to the TLS. For
CT046_101, POSITION = 101.

2. Measures of curvature (CURVE) [26] and %GC con-
tent (GC) for each 600 nt upstream region, which were
determined by the online bend.it Server http://
hydra.icgeb.trieste.it/dna/bend_it.html with a win-
dow-size of 32.

3. Free energy change (ΔG) of DNA melting (parame-
ter #33 [27], dinucleotide, window size 2), bendabil-
ity (parameter #31 [28], trinucleotide, window size 3)
and twist angle (parameter #44 [29], dinucleotide,
window size 2), which were determined for each 600
nt upstream region by the online plot.it Server http://
hydra.icgeb.trieste.it/dna/plot_form.html. All meas-
urements were then averaged over each SEQ32. ΔG
always has a negative sign and is interpreted as greater
values having lower stability. For statistical analysis
this variable was transformed by STABLE = -ΔG so that
the sign is always positive and the interpretation is
that larger values have greater stability. Stability is also
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Table 1: 29 experimentally verified σ66 promoters.

CT Name To TLSa Refb -35 Hex Spacer (16-20) -10 Hex h PIc

CT046 hctB 107 M TGGTTA GTTTTTAATAAAAAGT(16) TAAAAA 16

CT062 tyrS 62 G TTGCTA TAAAAAGAACAGGATAGA(18) TAAGAT 8

CT080 ltuB 68 M,T TTATGA AAAACAATTTTTTAATT(17) TAAAAT 24

CT091 yscU 68 H TTGAGA AAAACATTTATATACGG(17) TAACTT 8

CT098 rs1 69 M,T TTGCCT TTTTTAAGGTGAATATT(17) TACACT 3

CT111 groES 129 M,T TTGCAA AAAAGCGAGGACTTTGC(17) TATCGT 1

CT286 clpC 64 G TTGCAT CATTATCATAAATGTCG(17) TATATG 8

CT322 tuf 296 M,T TTGATA ATAATCCGCGTCTGAAGT(18) TACTAT 3

CT323 infA 145 M,T TTGACA TTTTCTGTTTAGTCGA(16) TATAAT 3

CT377 ltuA 74 M,T TGCAGA GTTTTTATTTTAAATATGT(19) TATAAT 16

CT394 hrcA 40 M,T TTGACC AGTGGAGACGGTTTTCT(17) TATAAT 16

CT439m rpsL 67 G TTGCAA ACAAAGATATTCTTATTC(18) TATATT 3

CT442 crpA 66 M GGGTTT TTGAAAAAAACAAGTGTTT(19) GTGTAG 16

CT444a omcA 127 M,T TTGATA TAATTTTTATTTTATAA(17) TGTAAT 16

CT444b omcA 61 M,T AATTGC TTTTATCGATAAAAGAAAC(19) TTCAAG 16

CT518 rl14 198 M CTGTTG TTGTTCGAGTCGAAAGGG(18) TATACT 3

CT557 lpdA 162 H TTGAGA TTTTATCCACCCAGATG(17) TACAAC 8

CT559 yscJ 52 G TTGGCA CTAATCTCCCCATTTGC(17) TATGGT 16

CT576 lcrH_1 75 H TTGTTA AATCAGATCGTTAGAATT(18) TAATAT 16

CT596 exbB 63 G TTGGTT CTATACAAGAAATTTGT(17) TAGGAT 3

CT665 - 98 H TTGTAT CTTTTTAGAACGGGAAGGG(19) TTGAAA 8

CT674 yscC 119 H TTGCAA GATAGAGGGCAAATAGA(17) TATATT 16

CT681a ompA 282 M,T TATACA AAAATGGCTCTCTGCTT(17) TATTGC 8

CT681b ompA 60 M,T GTGCCG CCAGAAAAAGATAGCGAG(18) CACAAA 8

CT701 secA_2 57 M TGTATA GGCGCCTTTAAATAAGAGGG(20) TAGGTT 8

CT708 - 66 G TTGATT TAGCGGAAGTAAAAAGG(17) TACAAG 16

CT743 hctA 83 M,T TTGCAT GAATTTGAACAAACAAAC(18) TAATTA 24

CT752 efp_2 62 G TGGACA AAGCTTAGAAGAGAACGA(18) TAACAT 8

CT863 - 71 H TTGCAT GAAAAATACTTTTTAGA(17) TAAGTT 16

ant distance from the lead nt of the -35 hexamer to the TLS.
bReferences: M: Mathews & Timms [19]; G: Grech et al [17]; H: Hefty et al [18]; T: Tan [16]
chour Post Infection of transcriptional activation [31]
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of interest in the immediate downstream region, so
positions 27-37 (STABLE27_37) and 1-37
(STABLE1_37) were quantified. Since the bendability
measure increases with rigidity, it was renamed
RIGID. The twist angle measurement, TWIST, was not
transformed.

4. Possible times of expression onset include 1, 3, 8,
24 and 40 hours post infection (h PI). Mutually exclu-
sive binary variables H1, H3, H8, H16, H24 and H40
were created to mark time of expression onset.

5. Stress-induced DNA duplex destabilization (SIDD)
quantification utilizes structural and energetic proper-
ties of DNA to measure the propensity for strand sep-
aration under negative superhelical stress [22]. A low
SIDD score indicates a high propensity for strand sep-
aration. SIDD measurements were determined by the
WebSIDD server [30] http://www.genome
center.ucdavis.edu/benham/sidd/websidd.php with
default parameters except for Open Region Size = 63.
Because Niehaus et al [31] have shown a time depend-
ent response to chlamydial DNA supercoiling, interac-
tions between the time of expression onset and SIDD
were included [32]. The SIDD/hour of onset interac-
tion is quantified by SIDD_H# = SIDD*H#.

6. For variables based on the entire SEQ32, lagged var-
iables were created for the four non-overlapping
upstream subsequences of length 32: e.g. for
CT046_100, CURVE_L32 was set equal to the CURVE
value of CT046_132, CURVE_L64 was set equal to the
CURVE value of CT046_164; CURVE_L96 was set
equal to the CURVE value of CT046_196; and
CURVE_L128 was set equal to the CURVE value of
CT046_228.

Selection of Non-redundant Observations from Potential 
Observations
As mentioned earlier, SBLR assumes independent obser-
vations. To address this requirement, we select for analysis
a subset of the overlapping potential observations that are
non-redundant with respect to the pair of hexamers that
are most likely to bind the RNAP σ-factor.

Table 2 displays the first six columns of a portion of the
data file used for analysis. Each potential observation
occupies a row. A row includes: the SEQ32 label
(SEQ_ID); the SEQ32 literal sequence (SEQ32); the score
of the optimal HMM instance in SEQ32 (HMM_SCORE);
the position of the lead nt in the -35 hexamer of the opti-
mal HMM instance (START); the position of the last nt in
the -10 hexamer of the optimal HMM instance (END);
and PROMOTER as previously defined.

If we select only those cases where END = 32, we eliminate
all of the redundant optimal HMM hexamer pairs while
retaining most optimal HMM instances (information).
Table 2 demonstrates how this selection ensures that
neighboring optimal HMM instances that match are
included only once. Six potential observations,
CT046_111 through CT046_106, all contain the verified
promoter with hexamer pair TGGTTA and TAAAAA. Con-
sequently, they all have PROMOTER = 1 and
HMM_SCORE = -2.1. But only CT046_111 has END = 32
and is selected to represent the verified CT046 promoter.
Similarly, only CT046_117 represents the maximal non-
promoter hexamer pair TTGTGT and AAAAGT with score
= -5.9. This process incidentally aligns each selected
SEQ32 such that the optimal downstream hexamer is at
the far right end.

This selection process does not eliminate overlapping
sequences, but it does eliminate overlapping likely bind-
ing sites. CT046_111 and CT046_112 overlap a great deal.
However, the last hexamer of CT_046_111 (TAAAAA) is
not present in CT046_112 and the first hexamer of
CT_046_112 (GTGTGT) does not appear in CT046_111.

It should be noted that although each training set gene
begins with the same number of potential observations,
this selection process causes the number of selected non-
redundant observations to differ among genes. Each gene
starts with around 5 potential observations with PRO-
MOTER = 1 for each verified promoter, and around 325-
40-5 = 280 potential observations with PROMOTER = 0.
However, selection for non-redundant observations
always results in the number of designated non-promot-
ers being reduced to approximately 90.

While selecting sequences with non-redundant
HMM_SCORES does mitigate the problem of dependent
observations, it may not entirely eliminate it. While there
are numerous studies that affirm the robustness of Bay-
sian Discriminant Analysis with regard to violating the
assumptions of a linear relationship between the depend-
ent and independent variables, normal distributions, and
homoscedasticity [33], we could not find similar studies
regarding the robustness of logistic regression. An alterna-
tive to the current analysis would be to use Stepwise Dis-
criminant Analysis, knowing that we are violating some
assumptions.

There are versions of logistic regression, including gener-
alized estimating equations (GEE) [25], that are specifi-
cally designed for correlated data such as longitudinal
studies. In these procedures there are subject variables and
within-subject variables. It might be possible to force this
study data into such a format, but as yet there are no read-
ily available stepwise procedures to scan multiple possible
Page 6 of 16
(page number not for citation purposes)

http://www.genomecenter.ucdavis.edu/benham/sidd/websidd.php
http://www.genomecenter.ucdavis.edu/benham/sidd/websidd.php


BMC Bioinformatics 2009, 10:271 http://www.biomedcentral.com/1471-2105/10/271
predictors. A final alternative would be to select non-over-
lapping sequences with the penalty of losing information
and perhaps introducing a selection bias.

SBLR is a procedure for model identification. It is only
after a model has been identified that it can be evaluated
for independence. Given that, we elected to analyze the
non-redundant observations with SBLR and then examine
the error terms for independence. In Time Series Analysis
(which this analysis most resembles), this is done by
checking that the error term is normally distributed with
zero mean, and that autocorrelations and partial autocor-
relations of the error term are not significant [34].

Iterative Modeling Strategy
Sources of error that could lead to misclassification
include (i) imprecise laboratory procedures in defining
and identifying promoters (including false positive pro-

moters), (ii) presence of more than one promoter popula-
tion, (iii) failure to include relevant predictor variables,
and (iv) random variation. To minimize the first two error
sources, an iterative strategy was developed. Duration
HMM iteration (Figure 1) addresses error source (i), while
SBLR iteration (Figure 2) addresses source (ii).

Duration HMM Iteration (Figure 1)
Minor modifications in the configuration of the training
set promoters can improve classification accuracy. To
accomplish this, we allowed each promoter to vary within
a neighborhood that extends the sequence by 5 nts on
each side. A limit of 5 nts ensures that a modified hexamer
will not locate completely outside of the original pro-
moter sequence. For example, when the promoter CT377
is extended, it becomes TTGTTTGCAGAGTTTTTATTT-
TAAATATGTTATAATCTGTC, with the bolded nts marking
the extensions. Initially, a duration HMM is determined

Table 2: Selecting rows with END = 32 (*) ensures non-redundant observations with regard to hexamers and HMM_SCORE.

SEQ32_ID PRO-MOTER START END HMM_SCORE SEQ32:bold italics locates optimal HMM instance

CT046_117 0 4 * 32 -5.9 TAATTGTGTGTGGTTAGTTTTTAATAAAAAGT

CT046_116 0 3 31 -5.9 AATTGTGTGTGGTTAGTTTTTAATAAAAAGTT

CT046_115 0 2 30 -5.9 ATTGTGTGTGGTTAGTTTTTAATAAAAAGTTA

CT046_114 0 1 29 -5.9 TTGTGTGTGGTTAGTTTTTAATAAAAAGTTAA

CT046_113 0 2 29 -13.7 TGTGTGTGGTTAGTTTTTAATAAAAAGTTAAA

CT046_112 0 1 * 32 -11.4 GTGTGTGGTTAGTTTTTAATAAAAAGTTAAAA

CT046_111 1 5 * 32 -2.1 TGTGTGGTTAGTTTTTAATAAAAAGTTAAAAA

CT046_110 1 4 31 -2.1 GTGTGGTTAGTTTTTAATAAAAAGTTAAAAAC

CT046_109 1 3 30 -2.1 TGTGGTTAGTTTTTAATAAAAAGTTAAAAACT

CT046_108 1 2 29 -2.1 GTGGTTAGTTTTTAATAAAAAGTTAAAAACTA

CT046_107 1 1 28 -2.1 TGGTTAGTTTTTAATAAAAAGTTAAAAACTAA

CT046_106 0 3 31 -11.9 GGTTAGTTTTTAATAAAAAGTTAAAAACTAAC

CT046_105 0 2 30 -11.9 GTTAGTTTTTAATAAAAAGTTAAAAACTAACC

CT046_104 0 1 * 32 -7.6 TTAGTTTTTAATAAAAAGTTAAAAACTAACCA

CT046_103 0 4 * 32 -7.8 TAGTTTTTAATAAAAAGTTAAAAACTAACCAT

CT046_102 0 3 31 -7.8 AGTTTTTAATAAAAAGTTAAAAACTAACCATT

CT046_101 0 2 30 -7.8 GTTTTTAATAAAAAGTTAAAAACTAACCATTT
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by the original, non-extended, promoter training set.
Then the set of extended promoters is searched for the
highest scoring instance of the duration HMM in each
extended sequence. If a high-scorer is not the same as the
original promoter, it replaces the original in the training
set. The iteration continues until stabilization. For the
final model, CT377 was modified to TTGCAGAGTTTT-
TATTTTAAATATGTTATAAT.

SBLR Iteration (Figure 2)
Deletion and subsequent replacement of members of the
training set can eliminate promoters that are likely to be
members of a different promoter population. This is

accomplished via the iterative scheme diagrammed in Fig-
ure 2. Initially, the complete set of 29 verified promoters
determines the duration HMM and the independent
observations selected for SBLR analysis. SBLR delivers a
mathematical model that produces a predicted probabil-
ity of class membership (P) for each observation. A
threshold on P of .5 is used to classify each observation as
a predicted promoter or non-promoter.

For those 29 cases where PROMOTER = 1, we also use the
value of P to determine when a promoter appears to be an
outlier and should be eliminated from the training set.
After observing the 29 probabilities, a retention threshold
on P between 0 and .1 is established. If a training gene has
only one identified promoter and that promoter has a P
less than the retention threshold, then all observations for
that gene are deleted from the analysis. Similarly, if a
training set gene has two identified promoters and they
are both selected for deletion, all observations for that
gene are deleted. However, if a training set gene has two
identified promoters and only one is selected for deletion,
all upstream observations for that gene remain in the
analysis dataset and only observations within the remain-
ing promoter are assigned PROMOTER = 1.

Modifying the training set in any way necessitates the
determination of a new duration HMM, which in turn
determines which observations will be aligned such that
END = 32 and subsequently included in the next SBLR
analysis. The iteration process continues until the training
set stabilizes.

Stratified K-fold Cross-Validation
Once the final training set and model are selected, it is
necessary to validate the model to ensure against over-fit-
ting and to allow for comparisons with algorithms trained
on other datasets. In the case of dichotomous classifica-
tion, stratified K-fold cross-validation [35] partitions the
training set into K subsamples such that each subsample
has approximately the same proportions of class member-
ship. Here we designate each training gene as a subsam-
ple; hence K equals the number of genes in the training
set. Then, one gene (1-2 promoters and approximately 90
non-promoters) is retained as a validation set while the
remaining genes are used as training data. Evaluation
measures are calculated by aggregating the results of each
validation set.

Comparable Algorithms
The following three algorithms were used to compare per-
formance and to identify co-predictions with the model
developed in this study: NNPP2.2, TSS-PREDICT, and
Footy. NNPP2.2 [10] is an online time-delay neural net-
work that is accessible for promoter predictions at http://
www.fruitfly.org/seq_tools/promoter.html. We used the

Flowchart of duration HMM iterationFigure 1
Flowchart of duration HMM iteration.

Original TS hexamer-spacer-hexamer sequences

durahmmer creates a duration HMM from TS 
sequences

hmmsearch identifies highest scoring instance of 
duration HMM in extended5_sequences

For each sequence in TS:

If highest scoring instance  TS sequence, TS 
sequence is replaced by highest scoring sequence

Create extended5_sequences:

A file where each original TS sequence has been 
extended by 5 nts on each side

Repeat
until
stable

Duration HMM

HMM_SCORE, START & END for any 32-mer

Flowchart of Stepwise Binary Logistic Regression iterationFigure 2
Flowchart of Stepwise Binary Logistic Regression 
iteration.

• For each TS29 gene, create over-lapping 32-mers    
_for the 600 nt upstream region

• Identify promoter & non-promoter 32-mers

• Generate potential predictor variables 1-6 (all but 
_HMM_SCORE)  for all 32-mers

Training Set (TS29):              
29 verified promoters

Stepwise Binary Logistic Regression

Classification Function (Model)
u = b0 + b1v1 + b2v2 + ... + bivi 
where i is the number of steps

Probability of being a promoter

P = 1/(1 + e-u)

Use Model for genome-wide prediction

For cases where 
PROMOTER = 1, if P < 

retention threshold, delete 
promoter from training set 
and create new current TS

To ensure non-redundant observations, 
select cases where END=32

Using  current TS, iterate duration 
HMM to generate HMM_SCOREs
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following options: organism = prokaryote and minimum
promoter score = 0.95 to define promoters in the 325 nt
upstream region of all CT genes. For the support vector
machine algorithm TSS-PREDICT [12], the top two rank-
ing predictions for each CT gene are posted as supplemen-
tary material at doi:10.1016/j.combiolchem.2008.
07.009. The 42 CT promoters predicted by Footy [17], an
algorithm that utilizes phylogenetic footprinting, are
reported directly in the publication that describes the
algorithm.

R scripts scanned the promoters predicted by NNPP2.2
and TSS-PREDICT for matches with the promoters pre-
dicted by the study model. An NNPP2.2 match was
declared when the study prediction was contained within
the 50 nt NNPP2.2 prediction. A TSS_PREDICT match
was declared when the TSS_PREDICT predicted hexamer
pair was contained within the study prediction.

Results
Finding the Best Model
The initial model, M0, utilizes the initial training set of 29
promoters with observations from their 27 parent genes.

The duration HMM model converged after one iteration,
modifying the alignment of 7 promoters. For all models,
Table 3 reports the variables that were selected for the
model and evaluation measures. If TP = true positive, FP =
false positive, TN = true negative and FN = false negative,
then sensitivity or recall = TP/(TP+FN), specificity = TN/
(FP+TN), positive predictive value (PPV) or precision =
TP/(TP+FP), negative predictive value (NPV) = TN/
(FN+TN), and accuracy = (TP+TN)/(TP+TN+FP+FN). The
total number of observations for each model differs
according to the promoter training set being used.

For model M0, 19 of the 29 promoters were classified cor-
rectly, with 2 false positives. There is always the possibility
that these are yet to be recognized promoters, but at this
point they are counted as misclassifications. For the 10
verified promoters that were missed, the predicted proba-
bilities ranged from 0.001 to 0.42. Since a natural separa-
tion appeared to between 0.07 and 0.10, P = 0.08 was
selected as the retention threshold and promoters CT665,
CT681a, CT681b and CT743 (along with all observations
from their parent genes) were deleted from the training set
for the next model, M1.

Table 3: Models produced by Stepwise Binary Logistic Regression Iteration and M2 Cross-Validation.

SBLR Model M0 M1 M2 M3 M2 Cross-Validation

Training Set
Deletion

none CT665
CT681a
CT681b
CT743

CT665
CT681a
CT681b

CT681a
CT681b

CT665
CT681a
CT681b

Variables in Modela +HMM_SCORE
+STABLE1_37
-POSITION
+CURVE_L32
-GC_L128
+RIGID_L96
+CURVE

+HMM_SCORE
+STABLE1_37
-GC_L32
-POSITION
+CURVE_L32
-CURVE_L64
-GC_L128
+TWIST

+HMM_SCORE
+STABLE1_37
-POSITION
+CURVE_L32
-STABLE_L32
+SIDD_H24
-CURVE_L128
-SIDD_L128
+RIGID_L96

+HMM_SCORE
+STABLE1_37
-POSITION
+CURVE_L32
-STABLE_L32
-STABLE27_37
+CURVE

Sensitivity or Recall 19/29
(0.655)

25/25
(1.0)

26/26
(1.0)

25/27
(0.926)

23/26
(0.885)

Specificity 2426/2428
(0.999)

2083/2083
(1.0)

2226/2226
(1.0)

2322/2323
(1.0)

2215/2226
(0.995)

PPV or
Precision

19/21
(0.905)

25/25
(1.0)

26/26
(1.0)

25/26
(0.962)

23/34
(0.676)

NPV 2426/2436
(.996)

2083/2083
(1.0)

2226/2226
(1.0)

2322/2324
(0.999)

2215/2218
(0.999)

Accuracy 2445/2457
(0.995)

2108/2108
(1.0)

2252/2252
(1.0)

2347/2350
(0.999)

2238/2252
(0.994)

AUCb 0.995 1.0 1.0 0.999 0.992

aThe variables are listed in order of entrance into the model and the sign indicates the sign of the coefficient.
bROC analysis Area Under the Curve
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The duration HMM model for M1 converged after two
iterations, modifying the alignment of 5 promoters. Table
3 shows that M1 classified the modified training set per-
fectly, indicating that perhaps too many promoters had
been deleted from the original training set. The retention
threshold was reset to 0.07 and CT743 was reinstated for
model M2.

The duration HMM model for M2 converged after one
iteration. Table 4 displays the alignments of the 6 promot-
ers that were modified. M2 also classified the modified
training set perfectly. Again the results indicated that the
next model, M3, should reset the retention threshold to
0.06 and reinstate CT665. However, Table 3 reports that
M3 is not as good as models M1 and M2 because of clas-
sification errors.

Given two models, one training set a subset of the other,
that both classify their respective training sets with 100%
accuracy, we reasoned that the model trained on the larg-
est set would provide the most sensitive genome-wide pre-
diction. Thus, M2 was selected as the best and final model
because of the perfect classification with the largest train-
ing set. The complete data file used to build M2, Addi-
tional File 3, is supplied so that others may replicate or
modify the model.

Finally, the error terms of M2 were checked for independ-
ence. Residuals, PROMOTER - P, were calculated for all

selected observations and shown to be normally distrib-
uted with zero mean. Additionally, the autocorrelations
and partial autocorrelations of the residuals were not sig-
nificant. Thus, the independence assumption of SBLR was
not violated by this model.

Aggregated results of the stratified K-fold (25-fold) M2
cross-validation are reported in the last column of Table 3.
For the 25 genes in the M2 training set, 3 promoters
(CT322_298, CT743_085, and CT752_064) were not
identified (sensitivity = 0.885) and there were 11 false-
positive predictions (precision = 0.676). The incorrect
classifications are most likely due to incomplete represen-
tation of the sample space, but may indicate additional
populations or absent predictors.

Table 5 compares the performance of the stratified K-fold
cross-validation performance of the M2 model with that
of comparable algorithms when predicting promoters in
the 25 cross-validation genes. The tally is in the form hits/
predictions/gene. For NNPP2.2, a prediction was consid-
ered a hit if the hexamer pair in Table 1 was fully con-
tained in the 50-mer NNPP2.2 prediction using a
threshold of 0.95. The last two rows of the table show the
cumulative sensitivity and precision of each prediction
algorithm. M2 cross-validation is the most sensitive
(0.885), while Footy is the most precise (1.0). Table 6
reports the hits and misses for the 2 genes that were not

Table 4: M2 duration HMM sequence alignment modifications.

CT Name To TLS -35 Hex Spacer (16-20) -10 Hex

CT323 infA 145 TTGACA TTTTCTGTTTAGTCGA(16) TATAAT

149 TTGTTT GACATTTTCTGTTTAGTCGA(20) TATAAT

CT377 ltuA 74 TGCAGA GTTTTTATTTTAAATATGT(19) TATAAT

75 TTGCAG AGTTTTTATTTTAAATATGT(20) TATAAT

CT442 crpA 66 GGGTTT TTGAAAAAAACAAGTGTTT(19) GTGTAG

60 TTGAAA AAAACAAGTGTTTGTG(16) TAGACT

CT444b omcA 61 AATTGC TTTTATCGATAAAAGAAAC(19) TTCAAG

59 TTGCTT TTATCGATAAAAGAAAC(17) TTCAAG

CT518 rl14 198 CTGTTG TTGTTCGAGTCGAAAGGG(18) TATACT

195 TTGTTG TTCGAGTCGAAAGGGTA(17) TACTCG

CT701 secA_2 57 TGTATA GGCGCCTTTAAATAAGAGGG(20) TAGGTT

61 TTGTTG TATAGGCGCCTTTAAA(16) TAAGAG
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used in the M2 model. The only hit was scored by
NNPP2.2, with 2 accompanying false positives.

Model Interpretation
The M2 duration HMM describes and quantifies the
RNAP-σ66/DNA binding observed in the training set. A
visualization of the M2 parameters is shown in Figure 3.
The -35 hexamer is dominated by the initial TTG motif,
while the initial T with frequent As and Ts describe the -10
hexamer. The C and G compositions (12% and 17%,
respectively) of the spacer region are much smaller than
those of the genome (21.5% each). Spacer lengths of 17
predominate, while spacers of length 19 are absent.

The input data file for durahmmer (ts1.txt) and the result-
ing output data file (ts1_hmm.txt) are provided as Addi-
tional Files 1 and 2. The output data file is an HMMer
2.3.2 model file which supplies the parameters of the M2
duration HMM to hmmsearch. Complete documentation
for the contents of the file can be found in the HMMER
User's Guide at http://www.psc.edu/general/software/
packages/hmmer/. Briefly, the first 17 lines are header
information with the main model section following.
There are 3 lines for each of the 32 possible nodes. The
first and last 6 nodes refer to the -35 and -10 hexamers,
while nodes 7 through 26 refer to possible spacer posi-
tions. The first line for each node displays the contribu-
tion to the final score (multiplied by 103) for the
corresponding nucleotide matching A, C, G or T. The third
line is particularly relevant to nodes 22 through 25, which
correspond to spacer nucleotides 17 through 20. As nucle-
otides in these positions may or may not be present in the
sequence being scored due to variable spacer length, the
third line provides the odds of transitioning to another
spacer nucleotide or to the -10 hexamer.

The M2 prediction equation generated by SBLR is:

Being the strongest predictor, HMM_SCORE is selected in
the first step of the SBLR procedure. The prediction equa-
tion for step one is

Using a classification cutoff of P = 0.5 and setting u = 0
yields HMM_SCORE = 0.339 as the threshold for step 1
classification. At step 1, 14/26 promoters and 2220/2226
non-promoters were classified correctly. Thus, the remain-
ing eight model variables moved 12 promoters with
HMM_SCORE < .339 to promoter classification and 6
non-promoters with HMM_SCORE ≥ .339 to non-pro-

moter classification (without altering the classification of
the previous 2234 observations).

The predictor variables and their coefficients describe the
verified promoters and their upstream regions. Promoters
have high HMM_SCORE and low POSITION. The near
upstream region is curved and unstable, whereas the fur-
ther upstream region is uncurved and unstable under
superhelical stress. For late-cycle genes where expression
onset occurs at 24 h PI, the effect of superhelical stress is
less than at other times (a positive SIDD coefficient indi-
cates there is little destabilization of DNA under superhe-
lical stress). The upstream characteristics may reflect
transcription factor binding and/or additional interaction
with the RNAP holoenzyme.

The interpretation of the positive coefficient for
STABLE1_37 is more subtle. In the second step of the
SBLR, four observations change from FP to TN and 5
observations change from FN to TP. The means of STA-
BLE, STABLE1_37 and STABLE33_37 are all larger in the
second group than in the first. Although STABLE33_37
shows the greatest mean difference, the most statistically
significant is STABLE1_37.

Model Exercise: Predicting Promoters for the CT Genome
Finally, the M2 model was used to predict promoters for
the entire CT genome. Additional File 4 reports 479 pre-
dicted promoters in 361 unique genes, along with their
HMM scores and genome locations. Thus, for 534 of the
total 895 CT genes, this model does not find any 32-mers
with a probability > 0.5. This suggests a conservative pre-
diction that emphasizes specificity over sensitivity. Other
explanatory factors may include alternate binding pat-
terns for σ66, alternative σ-factors, and operon configura-
tions.

There was a substantial overlap among predictions by dif-
ferent methods. Additional File 5 lists the 209 promoters
(176 unique genes) co-predicted by M2 and NNPP2.2,
while Additional File 6 lists the 175 promoters (162
unique genes) co-predicted by M2 and TSS-PREDICT.
Additional File 7 reports the 98 promoters (90 unique
genes) co-predicted by M2, NNPP2.2 and TSS-PREDICT.
All predictions are for 40 = POSITION = 325, consistent
with the range of the modeling procedure.

Of the 42 promoters predicted by Footy, 11 were mem-
bers of the M2 training set, 4 (CT265_111, CT342_102,
CT547_065 and CT606_149) were co-predicted by M2
and NNPP2.2, and 6 (CT267_097, CT269_82,
CT446_245, CT546_050, CT646_071, and CT837_088)
were predicted by all four algorithms.

Characteristics of the M2 genome-wide prediction can be
summarized by looking at all 479 predictions, or by look-

u = − + + −1408 301 85 305 1816 454 1 37

1 399

. . * _ . * _

. *

HMM SCORE STABLE

POSIITION CURVE L STABLE L

SIDD H

+ − +23 330 32 408 085 32

25 445 24

. * _ . * _

. * _ −− − +13 757 128 21 675 128

45 042 96

. * _ . * _

. * _

CURVE L SIDD L

RIGID L
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Table 5: Comparison of M2 Cross-Validation and predictions of comparable algorithms for 25 training set genes.

CT HMM2 SCORE M2 Cross-Validation NNPP2.2 TSS-PREDICT Footy

CT046 -1.6 1/1 0/4 0/2 0/0

CT062 4.0 1/2 0/0 1/1 1/1

CT080 0.5 1/2 1/4 0/2 0/0

CT091 1.3 1/3 1/1 1/1 0/0

CT098 3.7 1/1 0/1 1/2 1/1

CT111 -1.0 1/1 1/3 0/2 1/1

CT286 1.2 1/1 1/2 1/1 1/1

CT322 -2.1 0/0 0/0 0/2 0/0

CT323 1.6 1/1 1/3 1/1 1/1

CT377 5.3 1/2 1/3 1/1 0/0

CT394 -1.5 1/1 1/2 1/1 0/0

CT439m 1.8 1/1 0/3 0/0 1/1

CT442 -0.9 1/2 1/1 1/1 0/0

CT444 3.2 2/5 2/5 1/2 0/0

CT518 -4.2 1/1 0/0 1/1 0/0

CT557 -3.4 1/1 0/1 1/1 0/0

CT559 -2.7 1/1 1/1 0/2 1/1

CT576 0.6 1/2 1/3 1/2 0/0

CT596 0.5 1/1 0/1 0/2 1/1

CT674 4.0 1/2 1/2 0/0 0/0

CT701 -3.3 1/1 1/2 0/2 0/0

CT708 2.6 1/1 1/2 1/1 1/1

CT743 -3.8 0/0 0/2 1/5 0/0

CT752 -3.5 0/0 1/1 0/2 1/1

CT863 4.0 1/1 1/1 1/1 0/0

Sensitivity 23/26 (0.89) 17/26 (0.65) 15/26 (0.58) 10/26 (0.39)

Precision 23/34 (0.68) 17/48 (0.35) 15/38 (0.40) 10/10 (1.0)
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ing at the 361 unique genes, and selecting the predictions
closest to the TLS. The two views produce similar results.
Approximately 64% of predicted promoters are com-
pletely contained in non-coding upstream regions, 50%
are on the positive strand, and time of activation distrib-
utes as follows: 5% hour 1, 23% hour 3, 51% hour 8, 20%
hour 16 and 2% hour 24. The strand and hour distribu-
tions for all 895 genes in the genome are equivalent to the
predicted promoter distributions, indicating that there is
no strand or temporal preference for the predicted CT σ66

promoters.

Figure 4 displays a histogram of predicted promoter posi-
tions. POSITION marks the 5' end of the data file 32-mer,
and is consequently ~40 nt upstream from the TSS. Thus,
the POSITION distribution peaks with the 5' end around
68 nts upstream from the TLS and the TSS around 28 nts
upstream from the TSS. The peak and shape of this distri-
bution closely resemble the E. coli histogram from Burden
et al (2005) [11].

Discussion
The final model produced by the iterative strategy was
generated by a training set with three of the original mem-
bers, CT665, CT681a and CT681b, removed. An explana-
tion of how these three sequences differ from the
remainder would be informative. The last column of
Table 1 reports that CT665 and CT681 are both expressed
at 8 h PI, classifying them as mid-cycle genes. Niehus et al
(2008) [36] recently demonstrated that chlamydial pro-
moters show a differential response to changes in DNA
supercoiling that correlates with the lifecycle expression
pattern. Specifically, two mid-cycle genes (8 h PI)
responded to supercoiling, while three late-cycle genes (≥
16 h PI) did not. Their experimental set included ompA/
CT681 in the mid-cycle group and omcA/CT444, hctA/
CT743 &ltuB/CT080 in the late-cycle group. Thus, it is
likely that there exists a set of mid-cycle promoters that
differ topologically from other promoters to enhance
their ability to respond to supercoiling, and this may
explain the anomolous characteristics of these promoters
that we observed.

A possible explanation for the large number of genes with-
out promoter predictions by the M2 model is heterogene-
ity requiring different models, for example for response to
supercoiling. While investigating the initial model M0, we
explored stepwise nominal regression, which allows for
the discovery of more than two dependent variable cate-
gories. However, we did not find that a third category was

Table 6: Comparing predictions of M2 and other algorithms for 2 
training set genes not in M2 training set.

CT M2 NNPP2.2 TSS-PREDICT Footy

CT665 0/1 1/3 0/2 0/0

CT681 0/1 0/1 0/2 0/1

Visualization of the M2 duration HMMFigure 3
Visualization of the M2 duration HMM. The top WebLogos illustrate nucleotide frequencies in each of the hexamer posi-
tions. The bottom WebLogos convert the frequencies to bits of information.
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substantiated. Nonetheless, we suspect that future pro-
moter identifications may confirm the existence of more
than two promoter populations for σ66 in Chlamydiales.

A chief limitation of our study includes the challenge of
collecting a reliable training set that was discussed earlier.
We also feel that it would be advisable in future studies to
relax the range of possible spacer lengths in the duration
HMM for increased generalization, which might have
allowed the discovery of more promoters in the whole
genome analysis. Additionally, it is quite possible that
there are structural features downstream from the TLS, as
well as upstream, which would aid in promoter discovery.
Future modeling efforts should extend the region of inter-
est to 100 nt downstream from the TLS.

The high priority assigned to the duration HMM scores by
the SBLR procedure reinforces that the duration hidden
Markov model is an encouraging approach for modelling
core promoters, that deserves further development. Also
by implementing our model in HMMer our duration
HMM is reusable, generalizable, easily adapted to other
organisms and open-source. This approach explicitly
incorporates spacing preferences of elements in a likeli-
hood framework. Two natural further developments of
this approach would include further iteration of the
model development in Chlamydia using an expanded
training set, exploiting computational criteria and meas-
urements to define expanded training sets. Another possi-
ble extension would be to model extended promoter

elements using further elaborations of the hidden Markov
modeling framework.

The CT genome-wide promoter predictions and co-pre-
dictions with other algorithms provide the basis for future
research in promoter identification. The fact that 20% of
M2 predicted promoters were co-predicted by NNPP2.2
and TSS-PREDICT supports the validity of all three predic-
tions. The expected confirmation of these promoters will
augment the list of verified promoters. However, confirm-
ing or rejecting the predictions made by only M2 will pro-
vide more valuable information. Confirmation will
strengthen the current model in a direction that diverges
from E. coli, while rejection will add new non-promoter
observations that differ from the current training set.

Conclusion
Models M1 and M2 support the conjecture that measures
of DNA biophysical criteria along with measures of RNAP
σ-factor/DNA binding collaboratively contribute to a
sequence's ability to promote transcription. Whereas a
measure of RNAP σ-factor/DNA binding ensures a sensi-
tive prediction, adding measures of position relative to the
TLS, stability, curvature, SIDD and twist provide specifi-
city. The stratified K-fold cross-validation of M2 indicates
that the model performs well by absolute criteria as well
as compared to other predictive algorithms. Additionally,
there is considerable overlap between the genome-wide
predictions of M2 and NNPP2.2, TSS-PREDICT and
Footy.

The modeling procedure we describe here seems espe-
cially appropriate for bacterial species where the set of
known promoters is limited and the genome is relatively
small.

Outlook
The model derived by the method described here is a first
pass model that serves as proof of concept. The CT
genome-wide promoter predictions, along with co-predic-
tions by NNPP2.2, TSS-PREDICT and Footy, will allow
researchers to select optimal candidates for validation
mapping of transcript 5' ends by primer extension. As
more chlamydial promoters are identified, the model will
be updated, and a refined list of promoter predictions
may be developed. More interactions among predictor
variables may also be explored. A final model will provide
insight into the process of chlamydial transcription initia-
tion. Then, too, it will be possible to determine if chlamy-
dial promoters differ significantly from those of other
bacteria.
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