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Abstract

and machine learning methods.

virtual high throughput screening for drug discovery.

Background: To assess whether a compound is druglike or not as early as possible is always critical in drug
discovery process. There have been many efforts made to create sets of rules’ or filters” which, it is hoped, will
help chemists to identify ‘drug-like’ molecules from ‘non-drug” molecules. However, among the chemical space of
the druglike molecules, the minority will be approved drugs. Classifying approved drugs from experimental drugs
may be more helpful to obtain future approved drugs. Therefore, discrimination of approved drugs from
experimental ones has been done in this paper by analyzing the compounds in terms of existing drugs features

Results: Four methodologies were compared by their performance to classify approved drugs from experimental
ones. The best results were obtained by SVM, in which the accuracy is 0.7911, the sensitivity is 0.5929, and the
specificity is 0.8743. Based on the results, consensus model was developed to effectively discriminate drugs, which
further pushed the correct classification rate up to 0.8517, sensitivity up to 0.7242, specificity up to 0.9352. The
applications on the Traditional Chinese Medicine Ingredients Database (TCM-ID) tested the methods. Therefore this
model has been proven to be a potent tool for identifying drug molecules.

Conclusion: The studies would have potential applications in the research of combinatorial library design and

Background

In the early 1990s, the advent of high-throughput
screening (HTS) and combinational chemistry meth-
odologies was widely seen as having great potential to
revolutionize modern drug discovery. However, the
quality of the output from these technologies was lim-
ited than expected. Despite advances in technology and
understanding of biological systems, drug discovery is
still a “lengthy, expensive, difficult, and inefficient pro-
cess” with low rate of new therapeutic discovery [1].
Drugs as well as drug-like compounds are distributed
extremely meagerly through chemical space, which is
estimated to contain ~10* to ~10'% molecules. Among
the whole chemical space, the majority is nondrug mole-
cules, the minority is druglike molecules. To assess
whether a compound is druglike or not as early as
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possible in drug discovery process will be extremely
meritorious. Druglike compounds generally indicates
molecules that contain functional groups and/or have
physical properties consistent with the majority of
known drugs, and hence can be inferred as compounds
which might be biologically active or show therapeutic
potential [2]. For a drug, properties like synthetic ease,
stability, oral availability, good pharmacokinetic proper-
ties, lack of toxicity and minimum addictive potential
are of utmost importance [3]. Many of these properties
depend on the inherent biological and physicochemical
parameters of the molecule; whereas the complex struc-
ture of the whole drug molecule makes correlating
attempts difficult to screen in such a large chemical
space. Meanwhile, about more than 80% of all failures
of commercial drugs can be attributed to inappropriate
absorption, distribution, metabolism, elimination, and
toxicity (ADMET) properties despite in vitro and in vivo
testing [4-6]. Only a small portion of druglike molecules
would survive the rigorous evaluation process and be
approved finally, which could be defined as approved

© 2011 Tang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:yxli@scbit.org
mailto:zwcao@tongji.edu.cn
http://creativecommons.org/licenses/by/2.0

Tang et al. BMC Bioinformatics 2011, 12:157
http://www.biomedcentral.com/1471-2105/12/157

drugs. The other compounds are regarded as experi-
mental drugs, which are still in the clinical process or
have not been approved for safety and effectiveness yet.

There have been many efforts made to create sets of
‘rules’ or ‘filters’ which, it is hoped, will help chemists to
identify ‘drug-like’ molecules from ‘non-drug’ molecules.
The best-known method of drug likeness prediction is
the “rule of 5” developed by Lipinski and co-workers [7]
by analyzing 2245 available drugs from the World Drug
Index (WDI). Ajay et al. [8], Sadowski et al. [9], and Fri-
murer et al [10] have constructed models to classify
druglike and nondruglike molecules, one-dimensional
parameters, including molecular weight, ISIS keys (topo-
logical indexes) [11], two-dimensional parameters, e.g.
functional groups, Ghose and Crippen atom types [12],
were used as descriptors. A genetic algorithm-based
approach developed by Gillet et al. [13], decision trees
used by Wagener et al. [14] have been to distinguish
druglike between non-drug compounds. These
researches may distinguish compounds that are druglike
and nondruglike with good accuracy (about 60%-90%).
The most commonly used dataset are listed in Table 1,
of which ACD is used as the dataset of non-drugs, and
WDI, MDDR, or CMC is used as the dataset for drugs
(or drug in development).

These above researches have focused on the classifica-
tion of druglike and nondrug molecules. There are only
a little druglike molecules would survive the clinical
trials. Discriminating the druglike compound from non-
drug molecules is just the first step in long march.
Among the chemical space of the druglike molecules,
the minority will be approved drugs. Classifying
approved drugs from experimental drugs may be more
helpful to obtain future approved drugs. However, Dis-
criminations of approved drugs from other molecules
have not been reported yet. Can approved drugs be dif-
ferentiated from experimental drugs? Do the existing
‘rules’, features and modeling methods still work in the
discrimination of approved drugs? In this paper, a
further work has been done to assess the molecules
which could be marketed drugs rather than experimen-
tal drugs. Common used descriptors and classification
methods have been utilized to discriminate approved

Table 1 Commonly used datasets

Dataset Number of compounds

Comprehensive Medicinal
Chemistry (CMC) [35]

World Drug Index (WDI) [35]

> 8000 compounds used or studied
as medicinal agents

> 80,000 marketed and development
drugs worldwide

MACCS-II Drug Data Report >100,000 drugs launched or under

(MDDR) [35] development
Available Chemicals Directory > 1,160,000 unique chemicals
(ACD) [B35]
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drugs from experimental drugs. In order to evaluate the
classification models, the models are applied to a highly
possible drug-like database TCM-ID (Traditional Chi-
nese Medicine ingredient Database) [15].

Methods

Dataset

Our dataset were downloaded from DrugBank[16] ver-
sion 2.5. As DrugBank is a resource that combines
detailed drug and target information, it contains
approved drug and experimental drug. From the original
dataset 4554 molecules were processed. The final work-
ing set contained 1348 approved drugs and 3206 experi-
mental drugs. The number of compounds per dataset in
this study is shown in Table 2.

Chemical descriptors

Currently various sets of molecular descriptors are avail-
able [17]. In order to make approved/experimental classi-
fication of compounds, the molecules are typically
represented by n-dimensional vectors. As the pro-proces-
sing, hydrogen was added. The charges and energy opti-
mization of compounds were calculated by Force Field,
MMFF94x. The descriptors are calculated by the MOE
software (Molecular Operation Environment, version
2008.10). Four sets of descriptors were calculated: 28
druglike index [18] (DLI); 32 widely applicable descrip-
tors [19] (WD); 257 standard MOE descriptors (MOE);
76 Surface Area, Volume and Shape descriptors (SURF).
WD descriptors are based upon atomic contributions to
van der Waals surface area, log P (octanol/water), molar
refractivity and partial charge. The SURF descriptors
depend on the structure connectivity and conformation;
have been shown to be useful in pharmacokinetic prop-
erty prediction. All descriptor columns were individually
normalized to have a mean of zero and unit variance
prior to generation of classification models.

Classifications Methods

The reported algorithms can be formulated in terms of
Machine learning methods. The standard scenario for
classifier development consists of two stages: training
and testing. During the first stage the learning machine is
presented with labeled samples, which are basically #-
dimensional vectors with a class membership label
attached. The learning machine generates a classifier for

Table 2 The number of compounds per dataset

Dataset size Pass Lipinski Pass Oprea
Rule 5 rule 3
Approved drugs 1348 1158 1041
Experimental drugs 3206 2621 2271
Herbal ingredients 10370 7599 6058
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prediction of the class label of the input coordinates.
During the second stage, the generalization ability of the
model is tested. Here, four different methods are applied.

PLSDA

Partial least squares (PLS) is a technique that generalizes
and combines features from principal component analysis
and multiple regression. Its goal is to predict or analyze a
set of dependent variables from a set of independent vari-
ables or predictors[20,21]. This prediction is achieved by
extracting from the predictors a set of orthogonal factors
called latent variables which have the best predictive
power. PLS regression is one of the most powerful data
mining tools for large data sets with many variables with
high collinearity.

KPLS

KPLS was first described by S. Wold [22] and applied to
spectral analysis in the late nineties. Rosipal[23] intro-
duced KPLS in 2001 as a nonlinear extension to the lin-
ear PLS method. This nonlinear extension of PLS makes
KPLS a powerful machine learning tool for classification
as well as regression. KPLS can also be formulated as a
paradigm closely related (and almost identical) [24] to
Support Vector Machines (SVM).

ANN

An artificial neural network (ANN), often called as
“neural network” (NN), is a mathematical model or
computational model based on biological neural net-
works. It consists of an interconnected group of artificial
neurons and processes information using a connection-
ist approach to computation [25]. In most cases an
ANN is an adaptive system that changes its structure
based on external or internal information that flows
through the network during the learning phase.

SVM

Support Vector Machines work by mapping the training
data into a feature space by the aid of a so-called kernel
function and then separating the data using a large mar-
gin hyperplane. Intuitively, the kernel computes a simi-
larity between two given examples. Most commonly
used kernel functions are RBF kernels. More details on
SVMs have been provided in the literature numerous
times [26,27].

Model evaluation and validation

To assess the ability of these four classification methods
to predict new chemicals, five-fold cross-validation was
used. 20% of chemicals were randomly chosen as the
test set; the remaining 80% were used to generate the
models. The test set was not used in any way to influ-
ence the training and selection of the models. For each
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five-fold validation, the random experiment was
repeated 10 times independently. Accuracy (Ac), sensi-
tivity (Sn), specificity (Sp) and coefficient correlation
(CC) are often used to evaluate prediction systems. Sn,
Sp and Ac are expressed in terms of true positive (TP),
false negative (FN), true negative (TN), false positive
(FP) rates:

TP
Sn =
TP + FN
N
Sp =
TN + FP
TP + TN
Ac =
TP + TP + TN + FN

oo (TP x TN) — (FN x FP)
/(TP + EN) x (TN + FP) x (TP + FP) x (TN + FN)

Results and discussions

Classification results

In order to compare the classification ability of the four
classifiers, the results of different descriptors on differ-
ent models have been scanned. The results distribution
of the four classification methods were displayed graphi-
cally in Figure 1. The median accuracy were 76.54%,
77.86%, 72.61%, and 69.14% by ANN, SVM, KPLS and
PLS respectively. From Figure 1, it can be seen that the
results of ANN and SVM were better than those of
the KPLS and PLSDA. SVM gives stable performance;
the next robust one is ANN. The accuracy distributions
of KPLS and PLSDA are sparser and the results are not

0.9
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Figure 1 Results of classification. Boxplot of performance for the
four classification methods.




Tang et al. BMC Bioinformatics 2011, 12:157
http://www.biomedcentral.com/1471-2105/12/157

as robust as ANN and SVM. The classification perfor-
mance of SVM was slightly better than ANN, signifi-
cantly outperformed KPLS (p = 0.0224) and PLS
(p = 0.0090). SVM has also been compared to ANN and
linear discrimination analysis for drug and non-drug
datasets previously [28,29]. Results presented here are
generally in agreement with these previous observations.

Due to robust convergence behavior SVM seems to be
well-suited for solving binary classification problems
especially with large variables. In previous studies, SVM
performed better than ANN when large numbers of fea-
tures or descriptors are used [30]. But it is not observed
in this paper.

Since the WD and SURF descriptors are subsets of the
standard MOE descriptors, seven sets of descriptor com-
binations are used for classification. The classification
results of four methods and seven sets of descriptors are
shown in Figure 2. As reported before [28], 77.89% and
80.19% correction rates were obtained by ANN and
SVM respectively in classifying drugs and nondrugs
using the standard MOE descriptors. In this paper,
using MOE descriptors with ANN and SVM classifiers
gave classification rates of 77.47% and 77.85% in discri-
mination of approved and experimental drugs. The rank
order of descriptor sets with regard to the overall classi-
fication accuracy yielded was as follows: MOE+DLI,
MOE, WD+DLI, DLI, WD, surf+DLI, surf.

MOE descriptors contained 2D and 3D descriptors.
2D molecular descriptors are defined to be numerical
properties that can be calculated from the connection
table representation of a molecule (e.g., elements, formal
charges and bonds, but not atomic coordinates). There
are two types of 3D molecular descriptors: those that
depend on internal coordinates only and those that
depend on absolute orientation. The descriptor number
of MOE is far more than that of other methods. From
the result of our study, the more comprehensive the
descriptors is, the better results are obtained. While the
descriptors were chosen on the basis of simplicity, ease
of calculation, and diverse representation of chemical
properties, simple descriptors are popular in research.
Among these descriptors used in this study, the DLI
maybe made fairly important contribution that addi-
tional descriptors were unlikely to significantly improve
prediction accuracy. Considering the complexity of hun-
dreds of thousands of descriptors, such generic and sim-
ple chemical properties are so predictive. These simple
descriptors have been shown previously to encode and
have been used successfully in the past to predict
diverse datasets [31,32]. WD descriptors are applicable
descriptors and the results of it are in the median of the
best and worst. The SURF descriptors led to approxi-
mately 10% lower accuracy than the best one. The
SURF descriptors have been shown to be useful in
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pharmacokinetic property prediction but not take effect
in this case.

The fundamental problem of the method is how to char-
acterize samples with precise and informative features.
From the above results, MOE descriptors conformed well
in approved and experimental drugs classification. The
DLI descriptors, which made fairly important contribution,
were employed to characterize molecules due to its
calculation based upon the knowledge derived from
known drugs.
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Consensus modeling

In this study, it is noticed that the classified results of
different descriptors on different models various largely.
For example, the number of approved drugs and experi-
mental drugs which were correctly classified by over
60% methods was 38.5%, 79.1% on average respectively.
The molecules are correctly classified in some models
while misclassified in others, which indicates their com-
plementary to each other.

Thus we proposed jointly applications of all predictive
systems. One possibility to combine several estimators is
to employ a voting, e.g. calculating an ensemble average.
The other is to construct a consensus model. The cen-
tral idea of the consensus model is to use the results of
multiple, heterogeneous classifiers with variables which
may maximum the diversity of the classifiers as the
input variables in a new layer classification.

Each classification method has its own strengths and
weakness; the ensemble of similar classifiers would
inherit such benefits and drawbacks. The four classifica-
tion methods used in this paper have different advan-
tages, it is useful to construct a consensus model by
summarizing different pattern [33]. Here, the obtained
classifiers’ results in above section are fed into the sec-
ond layer SVM to get the final result. The results are
listed in Table 3.

From the results in Table 3, the consensus model
gained widely improvement and outperformed the other
methods, such as the best SVM and the voting model.
The order of accuracy yielded was as follows: consensus
model, best SVM, voting model. Compared to the results
of best SVM, the sensitivity of consensus model increased
13%, the specificity increased 6% and the accuracy
increased 6%. Compared to the results of voting model,
the sensitivity of consensus model increased 17% and the
accuracy increased 4%. The sensitivity means true posi-
tive, that is to say, correctly classified approved drugs.
For example, an approved drug—Sulfinpyrazone is mis-
classified by best SVM and voting model as experimental
drugs, while it is discriminated correctly using consensus
model. The specificity means true negative. Here it
means classifying the experimental drugs correctly. An
experimental drug—Adenosine-5-Diphosphoribose, which
is misclassified as approved drugs by SVM and voting
model, is correctly classified by consensus model. The
vote scheme is usually tend to accept the prediction with
more voting supports, which may ignore the special
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samples. This limits the prediction accuracy. While in
the consensus model, the results of first level classifiers
are used as the input of the second layer SVM, which will
avoid unnecessary voting and can combine the results of
different methods. The consensus model would further
improve the prediction accuracy and robustness of a
predictor.

Application to herbal ingredients

Herbal ingredients have been expected as a potential
druglike database. The utility of natural products as
sources of novel structures is still alive and well. In the
area of cancer, over the time frame from around the
1940s to date, of the 155 small molecules, with 47%
actually being either natural products or directly derived
therefrom[34]. A comparison by Feher and Schmidt [35]
showed that, overall, natural products are more similar
to drugs than compounds obtained from combinatorial
synthesis. A large proportion of natural products is bio-
logically active and has favorable ADME/T properties
(absorption, distribution, metabolism, excretion, and
toxicology).

Since the major properties were similar, we used the
model constructed by approved drugs and experimental
drugs to test herbal ingredients. The final model was
applied to TCM-ID. The results showed that 3726 com-
pounds were classified as potential drugs from 10370
molecules. While about 58% and 73% ingredients passed
Lipinski 5 rules filter and Oprea filter respectively.

In order to verify the discrimination results, there are
three kinds of compounds listed in Table 4. Type I is
the intersection of herbal ingredients and approved
drugs, type II is the intersection of herbal ingredients
and experimental drugs and type III is unknown com-
pounds. 76% compounds in typel all passed the filter by
our model, while 80% passed Lipinski 5 rules and 66%
compounds passed the Oprea 3 rules. About 22% com-
pounds in typell were misclassified as drugs by our
model while 79% compounds were misclassified by
Lipinski 5 rules and 66% were misclassified by filter of
the Oprea 3 rules. From the above results, our model is
comparable to Lipinski 5 rules and Oprea 3 rules when
they are use to predict a compound as a candidate drug.
Our model is better than the others when they are used
to justify a compound as nondrug. The model would be

Table 4 Predicted results

Table 3 classification results Compound Compound Pass Pass Pass Our
type number Lipinski Oprea model
Sn Sp Ac cc 5 rules 3 rules
Best SVM 0.5929 0.8743 0.7911 0.5077 typel 59 47 39 45
Voting model 05523 0.9320 0.8197 0.5415 typell 68 54 45 15
Consensus model 0.7242 0.9352 0.8517 0.6449 typelll 10243 7498 5974 3666
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useful to narrow down the space of drug prediction and
screening.

Compounds in typelll are unknown to us for whether
they would be a candidate drug. The passed compounds
by different filter rules are different. For example, Aris-
tolochic acid has been proved being carcinogenicity and
high nephrotoxic and may be a causative agent in Bal-
kan nephropathy. It passed the filter of Lipinski 5 rules
and Oprea 3 rules while it was taken as an experimental
drug in our model. Astragaloside IV, which is a main
ingredient in many Chinese patent medicines, is pre-
dicted as a candidate drug in our model while not pass
the filter of Lipinski 5 rules and Oprea 3 rules. Whether
it is a potential drug or not will be tested by further
experiments.

Conclusions

From the work, discrimination of approved drugs and
experimental drugs is practicable. A comparison of four
widely used classification methods has shown that, on
average, the SVM is able to generate the most predictive
models to discriminate approved and experimental
drugs, followed by ANN, KPLS and then PLSDA. Seven
sets of molecular descriptors were applied to the discri-
mination of approved drugs and experimental drugs.
Notably, these descriptors have comprehensible defini-
tions and physicochemical meanings for drug properties.
The classifiers have been complement to each other.
The correct classification rate is up to 85.17% by using
the consensus model. The herbal ingredients dataset
was tested, indicating that this database is a good source
for drug discovery. Furthermore, It will not only narrow
down the space of drug prediction and screening but
also facilitate drug discovery, which the approved drugs
and experimental drugs’ discrimination has been imple-
mented into the early stage of drug discovery by dis-
carding compounds that are likely to fail further down
the baseline.
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