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Abstract

Background: The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic
development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death,
and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact,
effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway
in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on
the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be
used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for
these compounds among different cell lines, none of them have achieved acceptable results in the prediction of
activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of
the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected
to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically
effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway.

Results: In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information
among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our
experiments have shown that the performance of our model is significantly better than single cell line QSAR
methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the
commonly important features related to the entire given cell lines, while simultaneously showing their specific
contributions to a specific cell-line. Based on feature selection results, we have proposed several possible chemical
modifications to improve the inhibitor affinity towards multiple targets in the Hedgehog Signaling Pathway.

Conclusions: Our model with the feature selection strategy presented here is efficient, robust, and flexible, and can
be easily extended to model large-scale multiple cell line/QSAR data. The data and scripts for collaborative QSAR
modeling are available in the Additional file 1.
Background
The Hedgehog Signaling Pathway plays an important role
in regulating embryonic development in vertebrates, and it
is highly conserved from flies to humans [1] [2] [3] [4].The
pathway name comes from a polypeptide ligand called
Hedgehog (Hh), which is an intercellular signaling molecule
in Drosophila. In Drosophila, the mutation of the gene in
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the Hedgehog Signaling Pathway gives rise to an unusual
spiky-haired phenotype [1]. The misregulation of such
pathways has been directly associated with a variety of
inherited and sporadic diseases [4] [5] [6]. The key role of
the Hedgehog Signaling Pathway in the cell differentiation,
growth, and proliferation makes it an excellent candidate in
drug discovery, and thus targeting such pathway in cells
represents a promising new paradigm for cell growth and
death control.
The Hedgehog Signal Pathway is composed of four

important components: Sonic Hedgehog, Patched,
Smoothened and Gli transcription factors [3] (Figure 1).
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Figure 1 Components of the Hedgehog (Hh) Signaling Pathway
and molecular sites targeted by Hh pathway inhibitors.
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The functional Hh protein secreted from the membranes
of the producing cells and initiates the Hh signaling cas-
cade upon binding to the 12-pass transmembrane recep-
tor Patched (Ptch). In the absence of an Hh ligand, the
Patched receptor inhibits the activity of the downstream
seven-pass transmembrane receptor Smoothened (Smo),
which resembles G-protein-coupled receptors (GPCRs)
in general topology. Active Smo then signals via a cyto-
solic complex of proteins including Suppressor of Fused
(SuFu), and the cascade culminates by triggering activa-
tion of the glioma (Gli) family of transcription factors
and their translocation to the nucleus. This activation
results in the expression of specific genes that promote
cell proliferation and differentiation [3].
The causal relationship between the activation of

Hedgehog Signaling Pathway and oncogenesis has driven
cancer researchers in the direction of finding specific
inhibitors of hedgehog signaling, since this will provide
efficient therapies to a wide range of malignancies [1,2].
To date, several druggable nodes within the pathway
have been identified. Assays implanted on various cell
lines have shown that small molecules were able to alter
the activity of these targets. Among them, murine cell lines
such as NIH 3 T3, TM3h12, and C3H10T1/2 have been
used [2]. While current cell lines allow the measurement of
the inhibitory effects of compounds on the Hh pathway,
they, however, provide little or no information about the
specific underlying targets. To the best of our knowledge,
only specific Smoothened inhibitors have been identified.
Among them, the well-known BODIPY–cyclopamine,
which is a fluorescent derivative of the naturally occurring
Smo antagonist cyclopamine, binds specifically to cells
expressing the Smo protein. This is one of the small chem-
ical compounds that specifically inhibit Smoothened in the
Hedgehog Signaling Pathway[2]. In our previous study [7],
we have performed several quantitatively structure-activity
relationship (QSAR) studies for cyclopamine derivatives in
multiple cell lines, and such study could reveal useful clues
in developing clinically effective drugs and modifications of
parent lead compounds for cancer therapy.
Recently, our partners have synthesized 93 cyclopa-

mine derivatives and their activities were tested against
four different cell lines (BxPC-3, NCI-H446, SW1990
and NCI-H157) respectively [7] [8]. Based on these ex-
perimental data, a systematical QSAR investigation was
carried out by incorporation of various statistic model-
ings and different molecular descriptors [7]. However,
there are still several issues remain to be solved, which we
believe that solving such problems will greatly enhance the
understanding of inhibitors on Hedgehog Signaling Path-
way, as well as the development of novel QSAR metho-
dology. We describe the two major problems below:
(1) In our previous QSAR study, for specific cell lines,

the activities were categorized into a binary classification
under a naïve Bayesian model, and we obtained relatively
acceptable QSAR results. However, no matter what
kinds of statistical models or 2D descriptors were tested,
low testing correlation coefficients were found when nu-
meric activities were used. This may be due to the inhe-
rent noise existed in experimental activity measurement,
or the relatively small number of training data used for a
specific cell line. Due to our compound data tested against
multiple cell lines to evaluate their activities, we hypotheses
that such information can be integrated to improve the
QSAR results rather than only a single cell line QSAR
modeling. Such investigation will be extremely useful for
the scenario that a small number of compound activities
are measured under different experimental conditions
(such as different cell lines, targets, assays etc.), and will
provide novel insights on the integration of existing infor-
mation, avoiding repeatable laborious work in drug disco-
very. In addition, such a study may also lead to novel
computational models for integrated QSAR modeling,
which is closely related to multi-task QSAR modeling [9]
[10], Multi-Assay-Based QSAR modeling [11] , and Multi-
target QSAR study [12].
(2) Due to the existence of compound activity data

against multiple cell lines, how can we integrate such in-
formation to derive more robust and efficient feature se-
lection strategies for compound modification under such
“collaborative” multi-cell line environment? That is, can
we derive the commonly important features related to
the entire given cell lines for compound description,
while in the meantime present their specific contribu-
tions to a specific cell-line? This issue is closely related
to the first one, but tougher to be solved since it needs
much more domain knowledge.
Inspired by these two problems, we aim to develop an

efficient integrated QSAR model for inhibitors of Hedgehog
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Signal Pathway against multiple cell lines. This type of
model has been used for information retrieval in social
network, i.e.. collaborative filtering [13] [14], and it has
been widely applied by the web companies such as Google,
Amazon. Dumitru Erhan etc. has pioneered to use the
term “collaborative filtering” in multiple target study [15].
Nevertheless, their methodology can be categorized as
multiple regression or neural network, and a complex ker-
nel function for similarity measurement is needed. In this
study, we will present a collective matrix factorization
based collaborative filtering model for integrated QSAR
modeling, which is more naturally suitable for QSAR
modeling, and scales up well on large dataset. Further-
more, we will also derive a powerful feature selection stra-
tegy for collaborative compound design to get more
efficient inhibitors of Hedgehog Signal Pathway.

Methods and materials
Dataset
93 cyclopamine derivatives with their activities against
four different cell lines (BxPC-3, NCI-H446, SW1990
and NCI-H157) were obtained from our previous work
[7]. The compound activity is measured by PKi, as
defined in the following Cheng-Prusoff equation [16]:

PKi ¼ � log
IC50

1þ ½L�
KD

ð1Þ

([L] is the concentration of free radioligand used and
KD is its equilibrium dissociation constant for the recep-
tor [16])
Where IC50 (half maximal inhibitory concentration) is

a measure of the effectiveness of a compound in inhibi-
ting biological or biochemical function. More specifi-
cally, it indicates how much of a particular drug or other
substance (inhibitor) needed to inhibit a given biological
process (or component of a process, i.e.. an enzyme, cell,
cell receptor or microorganism) by half. In our study,
the data are formulated as a data matrix X. Note that
the collective matrix factorization requires the matrix to
be non-negative. In our original experiments, we mea-
sured the compound affinity under the PKi evaluation
system, and the activity values were negative. Since the
PKi measurement is calculated by taking IC50 as the in-
put in equation (1), we can just take the absolute value
of the PKi in QSAR modeling , and this will not affect
our final results.

Definitions and Notations
In this paper, the different cell lines and the compounds
tested for Hedgehog Signal Pathway will be denoted as t
and c respectively, and their corresponding subscripts
denote a specific compound and cell line. Thus, for a
specific compound ci, its experimentally activity value
(measured as PKi ) against specific cell line tj is denoted
as xij. We can build a m by n dimensional matrix X,
where m is the number of the compounds and n is the
number of cell lines.
Each compound will be represented by a vector of

descriptors, denoted as a matrix Y with m by r dimen-
sions, where m is the number of compounds and r is the
length of the corresponding descriptor vector. Similar to
our previous study [7], two different molecule descrip-
tors, general descriptor [17] and drug-like index (DLI)
[18] will be used for compound representation.

Collaborative filtering for multiple cell line QSAR
modeling
Based on the above definitions, it can be seen that the
traditional single cell line QSAR modeling is applied on
the data in a specific column of matrix X. In this study,
we are more interested in incorporating the information
from other columns (cell lines) to enhance the perfor-
mance of the QSAR modeling for a particular column
(cell line). This scenario is similar to the recommenda-
tion system presented by Electronic retailers and content
providers such as Amazon.com and Netflix [14], which
make automatic predictions (filtering) of users’ interests
by collecting preferences or taste information from
many users (collaborating), naturally termed as “colla-
borative filtering (CF)”.
Formally speaking, in a typical CF scenario, there is

a list of n users {u1, u2, . . . , un} and a list of m
items {i1, i2, . . . , im}, and each user, ui, has a list of
items, Iui, which the user has rated, or about which
their preferences have been inferred through their
behaviors. The ratings can either be explicit indication
on a 1–5 scale, or implicit indication such as pur-
chases or click-throughs [13]. Such a user-item rela-
tionship can be formulated as a matrix, which may be
sparse and can have missing values (i.e. users did not
give their preferences). The goal of CF is to predict
such missing values based on the existed information
of users/items to make the reasonable recommenda-
tion (Left Panel of Figure 2).
Such a CF scenario is inherently suitable for our mul-

tiple cell line QSAR modeling. In our study, the former
“cell line- compound” matrix X can be viewed as a kind
of “item-user” matrix, where “compound” is analogue to
“item” and “cell line” is analogue to “user” (Right Panel
of Figure 2). The traditional single cell line QSAR mo-
deling uses the data restricted in a specific column of
matrix X to train and test. From the perspective of ma-
chine learning, we just hold part of the data in the column
as testing dataset, and use the other part of the data in the
column to train a QSAR model. This procedure can be na-
turally extend to the multiple cell line QSAR modeling
under the CF framework, where we can treat the testing
data in a specific column as “missing” value and using the



Figure 2 A paralleling comparison between collaborative QSAR modeling and collaborative filtering in social network community.
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remain data from this column as well as the data from
other columns to predict such missing values.
Collective matrix factorization for collaborative filtering in
the multiple cell line QSAR modeling
We formulate the multiple cell line QSAR modeling prob-
lem as a collaborative filtering problem. There are two
existing techniques for solving collaborative filtering, i.e.,
the neighborhood methods and latent factor models.
Neighborhood methods are centered on computing the
relationships between items or, alternatively, between users
for missing value prediction, while latent factor models
characterize both items and users on, say, 20 to 100 factors
inferred from the ratings patterns [19] [20] [21]. Generally,
realizations of latent factor models are based on matrix
factorization. In its basic form, matrix factorization charac-
terizes both items and users through vectors of factors in-
ferred from item rating patterns. High correlation between
item and user factors leads to a recommendation. These
methods have become popular in recent years by combi-
ning good scalability with predictive accuracy. Thus, we will
present a matrix factorization based multiple cell line
QSAR modeling method in our study.
Specifically, we have matrix X 2 Rm x n

þ , where Xi j,
epresents the activity measurement of compound i
against specific cell line j. Noted that X is sparse in a
specific column since we will hold part of elements in
this column as the testing data (missing values) for
QSAR modeling. We use an indicator matrix I 2 Rm x n

to represent the missing values, where Iij = 0 if Xij is
missing and Iij = 1 otherwise.
We denote by Xj:; 1≤i≤mandX:j;1≤j≤n the ith row and

jth column of X, which represent the ith compound's ac-
tivities against all the cell lines and the activities of the
jth cell line for all the compounds, respectively.
In a basic matrix factorization model, we usually seek

two low-rank matrices, U 2 Rm�d
þ and V 2 Rn�d

þ . The
row vector ui and vj represent the low-dimensional
representations of compounds and cell lines respectively.
We use matrix U� VT to approximate the original
matrix X, thus to fill/predict the missing values. Such
matrix factorization can be achieved by solve the follo-
wing optimization function:

min L U;Vð Þ ð2Þ
Where

LðU;VÞ ¼ ∥I∘ðX� UVTÞ∥2
F þ λ1∥U∥2

F
þ λ2∥V∥2

F ð3Þ
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In equation (3), the operator “∘” denotes the entry-
wise product. jj � jjF denotes the Frobenius norm. The

last 2 terms add regularizations to the matrix U and V
by avoiding over-fitting the observed data. The para-
meters λ1 and λ2 control the extent of regularizations,
and they are usually determined by cross-validation.
We also have the compound description information

as described in matrix Y in order to use such auxiliary
information to aid a more reasonable reconstruction of
matrix X. We further presented a collective matrix
factorization (CMF)[22] method for multiple cell line
QSAR modeling. The CMF method was recently pre-
sented by machine learning community [22], and it
jointly factorizes multiple matrices simultaneously,
assuming that they share several common latent fac-
tors. To be more specific, given a compound - cell line
matrix X 2 Rm�n

þ , and a compound description matrix
Y 2 Rm�n

þ , we extend the optimization function (2) and
(3) to the following:

min L U;V;Wð Þ ð4Þ
Where L(U, V, W)

¼ 1
2
∥I∘ðX� UVTÞ∥2

F þ
λ1
2
∥Y� UWT∥2

F

þ λ2
2
ð∥U∥2

F þ ∥V∥2
F þ ∥W∥2

FÞ ð5Þ

Equation (5) is similar to equation (3), it reconstructs
X � UVT and Y � UWT by sharing the common factor
U, where X 2 Rm�n

þ ; Y 2 Rm�r
þ ; U 2 Rm�d

þ ;V 2 Rn�d
þ and

W 2 Rr�d
þ . U,V and W are low-dimensional matrices with

dimensiond ≤minðm; n; rÞ. By solving such optimization
function, we can successfully incorporate the infor-
mation of the multiple cell line compound activities
and compound description for a better missing value
prediction.
In general, the objective function (5) is not jointly con-

vex to all the variables U, V,W, and we cannot get
closed-form solutions for minimizing the objective func-
tion. Therefore, we will turn to some numerical method
such as gradient descent to get the local optimal solu-
tions. Specifically, we have the gradients as:

ruL ¼ I∘ UVT � X
� �� �

V þ λ1 UWT � Y
� �

W

þ λ2U ð6Þ

rvL ¼ I∘ UVT � X
� �� �T

U þ λ2V ð7Þ

rwL ¼ I∘ UWT � Y
� �� �T

U þ λ2W ð8Þ
After obtaining the gradients, we can use gradient

descent to iteratively minimize the objective function.
The algorithm for the collective two matrix factorization
is given below:

Algorithm 1: collective matrix factorization for multiple
cell line QSAR modeling
Input: An incomplete matrix X and a complete matrix
Y , where X represents the compound activities in
multiple cell lines with missing values in specific
column, Y represents the compound description matrix.
Output: The complete matrix for X.

Begin

1. t = 1;
2. While (t < T and Lt � Ltþ1 > E do
3. Get the gradients ruL; rvL; rwL by Equation (5)-

(7);
4. y = 1;
5. While ðLðUt � γrutL;Vt � γrvtL;Wt �

γrwtLÞ≥LðUt ;Vt ;WtÞÞ do
6. γ ¼ γ=2;
7. End
8. Utþ1 ¼ Ut � γrutL;Vtþ1

¼ Vt � γrvtL;Wtþ1 ¼ Wt � γrwtL
9. t = t + 1;
10.End
11.return X;

End

Performance measurement
In order to demonstrate the efficiency of collective matrix
factorization based multiple cell line QSAR modeling, we
compare our approach with two other base line methods, i.
e., linear ridge regression and support vector regression
(SVR) for single cell line QSAR modeling used in our pre-
vious study [7]. For the purpose of equal comparison, we
apply the following two testing strategies for each specific
cell line: (1). We randomly selected 2/3 of the data to train
the linear ridge regression and SVR, and the remaining data
as to test these two methods. These two base line methods
are compared with collective matrix factorization based
QSAR method, where the same testing data (missing
values) are predicted based on the original training data for
this specific cell line plus the data from other cell lines. The
whole procedure was repeated 10 times. (2) In order to
evaluate the QSAR model more rigorously and consider
the representative ability of the compounds in training
dataset, we applied another data partition strategy, i.e.,
Diverse Subset data division method [7], which is com-
monly used in the chemoinformatics community. Generally
speaking, the Diverse Subset method ranks compound en-
tries based on diversity. In the procedure of data division,
the first entry of the original dataset is taken as a reference
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and will always be viewed as part of a diverse subset. Then
the most “distinct” compound data is assigned #2, and then
the most distinct compound to these two is assigned #3
and so on until the required number of diverse compounds
is identified or the whole dataset is ranked in diversity order
[7]. In this study, we also select 1/3 of the data as testing
dataset and the remaining data as the training dataset, while
such partition is generated in a Diverse Subset way rather
than randomly to keep the representative and distinct cha-
racteristics of data.
Two classical measurements, i.e., Root mean squared

error (RMSE) and squared correlation coefficient (R-
square) were adopted as the performance evaluations for
testing results. The definitions of these statistical para-
meters are provided as follows:
Root mean squared error (RMSE):

RMSE ¼
ffiffiffi
1
n

r Xn

i¼1
e2i ð9Þ

where n is the number of test compounds, ei ¼ yi � ŷi ,
is the difference between the observed compound affi-
nity data and the fitted model. yi is the observed com-
pound affinity, ŷi is the predicted compound affinity.
Squared correlation coefficient (R2):

R2 ¼ 1� SSerr
SStot

¼ 1�
P

i P
exp
i � Pcalc

i

� �2
P

i P
exp
i � Pavg

� �2 ð10Þ

where Pavg is the average value of P exp
i over the n pre-

dicted compound affinities.

Feature selection based on CMF for compound
description among multiple cell lines
Under such collaborative QSAR schema, we presented a
novel feature selection model for compound descriptions
weighting, which is also derived from the content-based
recommender systems and collaborative filtering [23].
Basically, we want to quantify the effect of each com-
pound feature against a specific cell line (weighting for
intra-cell line) as well as among all the cell lines (weight-
ing for inter-cell line). The final feature weighting is an
integration of the two types of weighting, where both
specific and the whole cell lines contribute. Such a fea-
ture selection strategy is attractive in multiple cell line
QSAR modeling, since it can provide useful clues of
how to modify chemical compounds to improve their
activities for a specific target, or for all given cell lines
simultaneously. While the latter one is a key step for
multi-target compound design.
Specially, given a compound activity-cell line matrix

X (m by n) and compound-feature description matrix
Y (m by r), we want to derive a cell line-description
feature weighting matrix Z (n by r), where its element
zij is the weight of a compound feature j in cell line i.
The value of element zij is contributed from two sides,
i.e. intra-cell line and inter-cell line. The generally pro-
cedure for computing a weight for each compound
feature is based on (1) the amount of information pro-
vided by itself , and (2) the correlation between the
compound feature and a specific cell line. Three steps
are performed here:

Step 1. Weighting for inter-cell line. For each
compound feature cj, an entropy based method is
applied to compute the amount of information that
it can offer regardless of cell line, as denoted as Hj.

Step 2. Weighting for intra-cell line. For each
compound feature cj and a specific cell line tj, the
correlation between compound feature and the cell
line is calculated. This calculation will depend on
the nature of the features (qualitative, quantitative).
Two kinds of correlations, i.e., correlation coefficient
and contingency coefficient [23] are proposed for
quantitative features and qualitative features
respectively.

Step 3. Calculation of the final weights. The feature
weight is obtained as a result of the product of
entropy and degree of dependency.

A generally outline of the proposed feature selection
strategy is presented in Figure 3. Detailed information
can be referred to the original work [23].

Results
We performed a comprehensive study of the collective
matrix factorization based multiple cell line QSAR mo-
deling for the inhibitors of Hedgehog Signaling Pathway
as described in Section 2. In the rest of this section we
present and summarize the key results from this study.
The performance of our method was compared with the
baseline QSAR models of liner ridge regression and
SAR. Details are listed in the following.

Performance of the collective matrix factorization based
QSAR modeling
Figures 4 and 5 present average improvements achieved by
the CMF based multiple cell line QSAR modeling over the
baseline methods for four cell lines, with two different kinds
of drug representations, i.e., general descriptor and drug-
like index respectively. Figure 4 shows the performance re-
sult of the first partition strategy, where the test was carried
out under certain parameter setting and with 10 times
repetition by randomly selected 2/3 data as training dataset
and 1/3 data as testing datasets. Figure 5 shows the second
strategy, where the test was carried out under certain par-
ameter setting with diverse subset to consider the data rep-
resentative ability in the training and testing dataset.



Figure 3 Feature weighting based on entropy and dependency measures for collaborative QSAR modeling.

Gao et al. BMC Bioinformatics 2012, 13:186 Page 7 of 17
http://www.biomedcentral.com/1471-2105/13/186
From Figure 4–5, it can be seen that that the different
data partition strategies actually achieve the similar per-
formance results. For all the cell lines and all the kinds
of data representation, the performance improvement of
collaborative QSAR modeling was dramatic, especially
for the evaluation of R-square. The improvement is sta-
tistically significant, with significant p-value measured by
RMSE and R-square respectively. We had already
noticed in our previous study [7] that under the mea-
surement of R-square, the QSAR modeling results for
the four cell lines with numeric compound activities
were not satisfied, indicating a satisfiable QSAR mode-
ling against single cell line individually was hard to ob-
tain. In contrast, in our current collaborative QSAR
modeling, performance against all the cell lines was
improved. The significant improvement margin evalu-
ated by R-square indicates that our CMF based QSAR
modeling could successfully capture the correlation,
rather than its absolute value of difference among the
dataset as evaluated by RMSE.
Besides the measurements of the average RMSE and

R-square of different QSAR models, we also investigated
their error distribution under the diverse subset partition
strategy to give a more rigorous comparison of their per-
formance. It can be seen from the boxplots of the error
square (Figure 6–7) that for both two compound descrip-
tions, collaborative QSAR modeling achieved the lowest
error means and low variances compared to other two
baselines, indicating the best prediction ability among all
methods.
It should be noted that in our previous study we found

that different cell lines perform differently for modeling
the inhibitor affinity based on the linear regression or
SVR. Particularly, only the data of NCI-H446 could pro-
duce a reasonable model by QSAR analysis, probably
due to the fact that the other three cell lines may be less



Figure 4 Comparison of CMF based QSAR modeling with ridge regression and SVR on the inhibitors of Hedgehog Signaling Pathway.
The compounds are represented with Drug-like index and General Descriptor respectively. The whole data was partitioned randomly with
selecting 2/3 data as training dataset and 1/3 data as testing dataset. The whole procedure was repeated 10 times and the averaged
performance was calculated. Cell line No. 1–4 corresponding to BxPC-3, NCI-H446, SW1990 and NCI-H157 respectively.
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sensitive as HCI-H466 cells to the hedgehog signaling in-
hibitor [7]. Nevertheless, it can be seen from Figure 4–7
that if we combine all these data from different cell lines
together under the CMF based QSAR modeling, we can
greatly reduce such non-specific effects in the cell lines,
and result in a reasonable QSAR modeling against all
the cell lines respectively. Such improvement is attribu-
ted to the fact that the collaborative filtering based
framework allows different cell line data tasks to en-
hance each other during the training process, which
eventually makes the efficacy modeling better than
those of using the datasets separately. We believe that
such “collaborative” scenario for drug analysis will be-
come more popular in the future, as more and more cell
line will exist and the drug are often required to be
investigated under various circumstances.
Finally, in order to evaluate whether our collaborative

QSAR model is general enough for new predictions, we
also checked the domain of application (DOA) for the
model under the diverse subset partition strategy. The
domain of application (DOA) is used to estimate the re-
liability in the prediction of a new compound [24] for a
specific method. Those molecules fall out the domain
may lead to unreliable predictions [10]. In the analysis of
DOA, a value of leverage hi is defined in equation (11)
for each chemical molecule:

hi ¼ XT
i ðXTXÞ�1Xi ð11Þ

Where Xi is the row-vector descriptor of the query
compound, X is the n� k matrix containing k descriptor
values and n training samples. The superscript T is the
transpose of the matrix or vector. Generally, the warning
leverage h� is fixed at 3k=n , where n is the number of
training compounds, and k is the number of descriptors.
When the leverage is greater than the warning leverage
h�, the predicted activity is the result of substantial
extrapolation of the model and, therefore, it may not be
reliable and tend to be over-fitting.
Based on the definition of leverage, Williams plot was

used in this study to visualize the DOA of the QSAR model
[10]. The Williams plot plots the standardized cross-
validated residuals (RES) versus leverage values (h), and can
be used to obtain an immediate and simple graphical detec-
tion of both the response outliers (Y outliers) and the struc-
turally influential chemicals (X outliers) of a model.



Figure 5 Comparison of CMF based QSAR modeling with ridge regression and SVR on the inhibitors of Hedgehog Signaling Pathway.
The compounds are represented with Drug-like index and General Descriptor respectively. The whole data was partitioned with Diverse subset
method. Cell line No. 1–4 corresponding to BxPC-3, NCI-H446, SW1990 and NCI-H157 respectively.
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Generally, the points with their values of Y axis fall outside
the 3σ line (σ is the standard residuals unit of the com-
pounds) can be considered as Y outliers, while the points
with their values of X axis fall outside the warning leverage
h�line can be considered as X outliers [10]. Figures 8 and 9
represent the William plots for the four cell lines with com-
pound representations of General Descriptor and Drug-like
index respectively. It can be seen that for all four cell lines,
most of the compounds fall into their corresponding ap-
plication domain, which indicate that the collaborative
QSAR modeling has achieved a reliable activity prediction
for the compounds, and they are following a well-defined
domain of applicability.

Impact of the Regularization Parameters
In this subsection, we will investigate the impact of
the regularization parameters on our CMF-based
QSAR modeling. We choose the values of λ1 and λ2
under different dimensionality of low dimensional re-
presentations and different numbers of training rat-
ings, and plot the RMSE based on the whole four cell
line data as shown in Figure 10. The tests were per-
formed with different compound descriptions, i.e., General
Descriptors and Drug-Like Index respectively. In the figure,
x-axis corresponds to different value of regularization par-
ameter (0.001, 0.01, 0.1, 1, 10, 100) while y-axis corresponds
to the number of training ratios for the whole QSAR data
(15%, 35%, 55%, 75%). It can be seen that (1) basically the
influence of the regularization parameter is small on the
performance, indicating that our proposed method is
robust and insensitive to the parameters, (2) higher per-
formance will be achieved with the larger number of train-
ing samples, which is not surprising in our study, and (3)
generally the two compound description, i.e, Drug-Like
index and General Descriptor, performed the same in CMF
with no statistically different.

Feature selection based on CMF for compound
description among multiple cell lines
Using collaborative filtering based feature selection
strategy we proposed aforementioned, we obtained the
feature weighting for intra-cell line and inter-cell line
for the inhibitors of Hedgehog Signaling Pathway. The
former one can be used to uncover the important fea-
tures in inhibitor design against a specific cell line,
while the later one is used to identify common features



Figure 6 The error distribution of different QSAR modeling visualized in boxplot. The compound is represented in General Descriptor and
the training and testing data was partitioned with Diverse subset method.
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that are important for the inhibitors against multiple
cell line simultaneously. We compared the difference
between these two kinds of feature weighting to provide
useful clues for inhibitor modifications and improve
their affinities.
In this feature selection, we used Drug-like index to re-

present each compound, with the total of 28 features, since
it is easy to interpret biological meanings. The General de-
scriptor feature space has been hybridized, and the original
meanings of compound structure description for current
Figure 7 The error distribution of different QSAR modeling visualized
training and testing data was partitioned with Diverse subset method.
features couldn’t kept. Therefore, GD will not be adopted
for feature weighting here. Generally speaking, Drug-like
index belongs to the category of structural descriptors.
Structural descriptors can correlate with each other; some
of them may be redundant. However, if they have different
and significant distributions in the considered drug class,
they can be used for drug-knowledge extraction and the
redundant can be ignored. In our study, the descriptors
maintain their identity and clearly interpretable struc-
tural significance throughout the process. A table with
in boxplot. The compound is represented in Drug-like index and the



Figure 8 Williams plots of the collaborative QSAR model with compounds represented in general descriptor.
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detailed descriptions of each drug-like index is listed in
Additional file 2: Table S1.
The 28 feature weights for the intra-cell line, inter-

cell line and the final integrated one are shown in
Figures 11, 12 and 13. In all three figures, x-axis repre-
sents the Drug-like index feature ID and y-axis repre-
sents its corresponding weights. It can be seen that the
final integrated feature weighting is different from that
of intra-cell line. Moreover, the inter-cell line feature
weighting can be viewed as an efficient way to identify the
potential features important for multi-target inhibitors of
Hedgehog Signaling Pathway. We provide our insights
about inhibitors design based on these figures:

1) As shown in Figure 11, the features of ‘# of non-H’
(DLI1), ‘# of non-H polar bonds’ (DLI5) and ‘# of 2-
degree cyclic atoms’ (DLI13) were ranked top 3. These
findings indicate that the volume of the molecular, the
polar of the molecular and the cyclic degree of the
molecular are the most important features for the
design of multi-target inhibitors of Hedgehog Signaling
Pathway. Our findings are actually consistent with the
empirical rules for lead compound optimization, which
use these three elements to determine their activities.

2) We can see from Figure 11 that the feature ‘# of cap
fragments’ (DLI23) was also important when the
multi-cell line inhibitors were designed. This is
consistent with the empirical rule, which changes
the substituent group (functional group) in order to
improve the inhibitor activity. However, compared
with Figure 12, it can be seen that the importance of
this feature for multi-cell line inhibitor design is not
as much significant as that for individual cell lines.
This could be explained that, although this feature is
important for individual cell line inhibitor, their
activity improvement directions may be inconsistent,
thus reducing its importance when multi-cell lines
are confronted.



Figure 9 Williams plots of the collaborative QSAR model with compounds represented in drug-like index.
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3) All three figures (Figure 11, 12, 13) have shown that
the weight for the feature of '# of 3-level bonding
patterns' (DLI18) is 0. This is probably due to the
following two reasons:a) All compound samples in
our study are lack of this feature, and b) this feature
is not considered in most of the in-silico compound
optimizations.

Discussion
Comparison of CMF based QSAR modeling with other
collaborative QSAR modeling
Although the CMF based QSAR modeling was investigated
in our study, we do realize the existence of other QSAR
modeling with integrated information, and we call such
models as the “collaborative” QSAR modeling, like the
neural network based [15] [25-27] and multi-task learning
based [9] [10] models, as well as the proteochemometrics
modeling (PCM) [28] [29]. In order to further uncover the
characteristics of such collaborative QSAR modeling, we
discuss our CMF based method with the aforementioned
methods on our multiple cell line QSAR modeling for the
inhibitors of Hedgehog Signaling Pathway.

Neural network based collaborative QSAR modeling
As we mentioned above, Erhan etc. proposed a neural
network based collaborative QSAR modeling for drug
discovery [15]. This is one of the first attempts to con-
struct an efficient procedure for integrating multiple
drug target information at a time by extending standard
multi-layer neural networks. Basically, neural networks
provided an ideal test bed for implementing collabora-
tive QSAR modeling: the simplest of such form was to
create a shared hidden layer that is trained in parallel for all
the learning tasks. In this case, the training procedure
would be done on all the tasks (in our study it will be all
the cell line QSAR data) in parallel. Because the structure



Figure 10 The impact of regularization parameter and training sample ratio on the performance of collaborative QSAR modeling. The
compounds are represented with Drug-like index and General Descriptor respectively.
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of the network includes a shared layer (weight matrix), it is
possible for so-called “shared internal representations” to
develop and to be learned.
Specifically, in our multiple cell line QSAR modeling

for the inhibitors of Hedgehog Signaling Pathway, we
used a 10-cross fold validation schema to test our data
from 4 cell lines in this neural network model. The
weights from input layer to hidden layer as well as from
hidden layer to output layer for the network will be
learned through the back propagation (BP) algorithm.
Our in-house test indicated that the neural network based
collaborative QSAR modeling was comparable to CMF
based QSAR modeling, with no surprisingly better than the
single QSAR modeling (Results are not shown here).

Multi-task learning based collaborative QSAR modeling
Neural network can be viewed as a specific form of
multi-task learning. Multi-task learning has been devel-
oped for those situations where multiple related learning
tasks are to be accomplished together. When explicit or
hidden interrelationship among the tasks can be
exploited [9] [10], multi-task learning is more effective



Figure 11 Feature weighting for inter-cell line of drug-like index.
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than learning each task independently. The intuition
underlying the framework is that the multiple related
tasks can benefit each other by sharing the data and fea-
tures across the tasks, and thus boosting the learning
performance of each single task [30]. It also provides an
efficient mechanism for cross-task feature selection, thus
uncovering the common dominate features for all the
tasks simultaneously. Our group has successfully applied
multi-task learning in QSAR modeling with specific
study of HIV and HCV inhibitors [9] [10]. Basically, as-
sume that the datasets contain N tuples, zi ¼ ðxi; yi; kiÞ
for i = {1. . .N}, where xi 2 Rd is the drug descriptor, and
ki 2 {1. . .M} is the indicator corresponding to the ex-
ample xi; yiÞð . The M tasks correspond to M different
cell lines or drug targets. A critical issue in this collab-
orative QSAR modeling is to learn a set of sparse func-
tions across these tasks for drug activity regression. This
is commonly achieved by learning M linear regressions
of the form wT

k x, with the following square loss function
is adopted (other loss function can also be applied):

lsðz;W Þ ¼ ðy� wT
k � xÞ2 ð11Þ
Figure 12 Feature weighting for intra-cell line of Drug-like index (diff
where z ¼ ðx; y; kÞ , W ¼ ½w1;w2; . . . ;wM� 2 Rd�M and
Wj be the jth row of W.
In the multi-task learning framework, W can be opti-

mized and calculated by enforcing the joint sparsity
across different tasks with adding the different norm of
the matrix W to the square loss function, which leads to
only a few non-zero rows of W.
The relationship between collaborative filtering and

multi-task learning has been discussed in previous studies
[30]. The multi-task learning model is closed related to
the multiple response regression models [31]. Multiple
response regression is the task of estimating several
response variables using a common set of input variables.
In general, both multi-task learning and multiple response
regression can be used to find the correlation between dif-
ferent tasks, and thus improve the single task learning.
Such an approach have many potential applications in
various areas, interested readers may be referred to the
paper [31]. It should be noted that in the multi-task lear-
ning framework, the samples for different tasks should
not be identical. In general, the less overlap of the samples
containing across different tasks, the more prediction
erent colors represents different cell lines).



Figure 13 Final feature weighting with integration of inter-cell line and intra cell line information of Drug-like index (different color
represents different cell lines).

Gao et al. BMC Bioinformatics 2012, 13:186 Page 15 of 17
http://www.biomedcentral.com/1471-2105/13/186
ability of each task. This idea is related to another interest-
ing algorithm, transfer learning [32], whereas multi-task
learning can be categorized into this area and the informa-
tion between different tasks is expected to “transfer” from
each other to boost the performance of individual task.
For the particular data in our multiple cell line QSAR

modeling for the inhibitors of Hedgehog Signaling Pathway,
it can be seen that the drug samples for all the cell line are
totally identical, thus it is unnecessary to use multi-task
learning in the collaborative QSAR here. Nevertheless, if
non-identical samples for multiple cell line exist, multi-task
Figure 14 Illustration of proteochemometric modeling.
learning will be a good choice for collaborative QSAR mo-
deling with integrating of different data sources.

Proteochemometric Modeling
Proteochemometric modeling (PCM) is presented based
on the similarity of a group of ligands and a group of
targets, to the extent that PCM models the so-called
ligand-target interaction space [28] [29]. Like QSAR
modeling, the PCM model is constructed based on
chemical descriptors that describe the compound data
set and it introduces an additional term, a descriptor of
the protein - target interaction (Figure 14). Therefore, a
PCM model is constructed on both ligand and target simi-
larity, and it can be regarded as an extension of conven-
tional QSAR modeling, which models the relationship
between multiple compounds and targets simultaneously.
PCM is intrinsically the most similar to our collaborative
filtering based QSAR modeling among all others. PCM ex-
plicitly requires the target information as well as the
protein-target interaction descriptions. Whereas in our col-
laborative filtering based QSAR modeling, these two kinds
of information are implicitly embedded in one computa-
tional schema. From this point of view, our model is more
flexible and extendable. Since in our multiple cell line
QSAR modeling for the inhibitors of Hedgehog Signaling
Pathway, there is no explicit target information available,
we cannot use PCM for the QSAR modeling. Large-scale
ligand-target relationship study and comparison between
collaborative filtering based methods and PCM still remain
to be an interesting and useful topic for the future study.

Conclusions
In this study, an efficient collaborative QSAR model for
inhibitors of Hedgehog Signal Pathway from multiple cell
lines was proposed. The model is derived from the area of
information retrieval in social network, i.e. collaborative
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filtering, and its performance is well demonstrated and
explained in our study. By applying this elegant computa-
tional model, we successfully addressed two issues re-
mained in our previous study, i.e., (1) The information
among multiple cell lines can be integrated to boost the
QSAR results, rather than single cell line QSAR modeling.
Our extensive experiments indicated that the performance
is remarkable compared to other single cell line QSAR
methods. (2) A novel feature selection strategy under such
collaborative environment was proposed, which can be
used to derive the commonly important features related to
the entire given cell lines, while meantime presenting their
specific contributions to a specific cell-line. Based on the
results of feature selection, we presented several ways of
chemical modifications which will likely improve the com-
pound affinity towards multiple targets in the Hedgehog
Signal Pathway simultaneously. In summary, our study pro-
vides useful clues for multiple cell line/targets QSAR mo-
deling when the cell line or target information among a
related pathway exist. The proposed collaborative model
with the feature selection strategy here is efficient, robust,
flexible, and can be easily extended to model large-scale
multiple cell line/QSAR data.
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