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Abstract
Background: Micro- and macroarray technologies help acquire thousands of gene expression
patterns covering important biological processes during plant ontogeny. Particularly, faithful
visualization methods are beneficial for revealing interesting gene expression patterns and
functional relationships of coexpressed genes. Such screening helps to gain deeper insights into
regulatory behavior and cellular responses, as will be discussed for expression data of developing
barley endosperm tissue. For that purpose, high-throughput multidimensional scaling (HiT-MDS),
a recent method for similarity-preserving data embedding, is substantially refined and used for (a)
assessing the quality and reliability of centroid gene expression patterns, and for (b) derivation of
functional relationships of coexpressed genes of endosperm tissue during barley grain development
(0–26 days after flowering).

Results: Temporal expression profiles of 4824 genes at 14 time points are faithfully embedded into
two-dimensional displays. Thereby, similar shapes of coexpressed genes get closely grouped by a
correlation-based similarity measure. As a main result, by using power transformation of
correlation terms, a characteristic cloud of points with bipolar sandglass shape is obtained that is
inherently connected to expression patterns of pre-storage, intermediate and storage phase of
endosperm development.

Conclusion: The new HiT-MDS-2 method helps to create global views of expression patterns and
to validate centroids obtained from clustering programs. Furthermore, functional gene annotation
for developing endosperm barley tissue is successfully mapped to the visualization, making easy
localization of major centroids of enriched functional categories possible.

Background
The essence of gene expression analysis is similarity-based
screening and structuring of hybridization data. Several
methods exist to realize the workflow of raw array data
preprocessing, background correction, filtering, clustering
and/or classification to identify preferentially expressed

genes and to recognize over-represented functional
groups using annotation information [1,2]. The quality of
each step in that processing pipeline should be validated,
though. In this work, a faithful visualization technique for
comparative data displays is presented for assisting in val-
idation. Typical questions arising during expression anal-
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ysis, addressed by such visualization, are: on one hand,
how are hybridization experiments related to each other,
and are replication experiments consistent with previ-
ously taken data? On the other hand, can correspondence
be found between gene-specific expression patterns, and
are centroids of gene expressions – such as obtained from
k-means or neural gas clustering – located appropriately?
Last not least, can typical data clusters be identified by
appropriate display, either for experiments or for gene
expression patterns?

Principal component analysis (PCA) – often realized as
singular value decomposition (SVD) – is the standard
technique to create low-dimensional displays of high-
dimensional data [3]. Once eigenvectors are calculated,
fast linear mappings on the principal components are
possible that explain directions of maximum variance.
Thereby, Euclidean data space is implicitly assumed for
variance maximization. The restriction of PCA to linear
mappings of Euclidean spaces can be overcome by using
more general multidimensional scaling (MDS)
approaches. These assign each high-dimensional data
point a low-dimensional counterpart and minimize the
discrepancy of the points' relationships in high- and low-
dimensional space. High-dimensional input data, for
example, might be compared by Minkowski metrics or by
Pearson correlation similarity. The low-dimensional out-
put space should be Euclidean – this allows a visual inter-
pretation of close points as representing similar input
data, and distant points as indicating dissimilarities.
Since, for such view, high similarity is expressed by small
values and vice versa, this inverse interpretation is some-
times referred to as dissimilarity in the literature.

For gene expression data, correlation similarity is very use-
ful, because dense clusters of displayed points then do
coincide with highly correlated expression vectors. In
coexpression-related analysis, time series of gene expres-
sions should be clustered if their temporal profiles are
similar, while discorrelated dynamics should be sepa-
rated. Hierarchical clustering [4], k-means [5], and self-
organizing maps (SOM) [6] usually facilitate the grouping
task. Some problems remain, though: in hierarchical clus-
tering the resulting ordering is not unique and the corre-
sponding large tree is difficult to access visually; both k-
means and SOM induce data abstractions by setting a
debatable number of centroids; by choosing additional
free parameters for the architecture and learning process,
SOM can be used for cluster visualization, but faithful
SOM training requires an appropriate choice of parame-
ters – only then, similar clusters do commonly correspond
to adjacent SOM centroids. Since the vector quantization
in SOM provides a mapping of input vectors to a corre-
sponding centroid, their individuality gets lost which
complicates outlier identification. Other authors have

pointed out the need for a visual inspection of the gene
space for comparison and validation of clustering results.
The microarray latent visualization and analysis package
(MILVA) is designed for mapping the gene space to a two-
dimensional display using either generative topographic
mapping (GTM) or the NeuroScale method [7]. Due to its
built-in functional mapping, the software is very well
suited for smooth interactive gene explorations. However,
it requires prior assumptions to estimate density models
from the available high-dimensional data for characteriz-
ing the underlying data manifold. An embedding tech-
nique for dealing with non-metric data relationships is
nMDS [8]. This fast multidimensional scaling approach
relies on heuristic reconstruction of rank relationships
between input data and their corresponding points in the
two-dimensional display. These existing data visualiza-
tion tools are very useful for interacting with the data.
Still, there is further need to improve data displays, espe-
cially in gene expression studies, for extracting reliable sets
of coexpressed genes and for visually assessing relation-
ships between functional categories of coexpressed genes.

A first version of high-throughput multidimensional scal-
ing (HiT-MDS), realizing metric MDS based on a mathe-
matical cost function formulation, has been proposed in
the authors' previous work for Euclidean gene space
reconstruction [9]. In a more recent study [10], a compar-
ison of HiT-MDS to an algebraic MDS approach and to the
free XGvis system [11] is given. It turns out that it is gen-
erally problematic to compare a method optimized for a
specific cost minimization with a method aiming at other
visualization cost criteria. Thus, a pragmatic rating is
'value by usefulness' which strongly depends on biologi-
cally informative displays and somewhat also on comput-
ing time. In the present study, two substantial extensions
of HiT-MDS are described leading to HiT-MDS-2: one
extension corresponds to an improvement of the MDS
cost function without changing the original embedding
quality, the other corresponds to the utilization of non-
Euclidean measures for input data, namely, powers of
Pearson correlation, for the visual exploration of regula-
tory patterns in temporal gene expression profiles. Here,
we demonstrate the HiT-MDS-2 tool for improved assess-
ment of quality and reliability of centroids of temporal
gene expression profiles, and for pointing out visual rela-
tionships between functional categories of coexpressed
genes. This allows to identify robustly the key regulatory
genes in sets of transcriptionally co-regulated genes, such
as from developing endosperm tissue in barley.

Results
Data of developing barley endosperm tissue
In order to demonstrate its benefits, the presented HiT-
MDS-2 algorithm has been applied to an expression data
set obtained from a 12 k seed array (11786 genes) of
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developing barley grains [12]. The pursued hybridization
experiments produced comprehensive transcriptome data
covering all major events of endosperm development
from 14 time points corresponding to a time span of 0 to
26 days after flowering (DAF), in two day intervals. The
HiT-MDS-2 algorithm is used to address three major ques-
tions: 1. How are the experiments, representing transient
development of endosperm tissue, characterized with
respect to their transcriptome similarity of specifically
expressed genes? 2. Which are the main regulatory genes,
represented in a set of transcriptionally co-regulated genes
in developing endosperm? And, finally, 3. what is their
role in explaining temporal differentiation of endosperm
tissue?

The 12 k gene expression data set, prepared as discussed in
the methods section, is considered from its two funda-
mental views, one corresponding to individual hybridiza-
tion experiments each involving 4824 filtered genes, the
other corresponding to individual genes with expression
values sampled at 14 time points. The embedding-based
analysis is thus carried out for (a) experiment grouping
and (b) gene profile inspection. Supplemental material is
online available [13].

Experiment grouping

Visual experiment validation is obtained by embedding
their pairwise correlations (1 - r(xi, xj)), where xi and xj are
experiments i and j, each containing expression values of
4824 genes. The scatter plot given in Fig. 1 was calculated
within 0.5s on a 3 GHz P4 processor with 750 cycles of the
data set. The inter-distances of the displayed points corre-

late at a very high level of  with the inter-

similarities of the original input data. Thus, the visualiza-
tion represents almost perfectly the relationships in the
4824-dimensional correlation space of the input data.
After display normalization, the zero origin demarcates a
critical point for the interpretation of symmetry breaks. As
a result, axis 1 can be easily associated with temporal
development, axis 2 corresponds to systematic differences
in both independent series (Fig. 1). The time domain can
be described as follows: (i) the initial experiments at 0
DAF are not in the same line as subsequent time points –
this slight orthogonal displacement corresponds to the
early fertilization event with its unique gene expression,
(ii) transcriptional changes during pre-storage phase are
slow until day 4, (iii) between 6 to12 DAF (intermediate
phase) a strong transcriptional reprogramming takes
place, and (iv) the late stage of 16 to 26 DAF (storage
phase) is characterized by a saturation process, indicated
by a higher point density on the right, with diminishing
transcriptional regulation.

Although embedded experiments are arranged in a con-
sistent manner, not showing major outliers, series 2 is fur-
ther considered in the following: it exhibits a smoother
temporal transition between 6 DAF to 12 DAF than series
1, and, in addition, a better dynamic signal range was
found, because the underlying phosphor images were
scanned at higher resolution than those of series 1.

Gene profile inspection
HiT-MDS-2 scatter plots for the visual validation of clusters of gene 
expression patterns
Dealing with thousands of temporally regulated genes is a
crucial task. Tools for intuitive inspection of the gene
space help to identify coexpressed gene sets associated
with biological processes occurring during development.
The ESTs selected for the 12 k seed array fabrication were
taken from cDNA libraries specific to pre-storage and stor-
age phase of developing seeds. This selection leads to pro-
nounced temporal gene regulation, which results in a
bipolar sandglass shape in the corresponding HiT-MDS-2
display of embedded expression data. This shape repre-
sents genes with up- and down-regulation, corresponding
to pre-storage and storage phase, respectively (Fig. 2).
Start and end of development, and the temporal transi-
tion between the phases have been characterized in Fig. 1
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Embedded relationships of cDNA array experimentsFigure 1
Embedded relationships of cDNA array experiments. 
HiT-MDS-2 visualization of inter-relationships between 
cDNA array experiments from two independent series of 
developing barley endosperm tissue. Experiments with 4824 
selected log2-normalized genes are compared by (1-Pearson 
correlation)p at power p = 1. Numbers denote days after 
flowering (DAF). From left to right a clear temporal order is 
found, corresponding to pre-storage (0–4 DAF), intermedi-
ate (6–12 DAF), and storage (14–26 DAF) phases of 
endosperm development. Day zero, related to the fertiliza-
tion event, is systematically separated from rest of the early 
stages. While a relative delay of roughly two days is found 
between both experimental series during intermediate 
stages, late stages become more tightly linked (14–26 DAF). 
Embedding axis 2 separates the two series. Slight systematic 
differences of series 1 and 2 result from low and high phos-
phor image scanning resolutions, respectively, and thus from 
different dynamic ranges.
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in the previous section. As explained below, by using Fig.
2 a set of 340 genes with intermediate regulation can be
detected, which is responsible for the observed transition
event.

The sandglass shape with its well-spread points results
from power transformations of correlations, which mag-
nifies subtle dissimilarities in highly correlated genes. In
the presence of many coexpressed genes, powers applied
to the input similarities shift the corresponding histogram
towards zero; this leads to focus on a good reconstruction
– and thus a fair differentiation – of highly correlated, i.e.
with near zero dissimilarities, rather than of obviously
discorrelated genes. A power of p = 8 applied to the input
similarities, i.e. (1 - r(xi, xj))8, is a good choice for clearly

separating between up- and down regulated expression
patterns during pre-storage and storage phase. Setting p =
8 is a compromise for spreading highly correlated genes
and for giving space also to intermediate regulations.
Comparative density plots for exponents of p = 24, 4,1,
0.25 are available extra [see Additional file 1]. These
results indicate how powers of correlations help to
emphasize the specific relationship structure in the set of
genes. Similar findings are also reported by Zhou et al. for
shortest path analysis in gene expression data [14].

For the number of 4824 genes, 100 data cycles are suffi-
cient to get a high-quality display shown in Fig. 2. Overall,
the HiT-MDS-2 embedding procedure applied to tran-
scriptome data of endosperm development yields a faith-
ful arrangement of genes with their typical temporal
expressions. These are clearly divided into sets with
expressions of pre-storage (cluster group 1), intermediate
(cluster group 2), and storage phase (cluster group 3 and
4). The corresponding temporal expression patterns are
revealed by browsing the scatter plot from the left to the
right side of the bipolar sandglass shape (Fig. 2). In addi-
tion, we also noticed very interesting patterns showing
dominant expression values in the pre-storage phase with
drastic decrease in the intermediate stage, followed by an
increase of expression levels during the storage phase (Fig.
2, cluster group 5). These results indicate that the non-lin-
ear data embedding technique of HiT-MDS-2 is a useful
tool for identifying not only the major global patterns
occurring during temporal development; also informative
minor patterns that could be easily missed in noisy sub-
sets of gene expression data show up as scattered point
sets.

We further examined whether the non-linear 2D represen-
tation of the gene space obtained by HiT-MDS-2 is also
useful for the validation of centroids from existing gene
expression clustering algorithms. The neural gas (NG)
clustering method according to [15] has been employed
using Pearson correlation for centroid computation [16].
A number of 64 NG centroids has been embedded
together with the gene expression data using HiT-MDS-2.
The result displayed in Fig. 2 shows that the 64 centroids
are well distributed among the embedded data, demon-
strating that these clusters represent a continuum of data.
Thereby, centroid numbers 1 to 8 and 63 to 64 depict sim-
ilar expression patterns in neural gas clustering, which can
be easily validated based on physical co-localization of
centroid positions in the HiT-MDS-2 gene space plot (Fig.
2). Redundancy of the 64 centroids has been removed by
summarizing them manually into the five shown major
developmental patterns. These have been obtained by
browsing and grouping temporally similar expressions,
located at high-density peripheral regions of the bipolar
embedding structure. From a global point of view, sets of
coexpressed genes are identified reflecting the major cellu-

Gene expression correlation space obtained by HiT-MDS-2Figure 2
Gene expression correlation space obtained by HiT-
MDS-2. Surrogate gene space of developing barley 
endosperm tissue. A total number of 4824 temporally regu-
lated, log-normalized gene profiles with 14 time points are 
embedded using powers of p = 8 of Pearson correlation for 
profile comparison. The bipolar sandglass shape of points is 
labeled by 64 centroids obtained from correlation-based 
neural gas (NG) clustering which yields a good density-
related covering of the data space. The clusters fall into five 
biologically meaningful regulatory different patterns: each of 
the five small panels displays the average and standard devia-
tion of aligned genes belonging to the marked centroids – the 
number of genes within each category 1–5 are given in 
parentheses. The HiT-MDS-2 embedding shows a consistent 
spatial arrangement of clusters within the manually selected 
categories (apart from clusters 8, 13, and 51); pre-storage 
phase (cluster group 1), intermediate phase (cluster groups 2 
and 5, anti-correlated to each other), and storage phase 
(cluster groups 3 and 4). Since the exponent p = 8 magnifies 
small differences, the resulting large spatial variability for 
down- and up-regulation represented by cluster groups 3 and 
5 do still correspond to only small standard deviations. The 
small asymmetric bias of the gene cloud to the right indicates 
more subtle patterns found in up-regulation rather than in 
down-regulation, which underlines the benefit of the visuali-
zation for screening and validation.
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lar physiological events happening during endosperm
development [see Additional file 2]. In conclusion, the
output generated by HiT-MDS-2 provides faithful visuali-
zation of cluster relationships. This is a very helpful tool
for the definition and validation of major centroids of
gene expression profiles and for the assignment of their
developmental patterns.

HiT-MDS-2 scatter plots for the visualization of relationships 
between functional categories of temporally coexpressed genes
In recent years, it has become general practice to subject
high-throughput gene expression data to clustering meth-
ods and to browse the obtained clusters for finding repre-
sentations of statistically significant functional categories
of genes. Analysis by hierarchical clustering or k-means is
usually complicated in the presence of high-dimensional
input data and noisy outliers, the latter also affecting the
interpretation of SOM clustering results. Statistical tests
such as Fisher's exact test, ANOVA based global test, or
gene set enrichment analysis (GSEA) produce useful
hypotheses about significant transcriptional regulation
[17], but they require that preconditions like certain data
distributions are fulfilled and that test parameters are cho-
sen carefully. Here, the neural gas clustering method is
used with Pearson correlation similarity measure for com-
puting cluster centroids. This method is known to yield
consistent high-quality clusters, regardless of centroid ini-
tialization [15]. As with other centroid-based methods,
though, the number of centroids required for deriving
biological meaningful functional categorization can be
hardly assessed in advance and induces additional data
validation steps. By its correlation-preserving embedding
facility, HiT-MDS-2 provides visual support of correlation
structures and centroids by screening the spatial neighbor-
hood of candidate genes to inspect whether they belong to
clusters of certain functional categories. Here, we used
manually annotated functional categories available for
the 12 k barley seed array (N. Sreenivasulu and B. Usadel,
unpublished data). The annotations are mapped to the
embedding output of HiT-MDS-2 and get associated with
corresponding expression profiles representing major
developmental patterns of coexpressed genes. This map-
ping allows an easy transfer of biological information to
the outcome of array experiments. Thereby, two levels of
information are generated concerning (i) the identifica-
tion of major pathways active in a particular stage of
development, and (ii) the extraction of key regulators
within transcriptionally co-regulated sets of genes.

(i) The mapping of individual super-pathway informa-
tion to the genome-wide graphical representation of the
transcriptional response during plant ontogeny yields
immediate hints about the occurrence of key biological
processes during particular stages of development. For
instance, this method, applied to transcriptome data of

endosperm development, indicates that the abundance of
genes related to photosynthesis, minor carbohydrates,
and also for early steps of starch biosynthesis is character-
istic of the intermediate stage (Fig. 3, cluster 2a) [see Addi-
tional file 3]. Clusters 2a-4b, described by the encircled
regions, have been manually selected for focussing on
(intermediate and storage) up regulation. These are
related to the onset of storage events according to the
down-stream pathway of starch metabolism (cluster 2b),
storage proteins/protease inhibitors (cluster 3a and 3b)
and TAG biosynthesis genes (cluster 3b, 4a and 4b). Such
systematic activation of consecutive pathways reflects
major physiological events happening in developing
endosperm tissue. For instance, the end of the cell divi-
sion phase is marked by an intermediate stage which is
characteristic of the starch accumulation initiation. Dur-
ing this phase, coexpressed pathway genes are noticed that
show tight physiological links to the photosynthesis-asso-
ciated, ATP-producing energy metabolism, and to the pro-
duction of carbon skeletons for synthesis of seed storage
products. This initiation is followed by an accumulation
of storage proteins at the peak of storage processes and
lipid accumulation. As illustrated, such a mapping of
functional information allows a serviceable transfer of
biological knowledge to the outcome of array experi-
ments.

(ii) Browsing the subspaces of the HiT-MDS-2 plot helped
to identify key regulatory genes situated closer to major
pathway genes, such as in case of starch, storage proteins,
and oleosins. The highly correlated gene sets were
extracted and compiled in a supplemental table [see Addi-
tional file 3]. As exemplary approach we discuss the coex-
pressed regulators of starch and storage protein transcripts
in the following. The prominent transcription factors
expressed during the intermediate development phase of
endosperm tissue include 3 members of C3H/C3HC4, 2
chromatin remodeling factors, 1 bZIP, 1 ABI3/VP1, and 5
unclassified transcription factors. These are tightly coex-
pressed along with genes for photosynthesis, minor car-
bohydrates, as well as ADP-glucose pyrophosphorylase
(AGPase) and sucrose synthase transcripts related to
starch metabolism genes (cluster 2a) [see Additional file
3]. Among those regulators we noticed well-characterized
regulatory factors, such as ABA response element binding
factors (ABF3) from the bZIP family, and the abscisic acid
insensitive protein 3 from the ABI3/VP1 family, of which
its homologues are supposed to participate in promotion
of reserve accumulation in dicots [18]. The correlation
structure in the subspace of cluster 2b is related to expres-
sion of SNF1, bZIP transcription factor ABI5, MYB tran-
scription factor, YABBY family transcription factor,
Squamosa promoter binding factor, Auxin response factor
and four unclassified transcription factors along with
down-stream branching enzymes of starch metabolism
Page 5 of 11
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and genes controlling minor carbohydrates [see Addi-
tional file 3].

As a main highlight, we observed expression of ABA
response element binding factors (ABF3, ABI5 and ABI3)
coexpressed along with SNF1 and starch biosynthetic
genes during the intermediate stage and in the first storage
peak of endosperm development. We found ABRE ele-
ments in the SNF1 kinase promoter region [12] which
indicates a positive role of ABA in triggering these regula-
tors. As recently demonstrated, ABA positively interacts
with sugar signaling pathways in controlling key starch
biosynthesis genes via SNF1 kinase [19]. Based on the cor-
relative evidences, we also propose that SNF1 expression
in endosperm is mediated by ABA via ABF3/ABI5, ABI3,
which in turn might be responsible in regulating key
genes of starch biosynthesis such as sucrose synthase and
ADP-glucose pyrophosphorylase [12].

Another set of transcription factors, preferentially coex-
pressed along with transcripts of the hordein storage pro-
tein and the protease inhibitor during the main storage
phase of endosperm development, includes 8 chromatin
remodeling factors, 3 NAC, 2 DOF, and 9 unknown tran-
scription factors. It was shown recently that two DOF tran-
scription factors (SAD and BPBF) serve as activators of B1
storage protein genes during the maturation phase [20].
In the present study we also noticed (a) coexpression of
two DOF family members, SAD and BPBF transcription
factors along with hordein storage protein transcripts, and

(b) in our recent study [12] we found enrichment of
prolamin box cis-elements in upstream sequences of rice
prolamin class storage protein genes (D, B1 and B3 hor-
deins). These evidences again point out that our detailed
bioinformatics analysis of co-regulation of transcription
does not only enhance our comprehensive knowledge of
the developmental phenomena at gene regulation level,
but it also helps to get initial glimpse of the systemic
description of gene regulatory networks and their dynam-
ics.

Discussion
The validation of temporal gene expression centroids
obtained by commonly used unsupervised clustering
methods is a nontrivial task [4-6]. Since clustering results
depend on the choice of method, the similarity measure,
and the number of centroids, the assignment of expres-
sion profiles to clusters of interest does profit from faith-
ful visual assistance. The proposed HiT-MDS-2 data
embedding tool is designed to meet this purpose. Its ver-
satile visualization abilities can be used to validate the
results of centroid-based clustering methods, as has been
demonstrated in the present study for the iterative neural
gas clustering approach.

Moreover, HiT-MDS-2 scatter plots can be used for brows-
ing interrelated temporal gene expression patterns (tightly
coexpressed genes), and also the relationships between
functional categories of coexpressed genes can be easily
screened. Such a co-visualization of genes, exhibiting

Visual mapping of functional gene categoriesFigure 3
Visual mapping of functional gene categories. Mapping of six major functional categories to the HiT-MDS-2 scatter plot 
of genes. These categories can be directly related to the five prominent temporal patterns, cluster group 1–5, of gene expres-
sion in Fig. 2. Here, the focus is put on manually picked subspaces 2a & 2b of genes related to cluster group 2, 3a & 3b of group 
3, and 4a & 4b of group 4. By browsing these subspaces defined by the encircled regions, key regulators can be identified that 
are closer to major genes of the storage pathway, storage proteins and inhibition, and TAG/lipid metabolism related genes. A 
list of coexpressed genes corresponding to the regions 2a/b, 3a/b, and 4a/b is provided extra [see Additional file 3]. Corre-
sponding gene profiles are provided in a supplemental figure [see Additional file 6].
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characteristic regulatory patterns, and their functional
assignments is the major benefit of the nonlinear surro-
gate data representation realized by HiT-MDS-2.

An additional study has been carried out in order to dem-
onstrate the generality of HiT-MDS-2 also for other data
sets. We switched from the 12 k seed array containing EST
clones selected from developing seed cDNA libraries (see
results section) to 22 k Barley 1 Affymetrix chip in which
oligos are compiled from at least 84 cDNA libraries
encompassing various stages of plant ontogeny. This
Affymetrix data set covers stages of developing endosperm
tissue at 4, 8, 16 and 25 DAF in two replicate series. We
applied two gene filtering criteria to the data set with (a)
gene profiles with Pearson correlation greater 0.8 between
the two available replicates and (b) at least 2-fold change
between minimum and maximum expression values at 4,
8, 16 and 25 DAF. The filtered gene set contains 3031 dif-
ferentially expressed high-quality genes. As shown in an
additional figure, HiT-MDS-2 embedding of these genes
produced a sandglass shape similar to Fig. 2 for 12 k seed
data set [see Additional file 4]. Furthermore, clear global
patterns of up-, down- and intermediate regulation are
identified by browsing the obtained gene space [see Addi-
tional file 5]. This result confirms that the application of
HiT-MDS-2 is not restricted to one specific data set but
that it can be transfered to Affymetrix data as well. Thus,
regulatory pattern structures revealed by HiT-MDS-2 are
no artefacts of data selection, but they do reflect inherent
properties of barley endosperm development.

Comparison of Hit-MDS-2 with related visualization tools
Despite of the growing number of unsupervised clustering
tools for gene expression data, currently only few visuali-
zation techniques offer intuitive validation of the cluster-
ing results. HiT-MDS-2 provides great flexibility in the
choice of similarity measure, and also the dimensionality
of the visualization can be chosen freely. One major
advantage over SOM visualization is that the genes keep
their individuality in the scatter display, which can be vis-
ually clustered on demand. Likewise, expression data and
centroids from specific clustering methods can be embed-
ded simultaneously for validation purposes. A standard
data projection method like PCA puts too many con-
straints on the data similarity measure and on the mode-
ling quality of surrogate data. By nature, PCA is restricted
to the domain of Euclidean input spaces where variance is
a properly defined concept [3]. Projection results of PCA
are given in the left panel of Fig. 4. The density image dis-
plays the projection of the 4824 genes to the second prin-
cipal component (PC2) against the projection to the first
principal component (PC1). Two separated regions are
revealed, the upper region corresponding to down-regu-
lated gene profiles, the lower high-density region to up-
regulated gene profiles. In contrast to correlation-based

methods, the separation is not very strong, but the differ-
ent structure of high-density regions indicates different
regulatory characteristics specific to up-and down-regula-
tion. The PCA result is complemented to the the much
more advanced non-metric MDS (nMDS) method of
Taguchi and Oono [8] shown in the right panel of Fig. 4.
In comparison to PCA, many more details of the expres-
sion profile correlation structure is captured by the nMDS
method. Like HiT-MDS-2 a bipolar structure appears, rep-
resenting patterns of down-regulation at the left pole and
up-regulation at the right pole. This density plot of nMDS
is indeed very similar to the one obtained by HiT-MDS-2
for exponent p = 1 given in a supplemental figure [see
Additional file 1]. However, since nMDS turns the imple-
mented Pearson correlation input similarities (1 - r(xi, xj))
by a sorting operation into their ranks, there is no differ-
ence to the monotonic eighth power wrapper (1 - r(xi,
xj))8. Compared to PCA and nMDS, the display of HiT-
MDS-2 in Fig. 2, based on powers of correlation (p = 8),
exhibits the characteristic bipolar sandglass shape repre-
senting not only magnified areas of up- and down-regula-
tion, but also distinct intermediate regulation. A
supplemental figure shows how the choice of exponent p
can be used to emphasize specific correlation structure
[see Additional file 1]. In principle, the XGvis system [11]
is able to yield similar embedding results, but it requires
that the similarity matrix is computed in advance as input
to XGvis.

Regarding the computation efficiency, the HiT-MDS-2
algorithm is outstanding in the domain of metric MDS: it
takes only 14 minutes and 21 seconds (861s) for 100 data
cycles on a 3 GHz P4 processor for embedding the 4824
genes, while XGvis, for example, requires more than 4
hours for a comparable result. The nMDS approach, pur-
suing non-metric optimization, generated the displayed
embedding within only 18 cycles using a relatively short
time of 17 minutes and 21 seconds (1041s). Although,
the PCA computation took less than 2 seconds on the ref-

Visualization of the gene space by other methodsFigure 4
Visualization of the gene space by other methods. 
Density plots by PCA and nMDS, dark shading denoting high 
gene densities. For comparison, a much better and uniform 
visual spreading of the genes is provided by HiT-MDS-2, as 
displayed in Fig. 2.
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erence PC with a 3 GHz Pentium 4 processor, the visuali-
zation cannot be used for screening temporal ordering
gene expressions and is, hence, worthless for our pur-
poses. Complementary to the visualization of the gene
space, HiT-MDS-2 can also be used to display and evalu-
ate hundreds of hybridized cDNA arrays without signifi-
cant time requirement.

Conclusion
HiT-MDS-2 allows creating faithful surrogate spaces, such
as 2D scatter plots with Euclidean metric, from input
spaces with custom data similarity measures. Fast conver-
gence of the reconstructed space is obtained by stochastic
optimization of an efficient correlation-based comparison
of source and target space. For source data comparison, it
has turned out that very useful graphical outputs are
obtained when the short 14-dimensional expression time
series of our 4824 genes are compared by 8th power of (1
- r(xi, xj)).

Resulting scatter plots of the well-distributed embedded
points have been utilized in four ways: (1) for finding
inter-sample correlations among experimental series; (2)
for the detection of global regulatory gene expression pat-
terns and for centroid validation; (3) for browsing the
major temporal gene expression data and revealing the
underlying functional pathway information; and (4) for
visual mapping of regulatory genes co-localized with
major functional gene categories. These features allow
convenient visual screening of thousands of genes in par-
allel from time-course experiments. Although we have
demonstrated only temporal data for screening co-
responses in this study, HiT-MDS-2 can be also applied to
highlight systematic differences among mutants or trans-
genics at multiple stages. The obtained visualizations help
to get insights to massive data sets for approaching the
goal of deriving new biological knowledge.

Methods
Multi-dimensional scaling (MDS) implies the optimiza-

tion of free parameters , i.e. locations of points

 in a d-dimensional target space corre-

sponding to i = 1...n input vectors xi ∈ Xn × q of dimension

q. In case of the classical stress criterion, mutual distances

 of all data pairs indexed by (i, j) should

best fit the original distances dij = d(xi, xj) in terms of the

least squares .

Improvements of MDS (HiT-MDS-2)

A visual control, equivalent to least squares fit, is the

Shepard diagram where on the dij vs.  plot all points

should be located on the diagonal line of unit slope, i.e.

. Although the Shepard plot is usually

provided by MDS packages, it implies a misleadingly strict
quality criterion: in most cases it is sufficient to maintain
only the intra-distance relationships, while the scaling fac-
tor between source and target distances, i.e. the scale sizes
of the corresponding point clouds, need not be unity.
Thus, the strict least squares criterion can be relaxed to
shift- and scale-invariant comparison by maximizing the
Pearson correlation between the lower triangular source
and target distance matrix:

Matrix D = (dij)i, j = 1...n contains pattern distances, and

matrix  those of the reconstructions. In

principle, input and output spaces are generic. However,

the target configurations  should be modeled by a

Euclidean space for realizing intuitive low-dimensional
spatial arrangements, such as 2D plots; furthermore, in
the following, input distances dij are expressed as dissimi-

larities by taking powers of gene profile correlations r. The
two measures for reconstructions and input data are

Thereby integer exponents p ≥ 1 control the discrimina-
tion of input data: in this study, a large value of p = 8 is
used for separating clusters of highly correlated gene
expression profiles, while p = 1 emphasizes the separation
of anti-correlated patterns. The choice of the real value p >
0 is application-specific and up to the user's desire to
accentuate the reconstruction of close or distant data.

In Eqn. 1 the abbreviated shorthand fraction is a literal
one-to-one correspondence to the explicit term with

sums. B = B( ) is related to the mixed summation of both

original and reconstructed distances, D = D( ) refers to
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the dissimilarities dependent on the choices of the recon-

structions , and C denotes the connection to the ini-
tially calculated and thus constant input pattern distances.

Instead of maximizing rL directly, minimization is per-
formed on a very efficient stress function that inverts and
stretches the domain [-1;1] of Pearson correlation for get-
ting good convergence. In previous work, inverse power
transformations of the correlation rL have been consid-
ered that worked reasonably well [9]. However, an expo-
nent parameter required there had to be chosen carefully
in combination with the step size of the stochastic gradi-
ent descent. Here, new formulas are derived for Fisher's Z'
wrapper of the correlation rL given in Eqn. 1. This alterna-
tive transformation yields superior convergence while
being more robust with respect to the choice of parame-
ters.

The new stress function is based on Fisher's negative Z'-
transformation:

Fisher's original formulation implies a = 1; here, however,
potential singularities are prevented by a > 1.

The stress function s is minimized by optimally arranging

the reconstruction points  in the Euclidean target space.
This is achieved by a gradient descent on the stress func-
tion s, which requires finding zeros of the derivatives of s

with respect to the free parameters :

Solutions are found by iterative updates of randomly

drawn points i by  of step size γ into the

direction of the steepest gradient of s. Although conver-
gence to a global optimum cannot be claimed by such an
approach, final point configurations have been found to
be very stable and of high quality in different runs. The
required derivatives of Eqn. 4 are

The two parameters of the new HiT-MDS-2 are non-criti-
cal and they can be fixed to γ = 0.1 and a = 1.001 in most
cases. This robustness is a substantial advantage over the
first HiT-MDS formulation described in [9], where a tight
coupling of an additional parameter with the learning rate
γ required three to five re-runs of the algorithm with
appropriately chosen parameters. As a consequence, the
old version took on average four times longer to converge
to the same final results like the new HiT-MDS-2.

The embedding procedure is outlined in Algorithm 1. Ini-
tially, a random projection of the high-dimensional
source data is calculated and the resulting similarity
matrix is correlated with the mean-subtracted original one
for obtaining B, C and D. Mean subtraction from D does

not affect the Pearson correlation rL(D, ), but simplifies

further calculations. More substantial speed-up is

obtained by exploiting the symmetry of D and  and by
implementing differential updates of B and D correspond-

ing to changes in single rows and columns of  during
the iterative embedding process: further details on an effi-
cient realization of line 12 in Algorithm 1 are given in [9].
Finally, stochastic gradient descent on s maximizes the

correlation iteratively by moving the target points  into
proper places until a saturated quality level is reached.

Features of HiT-MDS-2
Embedded point distances maximize correlation with
source data similarities for a faithful display of relation-
ships. Classical MDS stress applied to Euclidean data
yields final configurations equivalent to the PCA projec-
tion [21]. The HiT-MDS-2 criterion, though, provides
more degrees of freedom and allows thus fast convergence
and improved displays. Any symmetric similarity matrix
of relationships between input data can be processed, but
different powers of correlation measures turn out to be
preferable in the context of gene expression mining. In
principle, for Euclidean target displays, MDS axes of
embedded data do not carry any special meaning, because
the embedding procedure is invariant to offsets, scaling,
sign-flipping, and rotation; thus, there is no preferred
intrinsic direction. What counts is the arrangement of
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inter-point distances only. Final displays can and should
be normalized

1: Read input data X.

2: Initialize  by random projection .

3: Calculate input matrix D and subtract mean ⇒ constant
C.

4: Calculate target distances  ⇒ initial B, D.

5: repeat

6: Draw a pattern index 1 ≤ i ≤ n from randomly shuffled
list.

7: for all j ≠ i do

8:  { accumulate derivatives (Eqn. 4) }

9: end for

10:  { adapt location of target point }

11: Recalculate distances  influenced by new

point ;

12: thereby, update differential changes in B and D.

13: until convergence criterion is met.

14: Postprocess: center , normalize by largest dimen-
sion variance.

15: Optional coordinate rotation: project  to eigenvec-
tors.

Algorithm 1: HiT-MDS-2

for comparison purposes. Thereby, four steps of (1) mean
centering, (2) variance-based rescaling, (3) PCA coordi-
nate rotation, and (4) skewness-based sign flipping prop-
erly resolve embedding invariances while maintaining the
reconstructed distance relationships. Furthermore, den-
sity plots of the embedded data can be computed by using
symmetric Gaussian kernels in order to inspect the simi-
larity densities in the data space. GNU Octave/MATLAB
and R implementations as well as fast C source code of the

HiT-MDS-2 algorithm are available under GPLv2 license
[22].

Data preparation
A total of 330 008 gene expression values collected from
28 hybridization experiments with 12 k macroarrays, cov-
ering 14 temporal developmental points from two inde-
pendent series, were considered for data processing. As a
first quality criterion, gene expression values surpassing
twice the background level are considered. Background
subtraction is carried out for the remaining genes, fol-
lowed by quantile normalization. This processing is done
separately for each series to allow the comparison of sig-
nal intensities across time series. As usual, log2-trans-
formed final expression values are considered. Cubic
spline smoothing with moderate smoothing parameter
has been applied to each temporal gene expression pro-
file. A filter based on Pearson similarity has been applied
to select gene profile time series that correlate at a conserv-
ative level of r > 0.5 between the two independent series.
With this criterion, a qualified subset of 4824 out of
11786 genes has been created for analysis.

Authors' contributions
MS implemented the software and applied it to gene
expression data. MS and NS designed the study and pre-
pared the manuscript. BU and NS contributed the barley
ontologies with functional categories. All authors have
read and approved the final manuscript.
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Additional file 1
Additional HiT-MDS-2 embeddings of the expression data set containing 
4824 genes, using different exponents p. Different exponents used in the 
data similarity measure (1 - r(xi, xj))p highlight specific correlation struc-
tures in the corresponding HiT-MDS-2 embeddings. Results for exponents 
p = 24, 4,1,0.25 are shown in panels a-d, respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-165-S1.pdf]

Additional file 2
List of 4824 genes with 64 centroids. The table contains gene expressions 
of 4824 high-quality genes covering 14 developmental stages, ODAF-
26DAF, in steps of two days. Expression levels are log2-transformed quan-
tile-normalized values. Genes are assigned to 64 centroids from neural gas 
clustering.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-165-S2.xls]
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Table of functional categories. The table contains genes with manually 
assigned major functional categories corresponding to Fig. 3 of the manu-
script.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-165-S3.xls]

Additional file 4
HiT-MDS-2 embedding of gene expressions of 3031 filtered genes from 
developing barley endosperm at time points 4, 8, 16, 25 days after flow-
ering. Expression levels are taken from Barley 1 Affymetrix chip. Like in 
Figure 2 of the manuscript, a sandglass shape is obtained for a correlation 
exponent of p = 8. Since only four time points are considered, the four-
dimensional expression vectors are very faithfully represented in the scatter 
plot. The corresponding regulation patterns of up-, down- and intermedi-
ate regulation are displayed in an extra figure [see Additional file 5].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-165-S4.pdf]

Additional file 5
Gene expression profiles obtained from Barley 1 Affymetrix gene chip con-
nected to highlighted regions of the HiT-MDS-2 gene space plot [see Addi-
tional file 4]. High spatial specificity is observed in the exemplary clusters 
1–8 covering interesting locations in the gene space. Patterns of up- and 
down-regulation fall into opposite poles. Cluster number 5 shows interme-
diate up-regulation with quite diverse characteristic, where Pearson corre-
lation does not yield good discrimination between peaks in the second or 
third temporal stage. Cluster number 3 contains genes that become active 
just at the last stage (day 25 after flowering).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-165-S5.pdf]

Additional file 6
Gene expression profiles corresponding to the six sub-clusters 2a, 2b, 3a, 
3b, 4a and 4b referred in Figure 3 of the manuscript. The expression pro-
files reflect z-score normalized log2 values. In addition to individual gene 
expression curves displayed in blue, their mean and standard deviation are 
depicted by red lines. Highest variability is observed for intermediate reg-
ulation events in cluster 2a; yet, the overall quality of coexpression in the 
six clusters is represented well. 
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-165-S6.pdf]
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