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Abstract
Background: Annotations that describe the function of sequences are enormously important to
researchers during laboratory investigations and when making computational inferences. However,
there has been little investigation into the data quality of sequence function annotations. Here we
have developed a new method of estimating the error rate of curated sequence annotations, and
applied this to the Gene Ontology (GO) sequence database (GOSeqLite). This method involved
artificially adding errors to sequence annotations at known rates, and used regression to model the
impact on the precision of annotations based on BLAST matched sequences.

Results: We estimated the error rate of curated GO sequence annotations in the GOSeqLite
database (March 2006) at between 28% and 30%. Annotations made without use of sequence
similarity based methods (non-ISS) had an estimated error rate of between 13% and 18%.
Annotations made with the use of sequence similarity methodology (ISS) had an estimated error
rate of 49%.

Conclusion: While the overall error rate is reasonably low, it would be prudent to treat all ISS
annotations with caution. Electronic annotators that use ISS annotations as the basis of predictions
are likely to have higher false prediction rates, and for this reason designers of these systems should
consider avoiding ISS annotations where possible. Electronic annotators that use ISS annotations
to make predictions should be viewed sceptically. We recommend that curators thoroughly review
ISS annotations before accepting them as valid. Overall, users of curated sequence annotations
from the GO database should feel assured that they are using a comparatively high quality source
of information.

Background
A major challenge facing bioinformatics today is how to
effectively annotate an exponentially increasing body of
publicly available sequence data. While using expert cura-
tors to assign functions to sequences might be considered
to be the least error prone approach, this option is far
slower than annotation by automated software

approaches. On the other hand, automated function
annotators often rely on curated sources of information
from which to make predictions.

It is a commonly held view that curated sequence annota-
tions are of better quality than automated annotations,
however, the error rate of curated annotations can be sig-
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nificant. Estimates of the error rate of curated bacterial
genome sequence protein and gene-name annotations lie
between 6.8% and 8% [1,2]. The error rate of curated
eukaryotic sequence annotations is far higher. Arta-
monova et al (2005) [3] examined the error rate of Uni-
Prot/SwissProt database annotations, consisting of five
distinct types of annotation entries, and found an error
rate of between 33% and 43%. As this database is widely
considered to have a very high standard of curation, we
might infer that other sequence databases have at least
this annotation error rate, if not higher.

The quality of existing sequence annotations impacts on
the quality of future sequence annotations through the
commonly used practice of basing sequence annotations
on sequence similarity. Errors in the use of sequence sim-
ilarity based annotation strategies have been implicated in
a number of commonly described annotation errors [4-6].
A common error is to put far too much emphasis on the
importance of the best matching sequence, and not to
review the significance of the match. Often this leads to
false annotations due to a failure to recognise significant
differences in protein domains [4,6] or open reading
frames [5]. Overall, problems such as these lead to an
increase in error rates of 5%–40% in annotations based
on sequence similarity to previously annotated proteins
[7].

There has been some discussion in the literature pin-
pointing the importance of annotation error propagation
[4,8]. Errors made by curators during the initial annota-
tion of sequences can result in the generation of more
errors in other data sources owing to the widespread use
of sequence similarity-based annotation methods. For
instance, misannotation of proteins to IMP dehydroge-
nase was found to propagate from the PIR-PSD database
to SwissProt/TrEMBL, GenBank, and RefSeq [6]. The ini-
tial misannotation was caused by an error made while
inferring the protein's name based on sequence similarity.
In some cases where IMP dehydrogenase was erroneously
assigned to sequences, the IMPDH domain was missing,
whereas the CBS domains commonly found in IMP dehy-
drogenases were present [6]. Corrections to errors such as
these may never occur. Meanwhile, new annotations may
be based on erroneous annotations, and these in turn may
have been based on erroneous annotations, and so on.
Such 'chains of misannotation' [8] can lead to the progres-
sive increase in annotation error rates.

Sequence annotation data generated by numerous
projects has been submitted to the Gene Ontology (GO)
Consortium and is available for download in various
database releases [9]. A common use of this data source is
to predict the function of novel proteins by using BLAST
to find similar annotated sequences present in the data-

base. This may be done by a biologist to find candidate
GO terms for a sequence, or automatically by a growing
body of electronic annotators [10-15]. The reliability of
such inductive reasoning is determined by the correctness
of the original sequence annotations. If the error rate of
the source annotations is high then we would expect that
annotation predictions based on them would be at least as
high or higher. The current widespread use of sequence
similarity based annotation methods simply assumes that
input sequence annotations are correct. Without an
understanding of the error rate of GO sequence database
annotations it is not possible to assess the validity of mak-
ing new sequence annotations based on evidence from
existing sequence annotations.

In comparison to other forms of annotation, such as gene
or protein name annotations, GO terms are used to
describe the biological context of sequences. Indeed, GO
term annotation has become the standard method by
which functional information is attributed to sequence
data. As far as the authors are aware, at the time of writing
there is no published account systematically examining
the error rate of curated GO term annotations. However,
case-studies [4-7] and mathematical models [8] have
shown that using sequence similarity to infer a new anno-
tation is likely to be error prone. As each sequence anno-
tation in the GO database has an evidence code, we can
determine the impact of using sequence similarity based
annotation on the error rate of curated sequence annota-
tions directly.

As such the aims of this study are to a) develop an
approach to estimating the error rate of GO term annota-
tions, b) use this method to estimate the error rate of GO
term sequence annotations submitted to the GOSeqLite
database, c) and determine the impact, if any, of using
sequence similarity based annotation methods on the
error rate of annotations.

Results
Background
The GOSeqLite database (revision 3rd March 2006) was
downloaded from the GO Consortium site [16], and
imported into a MySQL database [17]. The database archi-
tecture is such that sequence annotation data are normal-
ised, a single sequence record can have many associations
(a GO term annotation), and each association has a
related evidence record. This evidence record can be used
to determine the basis on which the annotation was
made. For instance, annotations that were based on
sequence similarity to a previously annotated sequence
are given the evidence code "ISS" (Inferred by Sequence
Similarity).
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If we were to select two sequences and their associated GO
term annotations at random there are two broad reasons
why their term annotations would differ. Firstly, two
sequences may differ in their biological context, and dif-
ferences in their GO term annotations reflect this. We will
refer to this biologically relevant variation as 'semantic
variation'. Secondly, annotations between two sequences
may differ due to annotation errors. Such errors may be
missing or incorrect GO term annotations. Owing to the
fact that GO terms are related to each other via a directed
acyclic graph (DAG), incorrect term annotations may be
under-specialised (i.e. an ancestor) or over-specialised (a
descendant) or be not directly related to the correct GO
term that should have been present. This second form of
variation we are referring to here as 'error variation'.

Instead of two sequences chosen at random, consider the
case where we have a sequence, referred to as a 'query
sequence', that is used in a sequence similarity search to
find similar sequences against a reference set of sequences
('reference sequences'). Such a search might result in a
large number of sequence matches between the query
sequence and reference sequences. For each such
sequence match it is possible to assign a precision to their
matching annotations. If we consider that GO terms asso-
ciated with the matching reference sequences are being
used to predict the GO terms assigned to the query
sequence, then the precision of the sequence match is:

P = nm/na

where P is the precision of the sequence annotation,
nm is the number of query and reference sequence GO
terms that matched, and na is the number of GO terms
that the reference sequence is annotated with in the
database.

This definition of precision allows only exact matches
between query and reference sequence annotations to be
considered correct. Because the GO is arranged in a DAG
it could be possible to count reference sequence annota-
tions as correct if they are within some number of edges of
a query sequence term, as opposed to exact matching.
However, previous work has demonstrated that increasing
the permitted distance between the query and reference
sequence terms dramatically amplifies the precision and
recall, calling into question the applicability of these accu-
racy metrics under such conditions [14].

The precision of the annotations from any sequence
match is determined by the semantic variation and error
variation. For this reason, if the impact of the semantic
variation can be controlled, the annotation error rate can
be estimated by using a two-step method. Firstly, we must
determine the relationship between annotation error rate

and sequence-match annotation precision. To do this we
will add annotation errors to reference sequence annota-
tions at known rates, and use this to determine the rela-
tionship between precision and annotation error rate by
means of linear regression. This will allow us to find a
model that predicts the annotation error rate for a given
precision value. Next, we must estimate the precision
when no annotation error is present in the reference
annotations. This precision value is referred to here as the
'maximal precision' because it is the highest precision that
is possible for the sample of sequence matches. We
assume that the semantic contribution to the precision is
at its highest possible, and there is no error contribution,
when the precision of the sample is equal to the maximal
precision. Therefore, all differences between query and
reference sequence annotations are due to differences in
biological contexts. As any such estimate is likely to have
a large impact on the final annotation error estimate, we
will derive two independent approaches to estimating the
maximal precision. Given that we know the basal preci-
sion of sequence-match annotations (the naturally occur-
ring precision of sequence-match annotations) and the
relationship between precision and annotation error rate,
we can use the difference between the maximal and basal
precisions to find the annotation error rate at the basal
precision. This then is an estimate of the error rate of ref-
erence set annotations.

An important assumption here is that it is possible to
compare the sample of sequence-matches used to derive
the precision scores at artificially increased error rates, to
the sample that is being used to generate a maximal preci-
sion estimate. At a BLAST expect value cut-off of 1e-10 each
query sequence has a potentially large number of match-
ing reference sequences. For determination of precision
scores we selected a sample of the total sequence-matches,
where, for each query sequence in the query set, a single
sequence-match was chosen that had the highest preci-
sion score. In other words, a single matching reference
sequence was selected for each query sequence that had
the high precision observed for all matches to that query
sequence. It could be considered that this reference
sequence is the best functional match to the query
sequence. In this sample of sequence-matches, referred to
as the 'highest precision sample', the semantic contribu-
tion to the precision must be at its greatest. It is probably
a valid assumption that this sample also contains a repre-
sentative error rate that can be used to estimate the anno-
tation error rate of the entire population. The precision of
the highest precision sample is determined by the highest
observed semantic contribution and annotation error. As
such, precision estimates from this sample are compara-
ble to the maximal precision estimates. If no error is
present in reference sequence annotations then the high-
est precision sample's precision scores would be approxi-
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mately the same as the maximum precision estimate.
Therefore, if we determine the relationship between preci-
sion and annotation error rate for the highest precision
sample, the difference between the highest precision sam-
ple's precision and the maximal precision estimate can be
used to derive an annotation error rate estimate.

Maximal precision estimates
As described above, the maximal precision estimate is the
maximum precision score possible for a sample of
sequence-match annotations. When the precision is equal
to the maximal precision estimate the semantic contribu-
tion to precision is maximised, and the annotation error
is negligible. The maximal precision estimate will depend
on the expect value cut-off of the BLAST search used. Here
we adopted a cut-off of 1e-10 for several reasons. Firstly, at
this value both annotation error and semantic variation
would be present. At lower expect value cut-off values, e.g.
1e-100, we would expect little semantic variation. Further-
more, annotation error would be difficult to detect as few
query sequences would have significant matches except to
themselves. Such self-matches, as determined by sequence
id, are excluded from the analysis. Also, the derived error
rate estimate could be considered more applicable to biol-
ogists when using this BLAST cut-off value, as it represents
a fairly common use-case for biologists. However, it is
important to note that most sequences found to be similar
to a query sequence by BLAST at this cut-off value are not
necessarily orthologous. Often they are simply protein
sequences with one or more significant regions of similar-
ity, such as a structural domain.

The importance of this estimate to the error estimation
method cannot be overstated. The difference between pre-
cision at the naturally occurring error rate (basal preci-
sion) and the precision at zero error rate is used to directly
estimate the annotation error rate via a function derived
from regression coefficients. Therefore we have developed
two independent approaches to estimating the maximal
precision for a sample.

The first maximal precision estimation method is based
on a number of simplifying assumptions concerning the
distribution of semantic and error variation. If we assume
that sequence-matches with no matching GO terms (i.e. a
precision of 0) are purely due to semantic variation (i.e.
significant differences in the biological contexts of
sequences), we can then assume that cases that have a
non-zero precision (i.e. at least one matching GO term
between sequences) contain some semantic and some
error variation. Therefore, if the error were to be removed
from cases that have a non-zero precision, the precision
could be 1. The assumption that all non-zero precision
cases could have a precision of 1 if no error was present is
very optimistic, and will result in a conservatively high

maximal precision estimate. Using these assumptions we
can derive a maximal precision estimate such that:

Mp1 = Nm/N

where Mp1 is the first maximal precision estimate, Nm
is the number of sequence matches with at least one
matching GO term, and N is the total number of
sequence matches.

Note that the assumptions made above are considered to
be fairly gross approximations of how error and semantic
variation may be distributed. On the other hand it is
unlikely that cases with a precision of 0 are due only to
semantic differences between sequences. As the error rate
increases more and more sequence matches are likely to
have a precision of 0. For these reasons another maximal
precision estimate was developed that is based on
assumptions surrounding curated UniProt annotated
sequences.

UniProt [18] is widely considered to provide 'gold stand-
ard' sequence annotations. The EBI-GOA [19] project pro-
duces electronically annotated and manually curated GO
annotations. The manually curated annotations are acces-
sible from the UniProt/Swiss-Prot database, and some are
also available from the GO Consortium's website in
releases such as the GoSeqLite database. The methods
employed by GOA curators [20,21] results in annotations
that we would expect to be of high quality, however it is
unlikely that UniProt/Swiss-Prot sequence annotations
contain absolutely no errors. However we can make this
assumption for the purposes of obtaining an estimate of
the maximal precision. As such the alternative estimate of
the maximal precision, referred to as Mp2, is simply the
precision of cases where both sequences in the sequence
match were annotated by UniProt/Swiss-Prot with self-
matches, based on sequence id, excluded. In this case we
are referring to UniProt/Swiss-Prot annotated sequences
that are also present in the GoSeqLite database.

While both estimates of the maximal precision require
significant simplifying assumptions concerning the rela-
tive weights and distributions of semantic and error varia-
tion, we might gain some reassurance in their reliability if
they give similar results. We might expect that Mp1 will
generally provide a higher maximal precision estimate
because it assumes that non-zero precision cases could
have a precision of 1 where no error is present. Semantic
variation will decrease the average precision of these cases,
such that an average precision of 1 is unlikely. Alterna-
tively Mp2 will tend to provide a more generous estimate,
as it presumes that UniProt/Swiss-Prot sequence annota-
tions contain absolutely no annotation error. Existing evi-
dence concerning the error rate of other forms of
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annotation [3] suggests that UniProt/Swiss-Prot GO term
annotations show significant amounts of error. Any error
in these annotations will tend to artificially lower the Mp2
estimate. As such our two independent maximal precision
estimates provide a useful range, and will in turn result in
a range for annotation error estimates.

Extrapolation to find annotation error rate at maximal 
precision
Once the relationship between precision and annotation
error rate has been found using linear regression it is a
simple matter to rearrange the standard regression predic-
tion formula to find the annotation error rate correspond-
ing to any precision:

X = (Y-B)/m

where X is the artificially added annotation error rate,
Y is the maximal precision estimate, B is the regression
constant, and m is the regression slope coefficient.

The above formula allows us to obtain the annotation
error rate corresponding to a maximal precision estimate,
given that we have already determined the values of
regression coefficients. The annotation error rate (X) will
be the error rate difference between the natural error rate
(i.e. when the artificially added error rate is 0) and the
annotation error rate corresponding to the maximal preci-
sion value. As a result the annotation rate estimate is:

where the annotation error rate estimate, E, is the absolute
of value of X, where X is the artificially added annotation
error rate.

Analysis
Estimation of maximal precision scores
Maximal precision estimates were calculated for all exper-
iments (table 1). Both maximal precision estimates were
highly similar between cross-validation groups, and have
very similar mean values (Mp1 mean 0.882, sd 0.005; Mp2
mean 0.851, sd 0.013). Both maximal precision estimates
were derived independently using different methods. Mp1
was calculated based on an assumption that non-zero pre-
cision cases could have a precision of 1 if no error was
present while Mp2 was based on UniProt to UniProt
matches. However, the small difference between the
means of these estimates might be taken as an indicator of
accuracy. For the ISS annotation error estimation the max-
imal precision estimates were roughly half that of the
non-ISS annotation error estimation experiment, how-
ever, both maximal precision estimates again had very
similar values. Lower maximal precision estimates indi-
cate that a much larger degree of semantic variation exists
between the query and reference set annotations for this
group.

Calculation of regression coefficients
Data consisting of the precision of iterations at varying
levels of artificially added GO term annotation errors were
examined to determine a model for predicting precision
from annotation error rate and vice versa. In all experi-
ments, data showed a very high degree of linearity, with
some gradual increase in variance as the annotation error
rate increased. This increase was relatively small, and
standardized scatterplots indicated that homoscedasticity
(uniform variance in precision as error rate increased) was
largely met. In all cases precision was normally distrib-
uted. Linear regression was used to determine the rela-
tionship between precision and annotation error for each
experiment (table 1). In each the linear regression was sta-
tistically significant (p < 0.001, r2 > 97.5). For the cross-
validation groups there was very little variation in regres-
sion coefficient values (Constant (B) mean 0.758 sd
0.006; slope (m) mean -0.706 sd 0.006).

GO term annotation error estimates
Regression coefficients and maximal precision estimates
were used to derive annotation error estimates for each
sample (table 1). E1 and E2 are the error rate estimates
derived from the maximal precision estimates Mp1 and
Mp2 respectively. For non-ISS annotation error cross-vali-
dation groups, all have highly similar annotation error
estimates (E1 mean 18%, sd 0.005; E2 mean 13%, sd
0.017). Both ISS annotation error estimates were found to
be identical (E1 49%, E2 49%). Using the relative propor-
tion of both types of annotation and their respective error
rates, we estimate that the error rate of all curated GO term
sequence annotations is 28% to 30%.

It should be noted that our research indicates that the
expectation cut-off value of the BLAST match influences
the error rate estimate (data not shown). Decreasing the
expectation value cut-off resulted in an increase in the
annotation error estimate. This appears to have occurred
because, even though maximal precision and the regres-
sion constant coefficient (B) also decreased, there was a
greater decrease in the regression slope coefficient (m),
resulting in a greater annotation error rate at higher E-val-
ues. The E-value cut-off of 1e-10 was chosen for this study
as it reflects the upper value that would generally be used
by biologists when attempting to find similar sequences.
As such it provides a generous but realistic estimate of the
error rate of GO term annotations.

Discussion
The method developed and utilized here to estimate the
GO term annotation error rate of GoSeqLite sequence
annotations is based on a number of assumptions. Given
that a query sequence has been found to be similar to a
reference sequence (using BLAST) and both have an asso-
ciated list of GO term annotations, we can calculate the
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precision of the sequence-match. This precision is deter-
mined by semantic variation (i.e. biologically relevant dif-
ferences in the context of sequences) and error variation
(errors made during the curation of sequences). We have
used a number of assumptions to pry apart the effects of
semantic and error variation to arrive at a method of esti-
mating the error rate of GO term sequence annotations

The GO term annotation error rate estimates for the GoS-
eqLite database were found to be 13% to 18% for curated
non-ISS annotations, 49% for ISS annotations, and 28%
to 30% for all curated annotations. Other studies that
examined different forms of sequence annotation (e.g.
protein names) have found single forms of error that have
accounted for between 6.8% and 8% of annotation errors
alone [1,2]. Being only 2 to 3 times this value, a total error
rate estimate of 13% to 18% for non-ISS annotations can
be considered to be low. Furthermore, it appears that the
error rate of curated GoSeqLite annotations as a whole
compares favourably with a recently published estimated
error rate of UniProt/Swiss-Prot sequence annotations of
33% to 43% [3]. As UniProt/Swiss-Prot annotations are
considered to be of a gold-standard, and their estimated
error rate is slightly higher than that estimated for GO
database curated GO term annotations, we might draw
the conclusion that GO database annotations also are of a
very high standard of curation.

The magnification of sequence annotation errors through
the use of ISS annotation methods has been identified as
a possible major source of annotation error [4,8]. At first
glance the GO sequence database could be used to exam-
ine this directly. Each ISS annotation has an associated

evidence record, which in turn refers to a record in an
external database. Sequence records also have a reference
to an external database record. As such it is possible to
indirectly find sequences that were related to records that
were used as evidence for ISS annotations. Unfortunately
there exists a many to many relationship between
sequence and external database records, and as such it is
not possible to identify specific sequence annotations as
those used by curators as evidence for ISS annotations. For
this reason we were unable to directly examine the effect
of ISS 'error propagation' [8] on annotation error rates.
However, the very fact that ISS annotations have a far
higher error rate than non-ISS annotations indicates that
ISS annotation strategies are inherently error prone. ISS
annotation methods have been implicated in a number of
cases of significant protein name annotation errors
[1,2,5,7]. This study shows that ISS methods are also
likely to dramatically increase the error rate of GO term
annotations.

Before using GO term annotations all users should first be
familiar with the meaning of GO evidence codes [9]. In
particular it should be noted that there is a rough hierar-
chy of annotation quality. Curated, experimentally veri-
fied error codes (IDA, IEP, IGI, IPI, and IMP) are often
considered the least error prone annotations. Alterna-
tively, ISS, IEA, NR and ND evidence codes are considered
the most error-prone. For this reason, the EBI GOA project
avoids using GO annotations with these evidence codes
for ISS-based annotation strategies [21]. This is likely to
make ISS-based annotations far less error-prone. Other
users might wish to consider placing similar constraints
on their ISS-based annotation projects.

Table 1: Maximal precision estimates, regression coefficients and annotation error rate estimates by experiment type.

Experiment type Maximal precision estimates Regression coefficients Annotation Error Estimates %

Mp1
a Mp2

b B m E1
c E2

d

Non-ISS annotation error
Cross-validation group 1 0.882 0.841 0.760 -0.710 17 11
Cross-validation group 2 0.880 0.849 0.756 -0.703 18 13
Cross-validation group 3 0.885 0.845 0.767 -0.712 17 11
Cross-validation group 4 0.882 0.855 0.757 -0.704 18 14
Cross-validation group 5 0.886 0.836 0.757 -0.699 19 11
Cross-validation group 6 0.876 0.850 0.749 -0.698 18 15
Cross-validation group 7 0.891 0.867 0.768 -0.717 17 14
Cross-validation group 8 0.884 0.864 0.758 -0.709 18 15
Cross-validation group 9 0.885 0.873 0.760 -0.710 18 16
Cross-validation group 10 0.873 0.833 0.748 -0.697 18 12
ISS annotation error 0.442 0.443 0.305 -0.282 49 49

a Mp1, the maximal precision estimate derived from the ratio of non-zero precision cases to total in the highest precision sample.
b Mp2, the maximal precision estimate derived from the highest precision UniProt-UniProt sequence matches.
c E1, the annotation error estimate based on Mp1.
d E2, the annotation error estimate based on Mp2.
Page 6 of 9
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:170 http://www.biomedcentral.com/1471-2105/8/170
As far as the authors are aware, this is the first systematic
study of GO term annotation error. We have found that
the GO sequence database has a relatively low annotation
error rate (28% to 30%), with non-ISS annotations having
a much lower annotation error rate than ISS annotations
(13% to 18% versus 49% respectively). As ISS annotations
have approximately a 35% higher annotation error rate
they should be viewed more suspiciously, and used more
cautiously, than non-ISS annotations.

It is our recommendation that curators should only use
ISS annotations after a thorough review. When a suitably
similar sequence is found that is already annotated it
would be prudent to examine the evidence concerning
each annotation in detail to ensure that it is relevant in the
current case. For instance, an annotated protein sequence
may contain different protein domains to the sequence to
be curated, and thus not all GO terms may be applicable.
Because the error rate of ISS annotations is high, using
sequence similarity to sequences as the basis for annota-
tion, where that sequence was itself annotated based on
sequence similarity, should be avoided. At the very least,
the curator should search through these chains of annota-
tions based on sequence similarity, to find the instances
where annotations were made for other reasons, and
determine whether that evidence is applicable to the cur-
rent sequence.

There is a growing number of electronic annotators that
predict GO terms to sequences based on sequence similar-
ity to previously GO annotated sequences (e.g.
[11,13,15]). It is common practice for these annotators to
use ISS GO term annotations for the basis of predictions.
The use of ISS annotations is likely to dramatically
increase the rate of false predictions made by these anno-
tators. For this reason, designers of electronic annotators
should avoid the use of ISS annotations when developing
prediction algorithms. Users of the output of electronic
annotators that use ISS annotations to make GO term pre-
dictions should view the results sceptically.

Conclusion
We have developed a method to undertake systematic
analysis of GO term annotation error in sequence annota-
tion databases, and used this to estimate the GO term
annotation error rate of the GoSeqLite sequence annota-
tion database. We found that the overall error rate is 28%–
30%, and that GO term annotations not based on
sequence similarity (non-ISS) have a far lower error rate
than those that are, with error rates of 13%–18% and 49%
respectively. Based on the available evidence, the overall
error rate of the GoSeqLite database can be considered to
be low. Due to the fact that the error rate of ISS annota-
tions is relatively high, we recommend that curators using
ISS annotated sequences as evidence for future annota-

tions treat these with care to avoid propagating annota-
tion errors. Furthermore, to ensure that the false
prediction rate of electronic annotators is low, designers
should avoid the use of ISS annotations when developing
prediction algorithms. Indeed, it would be prudent to use
curated, experimentally verified GO annotations as source
data for annotators. We recommend against the unques-
tioning use of output from electronic annotators, espe-
cially those that use ISS annotated sequences to make GO
term predictions.

Methods
The aims of this study were to estimate the annotation
error rate of curated GO term sequence annotations and
to determine the impact on error rate of using sequence
similarity based annotation approaches. To accomplish
this, annotations were assigned to two groups based on
their associated evidence code [9]. All annotations that
had been assigned the evidence codes "Inferred by Cura-
tor" (IC), "Inferred from Direct Assay" (ID), "Inferred
from Expression Pattern" (IEP), "Inferred from Genetic
Interaction" (IGI), "Inferred from Mutant Phenotype"
(IMP), "Inferred from Physical Interaction" (IPI), "Non-
traceable Author Statement" (NAS), "No biological Data
available" (ND), "Inferred from Reviewed Computational
Analysis" (RCA), "Traceable Author Statement" (TAS),
and "Not Recorded" (NR) were assigned to the "non-ISS
annotations" group. All annotations that had been
assigned the "Inferred by Sequence Similarity" (ISS) evi-
dence code were assigned to the "ISS annotations" group

Query and Reference Sequence Sets
In all cases we utilised a reference set of sequences and
used BLAST to find similar sequences to a set of query
sequences. All query sets were the complete sample of
sequences that had non-ISS annotations associated (N =
59,251 sequences), and their annotations that were con-
sidered to be 'correct' for the purposes of precision scores,
were their associated non-ISS annotations (N = 182,828
annotations).

In the case of estimating the annotation error rate of non-
ISS annotations, 10-fold cross-validation was used. The
entire query set was randomly broken into 10 equal sized
groups. Each group was assigned to a query group, and the
remaining 9 were assigned to a reference group. For exam-
ple, the first cross validation group was assigned to query
group 1, and was used as query sequences against a BLAST
reference database consisting of cross-validation groups
2–10. The mean from all cross-validation groups was used
as an estimate of the overall non-ISS annotation error rate
estimate.

When estimating the annotation error rate of ISS annota-
tions, the reference set is the set of sequences that only had
Page 7 of 9
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ISS annotations (N = 54,551 sequences). This simplifica-
tion allows the entire query set of non-ISS annotations
and sequences to be used at one time. The reference set
annotations are made up of ISS annotations only (N =
135,477 annotations). In this case we are comparing non-
ISS sequence annotations against ISS sequence annota-
tions.

BLAST for Sequence Similarity
Formatdb was employed to create a BLAST custom data-
base for each reference sequence set. The NCBI blastp
application [22] was used to find all similar sequences
above an expectation value threshold for each query and
reference set. In all cases the expectation cut-off value was
set to 1e-10. BLAST output was parsed and inserted into a
MySQL database for further analysis. 1,536,168 and
1,685,408 matching reference sequences were found for
the non-ISS and ISS annotation error rate estimation
experiments respectively.

Highest Precision Sample
Each query sequence had a potentially large number of
matching reference sequences identified (mean = 26 for
non-ISS error estimation, and 28 for ISS error estimation).
SQL queries were written to extract the highest precision
sample for each experiment. This involved assigning a pre-
cision to each query-reference sequence match according
to the number of term annotations they had in common
versus the number associated with the reference sequence.
Then, for each query sequence the query-reference
sequence match with the highest precision was selected
for inclusion into the highest precision sample. This
resulted in 59,251 sequence matches selected for the later
error insertion experiment.

Maximal Precision Estimates
The maximal precision estimates were determined for
each group of BLAST results using SQL queries of the
MySQL database. Select statements were written to find
the number of sequence matches with at least one match-
ing GO term (Nm), and the total number of sequence
matches for each group (N). The values were then used to
calculate Mp1. Mp2 values were found with use of a select
statement that found the average precision of GO term
annotations where both the query and reference
sequences were annotated by UniProt or UniProtKB. The
Mp1 estimate is based on the highest precision sample,
while only matching sequences that were provided by
UniProt are used to estimate Mp2. These estimates were
retained for later use with regression coefficients.

Insertion of Annotation Errors
In order to determine the relationship between precision
and annotation error rate for each highest precision sam-
ple, annotation errors were inserted into the reference set

GO term annotations at known rates. Errors were added
artificially to the annotations of matching sequences
through an error-prone copy process. Firstly, a table with
the same schema of the GoSeqLite annotation was cre-
ated. The annotations belonging to high precision sample
reference sequences were copied to this table, with a ran-
dom chance of the annotation's GO term id being
changed to an error flag during the copy operation. This
random chance corresponded to the artificial error rate
applied to the sample. Subsequently the precision of the
highest precision sample sequence annotations at this
error rate treatment was calculated. The error rate was
examined between 2% and 40% inclusive, at 2% intervals.
At each given error rate level 100 error prone annotation
table copy replications were completed, and the precision
of each replicate used in the final analysis. In total 20,000
replications were conducted over 20 treatment levels. A
Java application was written to automate the process of
error insertion (fig 1). Output was written to a MySQL
database, which was later exported to a text file and
imported into SPSS for statistical analysis.

Insertion of annotation errors: Errors were randomly inserted into reference set annotations at a fixed error rateFigure 1
Insertion of annotation errors: Errors were randomly 
inserted into reference set annotations at a fixed error rate. 
The precision of reference set annotations for predicting the 
annotations of query sequences was determined, and the 
average precision at that error rate was recorded. This proc-
ess was repeated 100 times for a given error rate value, after 
which the error rate was incremented. This process contin-
ued until data was obtained for artificially increased error 
rates of between 2% and 40%.
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This error insertion experiment was performed for both
non-ISS and ISS annotation error estimation. In the case
of non-ISS error estimation, the error insertion experi-
ment was conducted independently for each cross-valida-
tion group. For ISS error estimation, the error insertion
experiment was conducted once.
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