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Abstract

Background: Although there are a large number of thesauri for the biomedical domain many of
them lack coverage in terms and their variant forms. Automatic thesaurus construction based on
patterns was first suggested by Hearst [1], but it is still not clear how to automatically construct
such patterns for different semantic relations and domains. In particular it is not certain which
patterns are useful for capturing synonymy. The assumption of extant resources such as parsers is
also a limiting factor for many languages, so it is desirable to find patterns that do not use syntactical
analysis. Finally to give a more consistent and applicable result it is desirable to use these patterns
to form synonym sets in a sound way.

Results: We present a method that automatically generates regular expression patterns by
expanding seed patterns in a heuristic search and then develops a feature vector based on the
occurrence of term pairs in each developed pattern. This allows for a binary classifications of term
pairs as synonymous or non-synonymous. We then model this result as a probability graph to find
synonym sets, which is equivalent to the well-studied problem of finding an optimal set cover. We
achieved 73.2% precision and 29.7% recall by our method, out-performing hand-made resources
such as MeSH and Wikipedia.

Conclusion: We conclude that automatic methods can play a practical role in developing new
thesauri or expanding on existing ones, and this can be done with only a small amount of training
data and no need for resources such as parsers. We also concluded that the accuracy can be
improved by grouping into synonym sets.

Background

Synonymy is one of the most important relations found
between different terminology and is of critical impor-
tance for building high quality text mining systems for
biomedical literature. Thesauri which list synonymous
terms have been found to be useful for improving the
results of information retrieval systems [2] and synonymy
relations are encoded in many ontologies, for example
Gene Ontology [3], and biological databases such as

SWISS-PROT [4]. General thesauri, such as WordNet, give
relatively poor coverage of specialised domains and the-
sauri often do not exist for many languages and domains.
Domain specific thesauri and ontologies are expensive to
construct, due to the scarcity of human expert resources,
and often do not give sufficient variants of terminology.
Against this background, automatic discovery of synon-
ymy relations between terms has been shown to be useful
for both maintaining and expanding existing ontologies
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[5] and for constructing ontologies [6], however the accu-
racy of such methods remains a major issue.

There has been a large amount of interest in constructing
thesauri and ontologies automatically, not only for syn-
onymy relations, which we study here, but also for hyper-
nymy (general/specific) relations. Several methods have
been suggested, for example, in Morin & Jacquemin [7]
they explore using term variation (for example "mouth
cancer" vs. "cancer of the mouth"), to detect synonyms,
but many synonymous terms are not simple variants, so
this method is limited. Distributional similarity, that is
identifying terms by other terms which occur in close
proximity, has also been shown to be effective for identi-
fying synonymy, most notably the Latent Semantic Anal-
ysis method of Cederberg & Widdows [8]. As shown in
Dumais et al [9], this can be used to improve the recall of
a synonym classifier although at the cost of its precision.
This method however lacks the ability to differentiate
between specific semantic relations (for example synon-
ymy, hypernymy, agent/disease).

Hearst [1] used patterns including "X such as Y" to detect
a hypernymy relation between terms, however she chose
these patterns by hand. Due to issues of accuracy and scal-
ability to other relations, some work has gone into con-
structing these patterns automatically, notably in Snow et
al [10]. Their pattern extractor was based on using a
dependency grammar and so requires a grammar and a
parser, which will limit applicability to those few lan-
guages where large coverage parsers have been developed.
They then generated a large number of patterns and clas-
sified them by a logistic regression-based method. Finally
they attempted to improve their results by using distribu-
tional similarity [11]. They also used a number of hand-
chosen synonymy patterns to detect potential synonyms
and used this to improve their detection rate. An attempt
to find gene and protein name synonyms was explored in
Yu et al [12], again they manually chose their patterns.

One of the disadvantages of most of these approaches is
that they give only binary classification rather than out-
putting synonym sets. For practical applications of this
problem a simple list of synonymous terms is much more
desirable for several reasons, firstly the results are much
simpler and easier to store and work with, as you need
only list the groups instead of the synonymy relation
between each pair. Also the result is self-consistent, so we
will not get a result that X is synonymous to Y, which is
synonymous to Z, but not that X is synonymous to Z. This
may cause problems in applications where only a single
term is use to represent the synset, for example a method
based on usage of an ontology may require one main term
for the synset. An attempt at improving the result of a term
similarity classifier by graph clustering was explored in
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Ibekwe-Sanjuan & Sanjuan [13], however their method
was not based on probabilities and the clustering method
suggested would lead to questionable behaviours such as
grouping a synset when the vast majority of links are not
indicative of synonymy, hence the classifier must have a
very high precision. Our work is most closely related to
the work in Snow et al [10] for automatically discovering
hypernyms. In order to find these patterns we chose to
develop a system based on Soderland's WHISK system
[14] as it is uses regular expression matching and so
requires no prior knowledge of the syntax of the language.
There they started with a base pattern consisting only of
"*"s and slots and grew the pattern by replacing each of
these "*"s with a word from their corpus. They then
attempt to find a set of patterns which maximises the over-
all performance. We also wish to investigate this method
in specific domains, and see if it is still feasible with a
smaller seed set as the seed set in Snow et al [10] was the
entirety of WordNet. For our experiment we chose to
focus on the disease control domain, but our method
could easily be applied to many domains in bio-medicine
or other areas. We used the number of matches of each
pattern for each term pair, to create a feature vector which
could be used to statistically classify each term pair as syn-
onymous or not. Finally we used probabilistic analysis to
find the most likely set of synsets, based on modelling the
output of the classifier as a probability graph.

Data Collection

For our experiment we decided to use an existing ontology
to provide a training set from which our system could
develop patterns and then train a classifier. Our training
set was drawn from the English section of the BioCaster
ontology [15]. This ontology was put together by life sci-
entists and its terms relate to some of the most important
infectious diseases currently being tracked by epidemiolo-
gists. BioCaster was developed for the search and analysis
of Internet news and research literature to enable the
timely detection of possible disease outbreaks. As such it
contains a range of lay terms and technical terms, and we
choose 4 categories of terminology from the ontology:
infectious diseases, symptoms (of infectious diseases),
agents (e.g. viruses, bacteria) and hosts (e.g. mammals,
birds). This was useful as it gave us an accurate basis of ter-
minology relating to a specific biomedical domain.

To develop a test set we wished to find terms that occurred
naturally and so our evaluation would represent the effec-
tiveness of the method in actual implementations. We
obtained the top 150 PubMed abstracts containing the
term "infectious diseases", and manually extracted all the
terms in the same four categories. We then grouped these
words into synsets attempting to follow the same guide-
lines as used by the BioCaster ontology. Synonymy can be
quite difficult to decide, with granularity being a major

Page 2 of 13

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:159

problem, in fact even established thesauri can differ in
their definitions of synonymy as investigated by Burgun &
Bodenreider [16]. We found the following problems fre-
quently occurred.

1. Modifiers: Terms often appear with modifiers, such as
"acute headache," and although many ontologies would
list this as a property of the disease or symptom we
decided to list terms separately. It is important to be care-
ful not to confuse this with modifiers which do not
change the meaning of the term, for example "mental
retardation." More information on the effect of modifiers
can be found in Bodenreider et al [17].

2. Granularity: Many terms may turn out to be used inter-
changeably as the difference in meaning is rarely impor-
tant. An example of this is "HIV-1," which as the most
common strain of HIV is often simply referred to as
"HIV," however as these subtle differences in meaning
may prove to be important we decided to separate such
terms

3. Domain-specific:

(a) Method of Transmission: We decided to list terms dif-
fering in method of transmission separately, for example
"hospital-acquired MRSA."

(b) Point of Infection: Terms that differ in only the point
of infection were decided not to be synonymous, for
example "syphilis" and "neurosyphilis."

(c) Progression of Disease: It was decided that terms used
to describe a disease at a more advanced stage were not
synonymous with the disease, for example "dengue fever"
may develop into the more serious "dengue shock syn-
drome."

In total the BioCaster database consisted of 450 terms,
grouped into 244 synsets, and containing 477 synonym
pairs, similarly the test set consisted of 301 terms, 221
synsets and 101 synonym pairs, of which it shared 35
terms and 16 synonym pairs with the BioCaster database.
We also had a second annotator group our 301 test terms
into synonym groups and this list showed x = 68.6%
Cohen's agreement with our list, which illustrates that this
problem is complicated by very subtle differences in
meaning between our terms. We then extracted a large cor-
pus from which we can build patterns and statistics. We
simply did this by querying every term in both our train-
ing and test sets in the PubMed database. We chose the
top 250 abstracts for each term ranked according to Entrez
search's ranking, discarding any duplicate documents.
This gave us a corpus consisting of 83,492 documents,
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and 1,506,042 sentences of which term pairs in our train-
ing set were found in 46,216 sentences.

Method

We decided the best solution would be to first generate a
large number of patterns using the training set. For each
possible term pair we generate a feature vector which rep-
resents the frequency of matching that term pair using
each of the patterns generated. This feature vector is then
classified, and the posterior probability used in our synset
formation algorithm described below.

It should be noted that we used the number of term pairs
to calculate these scores, which gives a lower value than
might be expected. For example if 4 terms were correctly
identified out of a synset of 8 terms, then only 6 out of 28
synonym pairs have been identified, so the score is only
21.4% even though 50% of the terminology was recog-
nised.

Pattern Generation

Our method for pattern generation is as follows we start
with base patterns which consist of three basic operators
*, #, and (space), where * represents a sequence of word
characters, (space) represents any white-space/punctua-
tion between words, and # represents a term (matched
case-invariantly). We generate new patterns by expanding
a current pattern in the following ways: * may be replaced
by any sequence of alphanumeric characters and (space)
may be replaced by any sequence of non-word characters.
By starting with a set of seed patterns consisting of only #s,
*s and (space)s these patterns can be expanded to give us
a search as in Figure 1. To expand a pattern we search the
corpus by taking each synonym pair and replacing the #s
with the terms. By considering each possible single expan-
sion of a * or (space) our problem can be viewed as a tree
search. Obviously this search space is huge and so we
search it heuristically by best-first search. The algorithm is
as follows:

Pattern Generation Algorithm
Input:A set of base patterns P, a set of training term pairs
S={(ty,t5),...(t,. t},)} , a corpus C.

Output:A set of patterns P sorted by a scoring metric

1. Add all the base patterns with a heuristic score to a heap
H.

2. For a fixed number of iterations
(a) Select a pattern, p, with maximal score in H.

(b) Find all matches of this pattern using all term pairs in
S in the corpus C
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# * * #

# also * # #,

# known * #

# also called #

#, known * #

# known as #

#, known as #

Figure |

Example Pattern Search. A tree illustrating a exemplary search space for the pattern generation algorithm. The top of the
tree is a seed pattern and the search continues by replacing one of the wild cards with term and punctuation to generate a set

of patterns.

(c) For each * or (space) in p, find all matching strings in
the corpus

(d) For each match to each * or (space), add a new pattern
toH

3. Output patterns H sorted by score

We experimented with a number of heuristics scoring
metrics, including the number of pattern matches, how-
ever we found that this gave too strong a bias for terms
which occurred very frequently, in particular we noted
that many of the patterns contained terms from our train-
ing set, which is quite undesirable.

b= # sentences matching pattern
1= X
# sentences in corpus

We also report a pseudo-F-Measure given as below, where
we judged a pattern match to be correct if it corresponded
to a term in our training set. Note that as we can only con-
sider a pattern match to be correct if it contains terms in
our training set, the precision is under-estimated so this
does not represent the true F-Measure associated with this
pattern.

_(Q+a)pr

h
2T ap+r

_ #correct pattern matches

~ #all pattern matches

# synonym pairs found
# synonym pairs

i':

Although this gave a good result it significantly increased
the search time. In the end we decided that the best
answer would be to use the number of synonym pairs
found as this was readily computed and did not bias
towards more common terminology. In many pattern
generation methods, including the WHISK system, signif-
icant effort is made to develop a strong set of patterns, we
designed this algorithm just to produce lots of reasonable
results. The rationale behind this was that we wanted to
give the synonym classifier the most information we
could, and that too much complexity in the pattern gener-
ation duplicated the effort of the statistical classifier. The
heuristic we used is as follows.

B = # synonym pairs found
3 # synonym pairs
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We let the algorithm run for a fixed number of iterations,
we chose this number to find approximately 10 times the
number of patterns we plan to use in our classification.

Synonymy Classification

To generate the feature vectors we found that many of the
patterns were inflexible and matched very rarely, to com-
bat this we simply allowed * and (space) to match & the
empty string, by which we mean that allow a match with
any of the *s or (space)s omitted. This allowed patterns
such as # (* #) to match not only "term (or abbrev)," but
also "term (abbrev)." We found this greatly improved the
recall and the precision of the result.

We would expect some of the patterns generated to pro-
duce reasonably good precision and some relatively good
recall, however by combining these all together we should
be able to get a much better overall result. For this reason
we view the problem as a statistical classification problem.

Once we have generated a number of patterns we simple
use these to generate a feature vector for each synonym
pair, this is simply given by the number of matches of pat-
tern with the #s matching the terms in the candidate syn-

onym pair. Although this in theory would require % (n-

1) feature vectors for n terms, in fact most pairs of terms
do not occur close to each other at all in the corpus so they
can be dropped (and their probabilities gained by classi-
fying the zero vector). For our experiment we used the top
6000 patterns from the pattern generation algorithm. This
then becomes a standard statistical classification problem,
to which any statistical classification algorithm can be
applied. We experimented with naive Bayes, logistic
regression, C4.5 and support vector machines with a
number of kernel choices. We found that only logistic
regression gave a useful spread of probabilities that could
be used for synset formation so we built the synsets first
with these probabilities and then we used logistic regres-
sion on the output of the strongest classifier (SVM).

Synset formation

The results we gained from the statistical classification
procedure gave only the probability of a particular term
pair being synonymous. However we would expect every
pair of terms in a synset to be synonymous and these
binary classification results do not guarantee that such a
transitivity relation exists. As such we shall assume that
every pair of terms in a synset are synonymous and no
pairs of terms in different synsets are synonymous
(although this is technically incorrect as some words may
be polysemous). This clearly leads to the result that
synsets are complete graphs, so we can consider our goal
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as that of finding the closest set of complete sub-graphs to
our random graph. As an example consider Figure 2,
which shows a graph representation of the output on top,
where the nodes represents terms, and they are connected
if the classifier predicts the terms are synonymous. It is
clear that the graph above should give two synsets as
shown in the bottom graph.

Let {1..N} correspond to our terms, then our goal is to
findaset I" ={I,...1,} where I* exactly covers {1..N} and

I* maximises c¢(I*) given by

({1} = Y ell)

k=1..K

()= Y, Y (log(P)+ Y log(1 - P;)

iel, jel, jel,

where P;; is the probability of the terms corresponding to
i and j being synonymous as given by some statistical clas-
sification method (and P;; = 1). Note this logarithmic form
is used as it is easier for further calculations and many of
the output probabilities from our classifier were near 0 or
1. We also define the inter-node cost, c;;as

Cij= 108(1)1‘]‘) + log(Pji) - log(1 - Pij) - log(1 - Pji)

As the number of potential synsets is 2N, we can greatly
reduce this problem by finding a small set of potential
synsets I such that I* ¢ I < P({1..N}). Fortunately the
majority of the output probabilities P;; are very small, so
we can hope to have significant success by generating the
set I by a branch and bound algorithm. We find a condi-
tion when a set and all of its super-sets are not optimal by
observing that J ¢ I* if c(J U {k}) <c(J) + ¢({k}) for some
ke L

Lemma 1: Let J < {1.N} and k ¢ Jand V c {1..N} such
that] "V =T and k ¢ V. Then there is no set K such that
Jui{k}cKcJu{k}uV, KeI*if

1. 2escy<0

2. -Xicj Cip> MaAXy ey Xic v Ci

Proof: Follows directly from the inequality ¢(K) <c(K\{k})
+c({k})

This is very useful as the set V' is simply the set for which
C;;, 1s positive.

We also notice that it is possible to divide the problem by
using the following lemma
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self-limited dengue fever

dengue virus infection

<

dengue fever

dengue

Spurious link from classifier

dandy fever

Classifier Output

vomito negro

yellow fever ’

self-limited dengue fever

dengue virus infection

dengue fever

New links created

dandy fever

Ideal Synonym Graph

vomito negro

yellow fever

Figure 2

Random Graph to Synsets. lllustration of conversion from a random graph to a set of synsets. The top graph illustrates the
random output from the classifier, which includes a spurious link from "dandy fever" to "yellow fever". This graph is corrected
by forming into synsets removing the spurious link and adding two links which were not found by the classifier.

Lemma 2: If] {1.N} and K< {1..N} (J n K = &) are such
that V¢,V k¢, < 0, then there does not exist @ J' ¢ J and
@cK cKsuchthat]'UK'e I*.

Proof: Follows from c¢(J' U K') <c(J') + ¢(K")

This means that only connected components are optimal
so we only consider connected sets when generating I
(where we define i and j to be connected if ¢; 2 0). Also
when a term has been removed from the search space (i.e.
is no longer in J U V), this may result in previously con-
nected components becoming disconnected. For this rea-

son we also search for the connected components every
time we remove an element from the search space. Table
1 shows the number of synsets generated by by using the
branch and bound heuristic (lemma 1), the connected
components heuristic (lemma 2), finding the connected
components then using branch and bound and the final
algorithm as follows (shift(X) returns and removes the
first element of X):

Matrix Generation Algorithm

1.J=9

Page 6 of 13

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:159

Table I: Number of synsets generated by different heuristics

No Heuristics 4.0 x 10%
Branch & Bound 5,102,802
Connected Components 1,909,264
CC then B&B 16,629
Final Algorithm 1,689

2. For each connected component Vin {1... N}

(a) Sort Viby Xy nCir

(b) generate_matrix(J, V)

function generate_matrix(J, V)

1. While length(V) > 0

(a) k = shift(V)

(b) if([J] = 0 or Zic )5 > 0 Or -2y <MaXy cy Lic v Cir)
i,addJu {k}toI

ii. generate_matrix(J U {k}, V)

() if(J U V has more than one connected component)

i. for each connected component, C, with |C N J| > 0 and
|C N V] > 0: generate_matrix(J, C N V)

ii. end

Solving the synset problem

This problem is in fact the set covering problem, which is
NP-complete, however we found exact methods to be suf-
fcient for our problem. To solve this problem, after we
have generated I = {I;,... I,} we formed a matrix A = (ay),
given by

a. =
Y 10 otherwise

We also form a vector ¢ where ¢, = ¢(I,) and now finding
an exact cover is equivalent to finding the integer vector,
x, which maximises cTx subject to

Ax=1

This is a well studied problem, and finding this vector x
can be viewed as a branch and bound problem and
attacked through the Dancing Links algorithm [18]. This
algorithm uses a sparse matrix formation to efficiently
remove infeasible row choices, and combined with a
branch and bound algorithm can very effectively find
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optimal solutions. The branch and bound simply discards
any partial solution when the most it costs is guaranteed
to be less than the best solution found so far. This maxi-
mum cost can be found by simply tabulating the best
clique available for each unsatisfied column in the matrix.
More advanced algorithm use either linear relaxation
(that is allowing x to take non-integer values and solving
with the simplex algorithm), or Lagrangian relaxation with
sub-gradient optimisation [19] to estimate this upper
bound, however we did not find this necessary for our
data sets.

Regardless of the implementation of the solver one gen-
eral purpose improvement is to attack each of the sub-
problems (i.e. each of the connected components) sepa-
rately, and then combine the results. The number of ways
of partitioning a set is given by Bell's number

B "B

n 2k=0 k k

Bell's number gives the worst case search space size for the
dancing links algorithm. If we can divide the problem into

connected components, given by S = {S;,... S,} then the
size of the search space is

B
Hsies Ii

However by attacking each of the problems separately we
get the size of the search space as

B
251,55 ‘Si‘

Therefore it now follows that the complexity of this prob-
lem is primarily dependent on the size of the largest con-
nected component. In a standard Erdés-Rényi random
graph this grows logarithmically if the probability of an
edge existing between a pair of nodes is less than n-! as in
our problem. Although our problem is not truly equiva-
lent to an Erd8s-Rényi random graph, the false positive
links between different synsets can be reasonably mod-
elled by an Erd6s-Rényi graph. Still the complexity of the
largest connected component B, ,,) is not polynomial so
it is still possible that we may not be able to find the opti-
mal solution for larger test sets, however this would only
affect the largest connected components, which as the test
set grows larger would represent fewer of the terms and so
fewer of the links. In this case we can solve most of the
problem exactly, and some of it approximately to give a
good overall solution.
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Results

Comparison to EncyclopedialThesaurus

To provide a comparison of our results we used encyclo-
pedia and thesauri. We chose to use 4 sources: these
sources were Wikipedia following the method suggested
in [20], WordNet [21] the widely used machine readable
thesaurus and two domain specific resource Medline
Encyclopedia [22] which contains a specialised thesaurus
on the subject of human diseases, MeSH [23], a very large
controlled vocabulary containing synonyms for a huge
variety of medical terminology and UMLS [24], a meta-
thesaurus. MeSH, UMLS and WordNet were queried using
their built in tools so differences in spelling, pluralisation
were considered. As Wikipedia and Medline encyclopedia
were not originally intended to be used as thesauri we had
to adapt them as follow

1. Wikipedia (redirect): Wikipedia uses a redirect table
for terms which should direct to the same article, if this is
used the text "(Redirected from ...)" appears beneath the
title. Hence we classified two terms as synonyms if they
redirected to the same page. For example (example works
as of 7 November 2007) the Wikipedia page for "WNV" is
the same as the page for "West Nile virus"

2. Wikipedia (search): An alternative way to use Wikipe-
dia is to take the top search term using Wikipedia's search
engine. Again we classified two terms as the same if they
had the same top search result.

3. Medline Encyclopedia: Many articles in the Medline
Encyclopedia, had an "Alternative Names" section, which
combined with the title of the article gave us synsets. This
gave us a good set of medical terminology however it did
not cover animals and animal diseases.

All of our test synonym sets, which we found from the 150
abstracts containing the term "infectious diseases", were
queried against these resources and the number of links
correctly found are presented in Table 2. We found that
these encyclopedia and thesauri made a number of mis-
takes

1. Failing to find a term

Table 2: Encyclopedia Results (with standard error at 90%)
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2. Producing an entry for the disease caused by the virus,
bacteria etc. or vica versa

3. Producing a match that was totally irrelevant e.g. FPV,
an abbreviation of "feline parvovirus" in bio-medicine,
but Wikipedia instead produces a page on "Ford Perform-
ance Vehicles" (as of 24 July 2007, after our data was
obtained, a disambiguation page is shown).

4. Matching a term that was broader or narrower than the
one requested e.g. vCJD was matched as CJD

5. Some disagreement about synonymy of terms, see the
guidelines at the beginning of the data collection section.

Experiment Results

First for our evaluation we used a naive classifier we will
call the occurrence classifier, which simply decided that
two terms were synonymous if they co-occurred in any of
our patterns. This unsurprisingly gives a very low preci-
sion but also the recall is only 63.4%, which will limit the
recall of any method we try to use on this data. We found
that 78.3% of these non-occurring term pairs, involved
one or more term which matched less than 100 articles on
PubMed. This suggests that this value may be very close to
a limit of the recall of the method.

Table 3 lists the performance of some single patterns and
gives us a baseline for our method and Figure 3 shows the
spread of recall and precision for all generated patterns. It
can be seen that most of these are variation on parenthe-
ses apposition patterns also suggested in Yu et al [12]. We
also listed a number of patterns that were domain-spe-
cific, to show the value of generating patterns for each spe-
cific domain. Finally we examined three more patterns
from Yu et al which did not perform so well in our exper-
iments, this was partly due to our syntax-free approach
matching sub-terms.

We then tried several statistical pattern recognition algo-
rithms (we used the WEKA implementations [25] in all
cases), finally grouping the results into synsets based on
the outputted probability of the logistic regression and
SVM regression classifier by the method described above.

Precision Recall F-Measure Coverage
Wikipedia (redirect) 46.4 + 10.9% 18.8 + 5.7% 268+ 7.1% 54.1 £ 4.7%
Wikipedia (search) 40.1 +8.5% 24.6 + 6.3% 30.9 £ 6.8% 56.1 £4.7%
WordNet 100 + 0.0% 6.9 +3.7% 13.0 £ 6.4% 38.0 £ 4.6%
Medline Encyc. 66.7 = 30.4% 4.0 +29% 7.5+52% 28.1 £ 4.3%
MeSH 61.6 +13.8% 158 + 5.3% 252 +7.4% 55.1 £4.7%
UMLS 94.0 + 4.8% 46.5 +7.3% 62.3 + 6.8% 79.7 £ 3.8%
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Table 3: Individual pattern results and example matches (j: suggested in Yu et al [12]; *erroneous term pair; terms identified)

Pattern Precision Recall F-Measure

*of g (KH*g) ** 63.6 £ 10.5% 17.3 + 4.4% 27.2 + 6.0%
overview of avian influenza (a.k.a. bird flu) and phases

# @t 794 % 11.4% 13.4 £3.9% 22.9 £ 6.0%
community-acquired MRSA (CA-MRSA)

of ¥ g () ** 65.1 +11.8% 13.9 + 4.0% 229 + 6.0%
of non-severe acute respiratory syndrome (Non-SARS)-related human

and #* (# * 750+ 11.8% 13.4 + 4.0% 22.7 £ 6.0%
and hepatitis C virus infection (HCV) and

k-t 60.0 £ 11.9% 13.4 £ 4.0% 21.9£58%
septicemia, anthrax, swine fever (hog cholera), and

against # (* # 64.0 + 15.9% 79 +£3.1% 14.1 £52%
against enterotoxigenic Escherichia coli (or ETEC

prevalence of # * # 26.9 + 8.8% 89 +3.3% 134 +47%
*prevalence of FeLV and FIV prevalence of paratuberculosis (ie, Johne's Disease)

patients with # * * % % g % % 12.8 + 5.0% 74 £3.0% 94 +£3.7%
patients with HTLV-associated myelopathy (HAM)/tropical spastic paraparesis (TSP)

¥ #* known as #1 20.0 £ 33.8% 0.5 +0.8% 1.0 + 1.6%
*an atypical pneumonia, also known as severe acute respiratory syndrome

#I#Tt 25.0 +21.4% 1.5+ 1.4% 2.8 +2.6%
*HIVIAIDS HTLV-associated myelopathy/tropical spastic paraparesis

#, #t 1.7 £0.2% 63.4 £ 5.6% 33+£03%

*measles,mumps, rubella vaccine due to efforts to eradicate poliomyelitis, polio cases have fallen

The pattern generation took 51 hours on an Dual Core
1.66 GHz processor with 512 MB of memory, then a fur-
ther 33 hours to generate feature vectors, but we feel that
this could be vastly improved by the use of some kind of
indexing of the corpus. The classification took 85 seconds
and the synset formation about 5 seconds when based on
the SVM Regression data and about 127 seconds when
based on the logistic regression probabilities, this was due
to more positive links in this data set, hence a larger max-
imum connected component.

In Figure 4 we calculated the experimental results that
would be outputted if we stopped the synonym set solver
before we had found the optimal solution. This illustrates
that the theoretical cost ¢(...) is correlated to the experi-
mental F-Measure, so better theoretical solutions produce
better actual results. Looking at the main results (Table 4)
we see the grouping the results in synsets improves the
results in terms of totally synonymous results, and
although the standard error is large we find the difference
is significant at a 99% level using the p-test as described in
Yeh [26]. Also the results after synset grouping appeared
to be closer, so we analysed the results according to the
degree of relation

* Modified: Terms differed by inclusion of a modifier
e Variant: We defined this precisely as any organism term

referring to organisms of the same species, for example
"feline infectious peritonitis virus" which is a mutation of

"feline enteric coronavirus". Also we defined this as dis-
eases caused by the same agent but at different stages of
progression, for example "dengue fever", which may
develop into "dengue hemorrhagic fever"

e Method of Transmission/Point of Infection (MoT/Pol):
These are diseases (and agents causing them) which differ
only in method of transmission, for example "hospital-
acquired", or point of infection.

¢ Agent/Disease: One term refers to a disease and the sec-
ond to an agent causing that disease

e Hypernym: The terms showed a clear hypernym/hypo-
nym relation that was not covered by the above groups.

We then analysed the logistic regression result (see Table
5) as the high precision of the SVM based result made this
analysis less informative. We can clearly see that although
both methods had similar precisions, the term pairs pro-
duced by the binary classification were more likely to be
unrelated. This is not surprising as erroneous links
between terms are likely to be caused by artifacts in the
data and method and so be nearly totally at random. In
contrast we would expect the pattern-based classification
system to be more likely to mistake close synonyms for
true synonyms, and so these results should be more con-
sistent in relation to our definition of synset formation. So
the reduction in error and an increase in number of near
synonyms provides evidence for the validity of our model.
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Figure 3

Precision/Recall by Pattern. A scatter chart of precision vs recall for all generated patterns. Each point on this corresponds
to a pattern generated from the test set and its recall and precision when used as the only variable for a classifier.

Table 6 illustrates some sample output from the process.

Discussion

In this work we decided to use terms that we found from
actual texts as opposed to using a taxonomic thesaurus
such as WordNet. This meant that it was difficult to create
a test set and as we only found 101 synonymous term
pairs we ended up with very large standard errors. It

Table 4: Results by classifiers (with standard error at 90%)

should be noted that for results with low recall the
number of results found was so small that we would
require a very large test set to accurately estimate the pre-
cision. However we found that our results are in line with
previous work on both manual and automatic pattern dis-
covery and this indicates that a good result is still obtain-
able without the use of syntactic knowledge or very large
test sets.

Precision Recall F-Measure
Occurrence 1.7 £0.2% 63.4+7.0% 33+£37%
Naive Bayes 30.6 £5.3% 375+£7.1% 33.8+57%
Logistic Regression 40.8 + 7.6% 29.7 £ 6.6% 342 £ 6.6%
C45 74.1 £ 11.7% 21.3+6.0% 33.1 £7.8%
SVM 82.2 +10.5% 228+ 6.1% 35.7+7.9%
Logistic Regression & Synset Formation 39.6 +6.7% 35.6 +6.9% 375+ 63%
SVM & Synset Formation 732+ 9.8% 29.7 £ 6.7% 423 +77%
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Solution cost versus F-Measure. Chart illustrating increase of F-Measure versus solution cost. The data points are the
synset solutions generated by the synset solver before finding the optimal solution and the optimal solution. The chart shows

their cost and true F-Measure against the test set.

Our pattern generation method developed a number of
interesting patterns and identified parentheses as the
strongest indicator of synonymy (which by itself scored
22.9% F-Measure, see Table 2). It also found several
domain specific patterns suggesting the effectiveness of

Table 5: Analysis of Errors

Correct Modified Variant
Binary 40.8% 1.4% 7.5%
Synset 39.6% 0% 12.1%
MoT/Pol Agent/Disease Hypernym Error
7.5% 12.9% 2.0% 29.3%
9.9% 17.6% 3.3% 17.6%

generating separate patterns for specific domains. Syntax-
free patterns were also generated allowing application to
resource-poor languages, however this does rely on the
terms which we wish to find having already been identi-
fied. In our experimental setup we inputted terminology
that had been manually extracted from PubMed abstracts.
There exist many named entity extractors which would
allow us to completely automate the whole process and
develop a large set of noun phrases for our method to clas-
sify, hence we could automatically develop a large thesau-
rus which would be easy to manually check for errors.
One of the more surprising results we saw was that most
of the patterns we generated seemed to be of quite high
precision, which was unexpected as the scoring metric we
chose to use in our search was biased towards patterns
with a high recall. The question of how we could generate
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["CA-MRSA", "community-acquired MRSA", "methicillin-resistant Staphylococcus aureus", "MRSA", "methicillin-resistant Staphylococcus" ] — MoT/

Pol errors
["Litopenaeus vannamei", "shrimp" ] — Hypernym relations

["Yersinia pestis", "Plague" ] — Disease/Agent errors

["dengue shock syndrome", "DHF", "dengue hemorrhagic fever", "dengue", "dengue fever" ] — Variant terms

non non

["rubella”, "mumps", "measles" ] — Other relation (there is a widely-used triple vaccine for these diseases)

patterns with higher recall is an interesting one and
deserves further study.

Conclusion

We conclude that for domains with a large amount of spe-
cific vocabulary most of the resources we studied perform
worse than the automatic method we have developed
here. Also given the amount of effort required to manually
construct a resource, automatic thesaurus construction
may prove more useful in many situations, either to aid
construction or in replacement of manual construction.
More importantly we have shown that we can easily auto-
matically find patterns and we do not require any prior
knowledge of the language's grammar in order to do this.
Even though the patterns we generated were weak by
themselves we showed that by statistically combining
them we can get a much stronger result. We have also
shown that we do not need to know a large number of
synsets to develop an accurate classifier; this implies most
importantly that this method can be used quickly on a dif-
ferent language. We tested our method on only a limited
domain but we feel it would likely generalize well to other
domains. Our novel synset grouping method not only
converted the result to something more applicable, but
also improved on the results for both a strict definition of
synonymy, and a more relaxed definition.

We think given the logical/probabilistic framework for
synset formation that the model we described should be
applicable to other relations (for example hypernymy)
and even combinations of relations. However solving this
model efficiently and whether this will improve the result
for actual data is an issue for future work.
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