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Abstract

Background: Gene expression levels in a given cell can be influenced by different factors, namely
pharmacological or medical treatments. The response to a given stimulus is usually different for
different genes and may depend on time. One of the goals of modern molecular biology is the high-
throughput identification of genes associated with a particular treatment or a biological process of
interest. From methodological and computational point of view, analyzing high-dimensional time
course microarray data requires very specific set of tools which are usually not included in standard
software packages. Recently, the authors of this paper developed a fully Bayesian approach which
allows one to identify differentially expressed genes in a 'one-sample' time-course microarray
experiment, to rank them and to estimate their expression profiles. The method is based on
explicit expressions for calculations and, hence, very computationally efficient.

Results: The software package BATS (Bayesian Analysis of Time Series) presented here
implements the methodology described above. It allows an user to automatically identify and rank
differentially expressed genes and to estimate their expression profiles when at least 5-6 time
points are available. The package has a user-friendly interface. BATS successfully manages various
technical difficulties which arise in time-course microarray experiments, such as a small number of
observations, non-uniform sampling intervals and replicated or missing data.

Conclusion: BATS is a free user-friendly software for the analysis of both simulated and real
microarray time course experiments. The software, the user manual and a brief illustrative example
are freely available online at the BATS website: http://www.na.iac.cnr.it/bats

Background molecular biology is the high-throughput identification
Gene expression levels in biological systems can be influ-  of genes associated with a particular treatment or a biolog-
enced by different stimuli, e.g. pharmacological or medi-  ical process of interest. The recently developed microarray

cal treatments. The response is a dynamic process, usually ~ technology allows one to simultaneously monitor the
different for different genes. One of the goals of modern  expression levels of thousands of genes, thus providing a
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"molecular picture" of a biological system under study
and a potential of describing evolution of gene expres-
sions in time. However, this potential has not yet been
fully exploited since there is still a shortage of statistical
methods which take into account the temporal relation-
ship between the samples in microarray analysis. In fact,
most of the existing software packages essentially apply
techniques designed for static data to time-course micro-
array data. For example, the SAM software package (see
[1]) was recently adapted to handle time course data by
regarding the different time points as different groups. The
ANOVA approach by [2] was applied to time course exper-
iments by treating the time variable as a particular experi-
mental factor. Papers by [3,4] and the Limma package by
[5] have similar approaches.

All these methods can still be very useful when very short
time course experiments have to be analyzed (up to about
4-5 time points), however the shortcoming of these
approaches is that they ignore the biological temporal
structure of the data producing results that are invariant
under permutation of the time points. On the other hand,
most classical time series or signal processing algorithms
have rigid requirements on the data (high number of
time-points, uniform sampling intervals, absence of repli-
cated or missing data) which microarray experiments
rarely meet. The past few years saw new developments in
the area of analysis of time-course microarray data (see
e.g. [6,7], and more comprehensive approaches of [8,9],
and [10], implemented respectively in the software EDGE
[11] and in the R-packages maSigPro and timecourse).

In what follows, we present BATS (Bayesian Analysis of
Time Series), a user-friendly software package which
implements a novel, truly functional and fully Bayesian
approach of [12], specifically designed for the analysis of
'one sample' time series microarray data. Similarly to the
other functional approaches to time course data (see,
[8,13] and [14]), the proposed method is particularly suit-
able for time course experiments where at least 5-6 time
points are available. Presence of replicated measurements
is recommended, but not required.

The software allows an user not only to automatically
identify and rank differentially expressed genes, but also
to estimate their expression profiles. The latter feature
allows an user, for each differentially expressed gene, to
visualize its response to the treatment in the course of
time as a single smooth curve and, hence, to reveal impor-
tant biological features that can be hidden in the raw data.
The estimates of gene expression profiles are, in fact, more
robust than the classical straight-line connecting of the
raw data and allow to compare responses of genes to treat-
ment at any arbitrary time point. The truly functional
approach of BATS successfully manages various technical
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difficulties such as non-uniform sampling intervals and
replicated or missing data.

Methodology

The present version of BATS is designed for the analysis of
'one sample' time series microarray data. The name 'one
sample' refers to all microarray data where the problem
can be formulated in terms of analysis of a single time
series. Such kind of data can be obtained, for example, by
direct hybridization of the samples corresponding to two
biological conditions (e.g., treated and control) and meas-
uring relative expression values on a time grid. Thus, in a
'one sample' problem the data consists of the records, for
N genes, of the differences in gene expression levels
between the sample of interest and a reference (i.e.,
treated and control) in the course of time. Each record is
modeled as a noisy measurement of a function s,(t) at a
time point t0) € [0, T | which represents the differential
gene expression profile:

2 =5, +¢j*i=1,.,N,j=1,.,nk=1,.kD
(1)
Here the number N of time points is relatively small, with

very few replications available at each time point ( ki(” =

0,...,K), while the number N of genes is very large, and a
total of M; = 2;;1 k) observations are available for each

gene. The objective is to identify the genes showing differ-
ent functional expression between treated and control
(i-e. s;(t) = 0), and then to evaluate the effect of the treat-

ment (i.e., estimate the curves s;(t)).

For each gene i, we expand its expression profile s,(t) into

series over some standard orthonormal basis on [0, T]

with coefficients ¢, 1=0,....L;

L;
si0)= Y (1), 2)
1=0

Legendre polynomials and Fourier basis suitably rescaled
and normalized in [0, T] are supported in the current ver-
sion of BATS.

Following [12], genes are treated as conditionally inde-
pendent and their expressions are modeled as z;= Dc; + .

Here, D; is the block design matrix, the j-row of which is
the block vector [¢0(t(j))¢1(t(j))...¢Li(t(j))] replicated

1,6 n1 k(™ )T

j . 1,1
k) times; z;=(z;" ..z e 2 ,
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C; = (cl(o),...,cl(L’))T and

1M

11
Ci =G seees Cl ;e
the column vectors of all measurements for gene i, the
coefficients of 5,(t) in the chosen basis and random errors.

g .
S M are, respectively,

The following hierarchical model is imposed on the data:

z;|L,c;, 0’ ~ NDic;,c’Ty)
L; ~ Truncated Poisson (4, L)

¢;|L,o? ~ 78(0,..,0)+(1 -1 )N(0,6%Q;")

All parameters in the model are treated either as random
variables or as nuisance parameters, recovered from the
data. Noise variance o?is assumed to be random, o2 ~
p(o?) in order to account for possibly non-Gaussian
errors, quite common in microarray experiments. Cur-
rently, BATS supports three types of priors:

Model 1: p(a?) = §(c? - 6§ ), the point mass at o . The

marginal distribution of the error is normal.

Model 2: p(c?) = IG(y, b), the Inverse Gamma distribu-
tion. The marginal distribution of the error is Student T.

Model 3: p(0?) = ¢, Mi1,-0°1/2 The marginal distribu-

tion of the error is double exponential.

An automatic detection of differentially expressed genes is
carried out on the basis of Bayes Factors (BF), which are
used for taking into account multiplicity of errors. This
technique is based on the novel methodology of [15]
which is similar in spirit to the procedure of [16] for con-
trolling the False Discovery Rate (FDR).

Once the differentially expressed genes have been
detected, the coefficients ¢!’ and, subsequently, the

curves s;(t) are estimated by the posterior means.

The algorithm is self-contained. The hyperparameters x,

and o, (7 b or i for Model 2 or Model 3, respectively)
are estimated from the data (several procedures are avail-
able), or they can be entered as known by an user. Gene
specific parameters 77 are estimated by maximizing the
marginal likelihoods, while L; are estimated by the poste-

rior mean or mode. Explicit formulae and other details
can be found in [12].
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A great advantage of the Bayesian model described above
is that all evaluations are carried out in analytic form (see
[12] for details), with very efficient computations.

Remark 1 BATS implements a truly functional Bayesian
approach. Hence, by construction, it is designed for those time-
course experiments where at least 5-6 time points are available,
although in order to fully exploit the advantage of the func-
tional approach a somewhat larger number of time points and
of arrays is recommended. A sharp limit is hard to elicit, since
the decision depends also on whether the replicates are availa-
ble, on the type of the grid design and on the biological assump-
tions on the process under investigation. In principle, BATS can
also be used with fewer than 5 time points, but in that case no
particular gain is guaranteed with respect to a classical regres-
sion based approach. However, we point out that similar
requirements are typical to the other functional data
approaches.

Algorithm
The algorithm is performed by carrying out the following
steps:

1. Choose the prior parameters 4, L, and v, fix the type
of the orthonormal basis that will be used in the analysis.

2. Estimate global parameters: ¢? and 7, and additional
case-specific hyper-parameters o3 (for MODEL 1), yand b

(for MODEL 2) or i (for MODEL 3). Several options are pro-
vided to an user, including the possibility of custom defi-
nition of parameters.

2

3. For each gene i, estimate the gene specific parameter 7;

by maximizing the marginal pdf of the data.

4. For each gene i, estimate the degree of polynomial L; by
the posterior mean or the posterior mode.

5. For each gene i, conditionally on L;, compute Bayes
Factor BF,.

6. Perform the Bayesian multiple testing procedure of [15]
to rank the genes according to the ordered Bayes Factors.
The user can choose to automatically determine a cut-off
of significance according to different priors or to simply
order the genes.

7. Estimate the gene expression profiles by §;(t) substitut-

ing the posterior mean estimator of ¢;in (2).
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Remark 2

Since all evaluations in BATS are carried out in analytic form,
the computational cost remains very moderate. The N gene-per-
gene one-dimensional maximization in Step 3 represents the
most computationally demanding part of the algorithm. The
results of the analysis up to 50.000 probes and 25 arrays is usu-
ally returned in 20 minutes using the compiled Windows ver-
sion on a Pentium IV PC computer with 3.00 GHz and 2 GB
of RAM, the exact time depending on the total number of probes
and the distributions of missing data.

In principle all the probes available on the arrays can be ana-
lyzed. However, from a practical point of view, probes contain-
ing too many missing values should be removed from the
analysis since they may not carry reliable information. Simi-
larly, control probes or probes which are not expressed can be
removed if information which they carry is not considered sig-
nificant or of biological interest.

Implementation

BATS is a graphical user-friendly software written in MAT-
LAB. Executable program for Windows, Linux and Mac
Osx, the source code and the user manual can be freely
downloaded from http://www.na.iac.cnr.it/bats.

Permission to use, copy, modify, and distribute BATS for
any purpose without fee is granted by the BATS permissive
license (derived from the MIT license). The compiled soft-
ware needs to run the MATLAB component Runtime
(MCR), also available on the website for the sole purpose
of running BATS.

Current implementation of BATS is designed for a single
processor, and it is fast enough for any practical purpose.
Version 1.0 of BATS is composed of two main applica-
tions: ANALYSIS and SIMULATIONS; it is equipped with a
third option, UTILITY, which provides additional func-

Bayesian Analysis for Time Series
Microarray Experiments

Figure |
The Main Menu of BATS.
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tions. Each application can be activated from the main
window (see Figure 1).

A context-specific HELP button is present in all windows,
providing all necessary information as well as a short
description of all the parameters required by a procedure.
The ABouT button reports the Terms of the License. A
more detailed description can be found in the USER REFER-
ENCE MANUAL. The guided TUTORIAL available on the web-
site can be used for a fast introduction to the software. In
what follows, we briefly describe each application.

Analysis

The ANALYSIS application allows to apply the methodol-
ogy developed in [12] to either synthetic or real data-sets.
The menu of ANALYSIS application is divided into sub-win-
dows (see Figure 2) which allow an user to define the
parameters of the analysis. Obviously, ANALYSIS consti-
tutes the most important part of BATS from biologists'
point of view.

Data can be loaded into the system and analyzed on the
basis of any of the three error models described in Section
"Methodology" and denoted in the software as MODEL 1,
MODEL 2 and MODEL 3, respectively. The input data
should be in the EXCEL spreadsheet or a tab-delimited
text file format prepared as follows. The first row should
contain a text string (i.e., GENE NAME) in the first column,
and, in the remaining columns, the numerical values of
the time measurements t0) in ascending order and repre-
sented in the same time units (seconds, hours, days, etc.).
From the second row on, the first column should contain
the gene identifier, a unique string of letters or a combina-
tion of letters and numbers (numbers only are not
allowed). The remaining columns should contain data,

1,k n,1 n,k™
i ,"’,Zi ,...Zi

z,=(z" ...z )), in the form of log,-
signal-to-reference ratios. Missing values can be entered as
either empty cells or NaN. Before analyzing microarray
data with BATS, the data should be pre-processed to
remove systematic sources of variation. For a detailed dis-
cussion of the normalization procedures for microarray
data we refer the reader to e.g., [17-19] or [20]. We recall
(see also Remark 1) that BATS is particularly suitable for
those experiments where at least 5-6 different time points
are available. Moreover, although BATS automatically
accounts for missing data, for a reliable analysis we sug-
gest that the proportion of missing data should remain
relatively small (for each gene at least 50-60% of the
observations should be available). Note, if the data set to
be analyzed does not meet these general requirements, a

warning message will be displayed. From the ANALYSIS
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Select dataset file

ficatiello_et_al xls Load dataset l
{+ Function type {+ Smoothness of the profiles
{* Legendre {" Fourier i | ‘
+ Maximal degree of polynomial {+ Expected degree of polynomial
L: | Iamhda:|
Extimation of the noise variance Proportion of DE genes
{+ Standard " M&D ¢ Universal
¢~ Custom (" Custom proportion
(+ Tau? interval [Xo, X1] {+ Estimation of the polinomial degree
xo [E® xt: [“ao ’ f+ Map € Mean
Choice of the prior model {+ Test procedure
+ Model (Detta) e
{" Truncated poisson
" Model 2 (Inverse gamma) (" Standard odds

{" Standard BF

(" Model 3 (Double exponential) ¢ Full ranked list

Scale options Ordered genes profiles to plot
{+ Global scale " Auto scale nfirst: [~ 1000
T
- BATS
Cra ==
== Back About Help Perform analysis

Figure 2
The Analysis window of BATS.
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window, an expert user can choose prior parameters (see
Step 1 of the Algorithm). We briefly discuss these choices
below. A detailed description can be found in the user-
manual.

The type of basis functions can be either Legendre or Fou-
rier, with default choice Legendre. The global regularity v
of the gene expression profiles is a real number in [0, 1],
(default value 0). The maximum degree L. allowed in
the expansion is an integer value, default value [n/2] as a
compromise between the goodness of fit and variance of
the estimate. The parameter A of the Poisson distribution
truncated at L, has to be chosen in order to match the
prior expected degree of the polynomial.

Choosing appropriate parameters for the analysis of a par-
ticular data-set with BATS usually requires some prelimi-
nary knowledge of statistics and some level of expertise.
However, a user who is not an expert in statistics should
not be discouraged, since for all parameters BATS provides
default values that can be used in most cases, and the
parameters' sub-windows are hidden by default. If neces-
sary, hidden windows can be opened in order to change
the default values.

After that, the user can either select a specific method for
estimating global parameters 7, and o, or enter their val-
ues manually by choosing the CuUSTOM option (see Step 2
of the Algorithm). In the current version of BATS, estima-
tion of the global parameters is based only on the N genes
for which the complete set of M observations is available.
If the default option STANDARD remains selected, for each
array of observations at a time point t0), o0) is estimated

by the sample standard deviation 6U). On the other
hand, if normal distribution of the data can be justified,
by selecting the corresponding option MAD, the sample
variance can be replaced by a more robust estimator like
the Median Absolute Deviation, which is usually pro-

posed when the majority of array components are zeros

[21]. In both cases, the estimator &2

aging of (6102, j=1,.,M.

is obtained by aver-

Given ¢ , with the option UNIVERSAL, following [21], the
global parameter 7, is estimated by averaging over the
arrays the proportion of data points which fall below the
universal threshold 6'\/Tg[\lc . Note that this method

tends to overestimate 7, when the error is normally dis-

tributed, but not when the error distribution has heavier
tails, which is very common in microarray data.

http://www.biomedcentral.com/1471-2105/9/415

Once one of the three error models has been selected in
the box CHOICE OF THE PRIOR MODEL, the model-depend-
ent parameters are estimated automatically for MODELS 1
or 3. If MODEL 2 is selected, the user can further choose the
way for estimating the hyperparameters b and . Specifi-
cally, with CHOICE 2, y and b are estimated by using the
Maximum Likelihood Estimator (MLE) on the set of val-

ues ¢ ,j=1,...M, which are treated as a sample from the
distribution of o (note that if (6U)2~ IG(3 b), then

(c}m)'2 ~ Gamma(y, b)). If the user selects alternative

option CHOICE 1, he/she has to fix yand then parameter b
will be automatically evaluated by matching the mean of

IG(y, b) with 6%. We observe that with selection of
CHOICE 2 an user does not have to specify any parameters.
With CHOICE 1, an user have to specify the positive param-
eter y (default value 15). The two options produce slightly
different lists of genes and allow to check the robustness
of the selections.

An user can also choose whether to estimate the degree of
the polynomial L; by the posterior mean (option MEAN) or
the posterior mode (option MAP) (Step 5 of the Algo-
rithm) from the box ESTIMATION OF THE POLYNOMIAL
DEGREE, and what procedure to use for testing which of the
genes are differentially expressed (Step 6 of the algorithm)
from the box TEST PROCEDURE. In the latter, the default
option BINOMIAL refers to the Binomial prior elicited on
the number of alternative hypotheses, option TRUNCATED
POISSON (with further choices which of the stepwise
approaches to use in order to decide which hypothesis to
accept and which to reject, see [15] for details) is based on
the truncated Poisson prior. Options STANDARD ODDS,
STANDARD BF do not implement any multiplicity control
and option FuLL RANK only ranks the genes without pro-
viding any automatic cut off.

An user has an option to print out the estimated profiles
(superimposed to the raw data) for the top 'nfirst' genes
according to ranking, either in 'Global scale' (all gene pro-
files are shown on the same scale to make the figures com-
parable) or in 'Auto scale' (each gene profile is shown
using the most appropriate scale in order to improve vis-
ualization). We note that visual inspection of the profiles
can be very useful for a quick assessment of the fit.

Alternatively, expression profiles of individual genes can
be generated later using the Utility — PLOT PROFILES.

Once the necessary parameters have been defined, an user
has to choose a Project name and launch the analysis. By
default, for each run of the analysis, three files are gener-
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ated in the folder Projects: a summary of the analysis
_SR.txt (reporting all the parameters used), the ordered
list of differentially expressed genes _GL.xls for Windows
systems or _GL.txt for Linux or Mac Osx, and the esti-
mated gene profiles _SH.xIs for windows systems or
_SH.txt for Linux or Mac Osx. The dialog window shows
intermediate results and stages of the algorithm during
the execution of the analysis.

Simulations

The SIMULATIONS application enables an expert user to
generate, analyze and save synthetic data. This feature can
be useful for planning experimental design (e.g., for find-
ing an acceptable balance between the cost and the bene-
fits of increasing the number of arrays, for deciding
whether to employ new arrays as further replicates at exist-
ing time points or at additional time points), for prelimi-
nary verification whether BATS is a suitable tool for a
given type of experiments, or for generating synthetic data
which can be used for comparison of other statistical
tools. This application can also be used to enhance under-
standing of some features of the proposed software. Sim-
ulations are indeed a typical tool for validation and
comparisons of statistical procedures. They are also widely
used in microarray analysis, see, for example, [9,10] and
[13]. Running an appropriate simulation study requires
some basic knowledge of statistics and some experience in
computing.

The SIMULATIONS application consists of two windows. In
the first window (see Figure 3) an user provides parame-
ters required to generate synthetic data. In the second win-
dow the user can choose how to analyze the generated
data set (the second window is similar to the ANALYSIS
window).

Synthetic data-sets can be generated and saved for later
use in the original form, or after removing some data. For
example, an user may decide to generate data using a very
fine time grid and after that to analyze them using only a
sub-set of the synthetic arrays or by randomly replacing
some synthetic values with missing numbers. The simu-
lated data are recorded in the BATS-input format with an
extra sheet or an additional file (sheet2 in the .xIs format
or an additional file in the .txt format) containing the flags
which are set to one for the genes which are differentially
expressed and to zero for those which are not. Synthetic
data-sets can also be used to compare performance of
BATS with other available methods as it is done in [12].

In the process of generating data-sets, an user has to
choose the following parameters: the total number of
genes N, the number of differentially expressed genes DE,
the time grid t0), j = 1,...,n, and the maximum number of
replications k() at each time point t0) (in principle, such

http://www.biomedcentral.com/1471-2105/9/415

information should be provided by a biologist). For each
significant curve, the algorithm first samples the degree of

the polynomial L from a discrete uniform distribution
in [1, L,,,,]. Polynomials of degree zero are avoided since

a nonzero constant signal is questionable from a biologi-
cal point of view. After that, for each gene i, a vector of
coefficients c; is randomly sampled from the multivariate

normal distribution A(0,6%¢?Q;") where the experi-

mental variance o2 is chosen by the user (on the basis of
user's experience and other available information). Matrix

Q;is set to be Q, = diag (17"1,2%"%, ..., L") where v;~ U([O,
1]). An user can also choose the range from where the
gene specific variance 77 is randomly sampled. For this
purpose, from the box SIGNAL TO NOISE RATIO RANGE the
user can choose parameters a and b such that 7/ is sam-

pled uniformly in order to produce the signal-to-noise
ratio (SNR) in [a, b].

Synthetic data-sets are generated according to the model
(1) by adding i.i.d noise to the simulated profiles. Two
types of noise distributions are supported in the current
version of BATS: normal N(0, ¢2) and Student T with at
least 3 degrees of freedom. In order to make results of sev-
eral simulation comparable, Student noise is scaled to
have the same variance o2 as in the normal case. In addi-
tion, setting a threshold T in the box THRESHOLD FOR UNRE-
ALISTIC VALUES forces simulated values larger than T to be
filtered out and replaced with "missing values", mimick-
ing pre-processing of real data where unrealistic values are
eliminated.

The simulation scheme is similar to the one proposed in
[13]. If the parameters of the simulated data are chosen
correctly, the synthetic profiles should resemble the true
raw data. Synthetic profiles can be displayed using the
utility PLOT PROFILES and visually inspected in order to
assess their biological resemblance. In Figure 4 a synthetic
profile is shown. The profile was generated choosing the
time observations on the grid 1, 2, 4, 6, 8, 12, 16, 20, 24,
28 and 32 hours with two replicates for each time point
and three replicates at t = 2, 8, 16); the values of the other
parameters were N = 8000, D = 600, L,,, =6, A=9, v=0,
o=0.3, SNR =[2,6], the noise affecting the data was T(5).
It should be noticed that synthetic data can only provide
basic suggestions about the performance of BATS since
real data often has complex structure which is very hard to
model precisely in mathematical terms.

Using the same simulation set-up, several data-sets can be
created with several randomly generated sets of profiles s;

Page 7 of 13

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:415 http://www.biomedcentral.com/1471-2105/9/415

J Simulation
BATS-Simulation: Create a Synthetic Data Set

Time grid Mumber of replications

times: 1;2,4;6;8,12,16,20,24,28;32 reR2:3,2,2,3,2,3,2,2,2,2

Differentially expressed genes
e[ 700

Unrealistic values threshold

B s |

Mumber of runs

Runs:| 1

Number of different datasets

nn: [7'!‘—

Standard deviation of the noise Signal to noise ratio range [a , k]

st 02 | B 2> e 6 ]

() Custom random number seed (+) Save this synthetic data set

-

SyntheticData

Figure 3
The first Simulation window of BATS.
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G7116 detected as differentially espressed in rank 2

Raw observatlons ]
Estimated profile
Zero-reference

5 10 15 20 25 30
times

Figure 4

Example of simulated gene expression profile. The
profile is a significant synthetic profile generated by choosing
the time observations on the grid 1, 2, 4, 6, 8, 12, 16, 20, 24,
28 and 32 hours; using two replicates for each time point and
three replicates at t = 2, 8, 16), the values of the other
parameters were N = 8000, D = 600, L., =6, A=9, v=0,
o= 0.3, SNR = [2, 6], the noise affecting the data was T (5).

and several different noise realizations. Each synthetic
data-set can be analyzed assuming any of MODEL 1, 2 or 3.

Performance of the technique is automatically evaluated
using the False discovery rate (FDR), False negative rate
(FNR), the numbers of correctly detected, not detected or
misclassified genes and some other standard measures
(e.g., functional estimation errors). The results are auto-
matically averaged in order to provide statistically relevant
information which is not dependent on a particular ran-
dom realization. An output .txt file contains the results of
the analysis, while the dialog window shows intermediate
messages during computations.

Utilities

The UTILITIES menu (see Figure 5) provides a set of proce-
dures FILTER DATA, DATA BOX PLOTS, COMPARE RESULTS and
PLOT PROFILES that help an user to process and visualize
input or output files. Other utility functions will be added
to future versions of BATS.

The procedure FILTER DATA can be used to remove genes
with a number of missing measurements larger than a
desired threshold before starting the analysis (see Remark
2). A new BATS input data file will be created containing
the filtered data.

http://www.biomedcentral.com/1471-2105/9/415
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Figure 5
The Utilities menu of BATS.

Similarly, the utility DATA BOX PLOTS can be used to com-
pactly represent data for inspection before starting the
analysis (Figure 6). For each array the boxplot shows the
median of all values (central red lines), the range which
covers 50% of values (blue boxes), the range which covers
75% of values (dashed black lines) and all the remaining
individual values (red crosses). Normalized array values

log2 expression ratio
o
U’|

+

L .
11222446688 812121616162020242428283232
Time points

Figure 6

Boxplots of the log, expression ratios in the experi-
ment described in[23]. The Data-set is included as an
example in BATS.
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should all have the same median and also approximately
the same range of values. Additional information about
the experiment such as the total number of missing val-
ues, the number of missing values per gene and per array
are displayed in the dialog box.

After a series of analyses have been performed on the same
data-set using different parameters or models, the utility
COMPARE RESULTS allows an user to easily compare the
results stored in _GL.xIs (or _GL.txt) files and, hence,
investigate the robustness of the lists of the differentially
expressed genes. Two files are created by this option: a
_common.xls (or _common.txt) file containing the inter-
section of all the selected lists and reporting for each gene
the rank obtained in each analysis, and a _union.xls (or
_union.txt) file containing all the genes present in at least
one of the lists.

Finally, the function PLOT PROFILES provides an alternative
way to visualize the data and the selected gene expression
profiles. For this purpose, an user can choose whether to
plot the raw data or the expression profiles for differen-
tially expressed genes, or both. The input data-set needs to
be loaded from the sub-window Select a raw data file
name together with the name of the file (i.e., the _SH.xls
or _SH.txt file) which contains estimated expression pro-
files resulted from the previous analysis, if the profiles of
the differentially expressed genes need to be plotted.
Then, the list of all genes in the files is shown, and the user
can select the genes of interest. Additionally, the user can
choose some plotting options such as the color of the line
or the type of the marker. The corresponding individual
profiles are displayed sequentially, and the plots can be
saved as image files.

Results

The statistical method implemented in BATS has been val-
idated using both real and simulated data in [12] and
[22]. The performance of BATS has also been compared
with two recent competitive methods: [8] and [10]. The
first method is implemented by the EDGE software [11]
while the second by the R-package timecourse (see [12] and
[22] for a detailed discussion).

In the following, in order to illustrate the benefits of using
BATS, first, we summarize the results of its application to
the real data set contained in the Examples folder in BATS
and used in the tutorial for a guided analysis, then we
compare the findings with the ones obtained using EDGE
and timecourse on the same data-set.

We note that since all three methods apply to different
experimental designs, account for different biological
information and are valid under different assumptions,
we felt that it would be more fair to compare our method
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with the others using a real data set that does not conform
to the assumptions in the present paper.

The data-set refers to the experiment described in [23]. In
the experiment, human breast cancer cell line ZR-75.1 cul-
tures were stimulated with 5-108M 17f-estradiol (E2)
after being maintained for 4 days in steroid-free medium.
RNA samples were extracted before the stimulation and
after 1, 2, 4, 6, 8, 12, 16, 20, 24, 28 and 32 hours of stim-
ulation. The cDNA microarray analysis was carried out
with Human UniGEM V 2.0 glass arrays (Incyte Genom-
ics, St Louis, MO, USA). For each time point at least two
replicates were available (three replicates at ¢t = 2, 8, 16).

Complete data can be downloaded from the NCBI public
gene expression data repository Gene Expression Omni-
bus (GEO Acc: GSE186). In this context the results of [23]
provides a "biology-guided" selection of significant genes
that can be used as a "benchmark" in our comparisons.
For a more detailed comparisons including simulated
data the reader is referred to [12] and [22].

The data file 'Cicatiello_et_at.xls' contains the relative
expression values z/* measured as the log, treated to con-

trol fluorescence intensity ratio. Data contained in the
provided file have been already pre-processed, normal-
ized and presented in the BATS input format.

The data set has been analyzed using MODELS 1, 2 and 3
and various combinations of parameters. Different out-
puts were then compared in order to seek for genes com-
mon to all options of the analysis and for those which are
selected only under a particular combination of parame-
ters. After each analysis, the list of genes detected as differ-
entially expressed was saved in a project_name_GL.xls
file. After several runs of the analysis, the _GL.xIs files were
compared using the function COMPARE RESULTS in the
uriLity menu. In what follows, we report the results of the
analysis with MODELS 1, 2 and 3 and various choices of 4.
Table 1 displays the number of genes declared affected by
the treatment for L ,, = 6, v= 0 and A ranging between 6
and 12 (which corresponds to expected prior degree of
polynomials from 2.5 to 3.5). It is easy to see that the
results are quite robust with respect to the number of

Table I: Total number of genes in the dataset [23] detected as
significant by BATS (with v=and L, ,, = 6)

A=6 A=7 A=8 A=9 A=10 A=11 A=12
case-| 867 808 753 712 692 688 691
case-2-| 893 823 765 711 679 657 650

case-2-l 869 810 755 714 694 690 693
case-3 855 786 726 676 640 617 609
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detected genes, with smaller A providing larger lists. Using
the function COMPARE RESULTS we discovered that the
technique is also robust with respect to the list of genes
declared differentially expressed: 574 genes were common
to all 28 lists (combination of different methods and dif-
ferent parameter values) while 958 genes have been
selected in at least one of the 28 lists. A more detailed dis-
cussion of the results of the analysis is provided in [12].
The PLOT PROFILE function allows an user to visualize both
raw data and estimated profiles. Figures 7 and 8 show an
example of a gene expression profile selected as differen-
tially expressed by both BATS and [23] and an example of
a gene selected by BATS but not in [23], respectively.

Next, for comparative purposes, we applied EDGE and
timecourse to the same data-set. To be fair, we should
mention that functional statistical approach implemented
in EDGE was originally designed for the "two-sample"
problem following the paper of [8] and afterwards
equipped with a special tool to handle the "one-sample”
problem. The approach of [10] applies both to the "one-
sample" and the "two-sample" problems for classical lon-
gitudinal data where replicates are biologically meaning-
ful, however, it is not a functional data approach. In [14]
the authors proposed a new functional data approach, but
their software is not yet available to the community.

Since the EDGE software does not automatically account
for missing values but only suggests a preliminary proce-
dure (K-nearest-neighbors) for filling them in, we
repeated the analysis both using this procedure and filter-

GENE®485 detected as differentially espressed in rank 1
3 T T T T

25r

Log, Ratio
T
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-0.5F Estimated profile

=== Zero-reference

1 I I I I I I
0 5 10 15 20 25 30

times

Figure 7

Geneb485 (TFFI1, a well-known target of the estro-
gen receptor) has been selected with rank | by BATS
and included in the list of 574 genes selected by all
the 28 combinations. This gene was detected in [23] too.
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Figure 8

Geneb6155 (MKI67, a gene involved in cell-cycle con-
trol but with a less clear association with estrogen
action in literature) has been selected with rank 13
by BATS and included in the list of 574 genes
selected by all the 28 combinations. This gene was not
detected in [23].

ing out genes with missing values. Additionally, EDGE
allows an user to choose the degree of the splines or the
polynomials common to all genes. We carried out the
analysis with different choices for the maximal degree of
the polynomials and found out that the results were
robust with respect to those choices (we do not report
these results here). To estimate the distribution of the sta-
tistics under the null hypothesis, EDGE uses a bootstrap
approach, thus requiring a high computational effort and
appropriate memory resources. We used 1000 permuta-
tions in our comparisons and we discovered that the gene
selections were robust with different random seeds (only
a few different genes). In order to control the multiplicity
error, EDGE uses the g-values, which we chose to be g =
0.05 and g = 0.1 in our analysis. Timecourse neither allows
missing values nor suggests a specific procedure for treat-
ing them; moreover, it requires that each time point has
the same number of replicates. Thus, in order to apply the
method, we filtered out all the genes with missing obser-
vations and discarded the third observations which was
available at time points t = 2, 8, 16. To be fair, we should
mention that since timecourse is designed for data where
replicates are biologically meaningful. Since dataset [23]
contains only technical (indistinguishable) replicates, in
our study timecourse package could not take advantage of
the replicate identification. On the other hand, the infor-
mation about the time measurements is not used by time-
course method. Since the method only provides rank-
ordered list of genes (without any automatic cut off
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point), we performed the comparisons taking the top 500
and 1000 genes in the resulting list.

Table 2 shows the number of genes detected by different
procedures and the overlap with the genes detected as sig-
nificant in the original paper [23]. BATS has a noticeably
wider overlap with the "biology guided" selection of sig-
nificant genes of [23] and most of the genes selected by
EDGE, timecourse and [23] were also selected by BATS. In
fact, 165 out of the 186 genes selected by EDGE and
declared significant in [23] and 166 out of the 174 genes
common to the 500 top-ranked genes by timecourse and
[23] were also contained in the list of 574 genes selected
with all the combinations of parameters used in BATS.
Finally, 138 genes were common to all selections ([23], all
versions of BATS, EDGE and timecourse).

Conclusion

This paper describes BATS, a novel statistical user-friendly
software specifically designed for time course microarray
data. In particular, BATS allows an user to analyze time
series microarray experiments having possibly non-Gaus-
sian errors and as few as 5-6 time points per gene,
although a modest increase in the number of available
time points will produce a significant improvement of the
findings. Presence of replicated measurements is recom-
mended, but not required. It is highly computationally
efficient, since all calculations are based on analytic
expressions. BATS automatically manages irregular exper-
imental design issues, such as non-uniform sampling
intervals and missing or replicated data. The method
accounts for multiplicity of errors, selects and ranks differ-
entially expressed genes.

Analysis of the human breast cancer data-set from [23] is
provided as a guided example and also for comparison of
the results with other possible approaches. Although orig-
inally designed for handling cDNA microarray experi-
ments, BATS can be used to analyze data produced by
using any microarray platform as showed in [22] where
the software is applied on a data-set generated with Illu-
mina BeadChips.

Table 2: Total number of genes declared affected by the
treatment and overlap with the biological selection done in [23]

Methods Selected genes  Overlap
All of the 28 methods in Table | 574 270
At least one of the 28 methods in Table | 958 309
Case |, A =9 in Table | (default choice) 712 295
EDGE with default choices and q = 0.05 767 186
EDGE with default choices and q = 0.1 1178 219
Timecourse 500 174
Timecourse 1000 215

http://www.biomedcentral.com/1471-2105/9/415

Version 1.0 of BATS is designed for the 'one sample' prob-
lem. The extension of the statistical model to the 'two
sample' case is currently under development, its imple-
mentation will be added in future releases.

Availability and requirements
The BATS software, user manual and illustrated examples
can be downloaded from the BATS website.

1. Project Name: BATS (version 1:0)

2. Project home page: http://www.na.iac.cnr.it/bats

3. Operating system(s): Windows, Linux, Mac Osx
4. Programming language: MATLAB

5. Other requirements: 512 MB RAM, 2.0 GHz Pentium 4
CPU, 300 MB free disk space on hard drive, MATLAB
Component Runtime (available from the software web
site).

6. License: BATS permissive license (derived from the MIT
license)
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