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Abstract

Background: Protein families participating in protein-protein interactions may contain sub-families that have
different binding characteristics, ranging from right binding to showing no interaction at all. Composition
differences at the sequence level in these sub-families are often decisive to their differential functional interaction.
Methods to predict interface sites from protein sequences typically exploit conservation as a signal. Here, instead,
we provide proof of concept that the sequence specificity between interacting versus non-interacting groups can
be exploited to recognise interaction sites.

Results: We collected homodimeric and monomeric proteins and formed homologous groups, each having an
interacting (homodimer) subgroup and a non-interacting (monomer) subgroup. We then compiled multiple
sequence alignments of the proteins in the homologous groups and identified compositional differences between
the homodimeric and monomeric subgroups for each of the alignment positions. Our results show that this
specificity signal distinguishes interface and other surface residues with 40.9 % recall and up to 25.1 % precision.

Conclusions: To our best knowledge, this is the first large scale study that exploits sequence specificity between

interaction sites.

interface prediction, Sequence harmony

interacting and non-interacting homologs to predict interaction sites from sequence information only. The
performance obtained indicates that this signal contains valuable information to identify protein-protein
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Background

Protein-protein interactions (PPIs) play a central role in
virtually all cellular processes. Proteins interact with
other proteins to accomplish specific biological func-
tions, such as DNA replication or RNA transcription,
gene translation, gene regulation and protein transport,
as well as signal transduction. Identification of inter-
action sites between two binding proteins is essential to
understand complex formation and investigate their
function (e.g., [13, 20, 53]). In particular, information
about specific amino acid residues that play essential
roles in protein interactions usually has a wide range of
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applications such as design of the targets of drugs and
antimicrobials (e.g., [40]).

Despite continual improvement, certainly over the last
decade, experimental techniques for large scale deter-
mination of PPIs are not yet able to provide comprehen-
sive coverage over all PPIs in the detail needed to allow
better understanding of the evolutionary and physical
forces that govern them (e.g., [13, 23, 24]).

During the past decades, several types of computa-
tional methods have been developed for protein inter-
action prediction. Docking and modeling approaches
that rely mainly on surface complementarity and electro-
statics to predict structural complexes. These approaches
fit together two known structures through their interact-
ing surfaces, or predict protein—protein interaction sites
from known monomer structures [13, 23, 41, 47]. How-
ever, these methods require structure information of
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proteins, which remains relatively scarce and expensive.
Therefore with the increasing amount of sequence data
from sequencing initiatives, a method that only uses se-
quence information without known structures to predict
protein-protein interaction sites is becoming increasingly
attractive.

Several such computational methods aim to predict the
possibility of interaction between two proteins [15, 35, 52].
Perhaps the most well-known technique for predicting PPIs
from sequence data is the ‘mirror tree’ method (e.g., [38]).
This method infers interactions from the correlation of
evolutionary patterns, as seen in phylogenetic trees repre-
senting each of the interaction partners. However, this cor-
relation may instead arise from functional relatedness as
well as a number of other general evolutionary mechanisms
(8, 29].

Predicting intra-protein and inter-protein residue-
residue contacts from sequence covariation has recently
revived [19, 22, 32-34, 51, 55]. This is directly due to the
availability of large amounts of sequence data and the
recent development of so-called direct-coupling methods
(e.g., [55]. The idea has been studied in the eighties (e.g.,
[1]) and nineties (e.g., [16, 27]). The main limitation of
these methods is that, typically, five times more sequences
than the alignment length (the 5 L' rule) are required
[21, 22, 32, 33, 51]. For most proteins, this is not available.
In addition, the application to inter-protein residue con-
tacts is hampered by the need to construct large correlated
alignments. Here, for each sequence an ortholog in the
other alignment must be included, so that positional varia-
tions of the alignment of one interaction partner may be
correlated with those of the other protein.

For identifying protein-protein interaction (PPI) sites,
often conservation measures on sequence features are
used [45]. For example, ISIS by Ofran and Rost combine
PSI-blast profiles and predicted solvent accessibility and
secondary structure to predict interface sites [35, 36].
SPPIDER [43] uses in addition several structure-derived
features in an elaborate Machine learning approach. In
addition, sequence and network features [12, 48], as well
as conservation in combination with specificity [31] are
also used to predict interaction sites. Several findings
indicate that the interface rim tends to be more conserved
than the interface core (e.g., [5, 18, 44]), while localized
conservation of single residues can indicate interaction
hot spots [9, 35, 50]. At the level of PPI networks, mixed
results are being reported. Some conserved PPI network
motifs appear related to conserved sequence motifs
[12, 48]. Overall conservation patterns, however, are found
to be weak and mostly not significant (e.g., [28, 42]).

Although progress has been made in predicting binding
sites from sequence information, the problem remains far
from solved and several limitations persist. First, extract-
ing evolutionary information from sequence data critically
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depends on sequence alignments containing large
numbers of sequences. Second, most methods rely on
a combination of structural and sequence features (e.g.,
[52, 54]). While combined methods can achieve high pre-
diction performance, the performance of sequence-only
methods remains modest [35, 37, 42].

Specificity of interaction, i.e. differences between groups
of homologs that display different interactions has previ-
ously been reported. Pirovano et al. [39] identified inter-
face residues by comparing homologs with different
binding partners. Manning et al. [31] predicted positions
which define sequence subfamily specificity, where some
of these positions were binding sites. Based on a dataset of
yeast interaction data and fungal ortholog groups, it has
been suggested that, in addition, specificity between non-
interacting and heteromeric interacting protein pairs
might be used to detect the interaction sites [14]. Interest-
ingly, here only up to one hundred sequences were needed
to detect the specificity signal between binding and non-
binding groups, far fewer than the 5 L needed for
covariation-based methods. However, the performance of
their predictions is only just above random, indicating a
need for a cleaner dataset for obtaining proof of principle.

In this paper, we investigate whether specificity between
interacting and non-interacting subgroups can be used to
predict interaction sites. To address this question, we
chose homodimers as a use case to construct interacting
subgroups and monomers to constitute non-interacting
subgroups. In this way, we can confirm that all sequences
in the interacting subgroup physically interact, and that
we have a sub-group of monomers known not to (self)
interact. Furthermore, the specificity signal is from com-
positional differences of one chain rather than multiple
chains as would be the case when comparing heteromeric
interacting groups with non-interacting groups. All homo-
dimers and monomers were obtained from PISA which is
a resource for exploring marcromolecular interfaces [26].
We compiled a new database derived entirely from crys-
tallized proteins in the PDB [4], and compared homodi-
mers with homologous non-interacting monomers in a
multiple sequence alignment. Starting with 9152 homodi-
mers and 13,355 monomers, we constructed 1,592 pair
groups for which we predicted putative interface residues.
We found that the compositional differences between
interacting and non-interacting subgroups pinpoint inter-
face positions. We also found that various filters on the
input sequences yielded a stronger specificity signal and a
better prediction performance. Finally, we relate our
method with a sequence-only method, SPPIDER [43].

Methods

Datasets

To investigate conservation difference between interac-
ting and non-interacting homologs, a comprehensive,
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and consistent dataset describing interactions, non-
interactions, homology and interfaces was needed
(Fig. 1). For this reason, we selected homodimers as
interacting and monomers as non-interacting proteins
from the PISA database [26]. We created two test sets
to evaluate prediction performance. Test-set 1 includes
a comprehensive list of 9152 (interacting) homodimer
sequences and 13,355 (non-interacting) monomer se-
quences (before year 2013) and Test-set 2 contains 1416
homodimers and 2453 monomers (2013 and later). All
of the sequences also satisfy the following criteria:

(1) The length of the sequences is at least 50 amino
acids.

(2)None of two sequences in either groups is identical.

(3)In addition to the PISA annotation, all homodimeric
and monomeric proteins are also defined as
homodimers and monomers respectively in PDB.

A list of the selected homodimers and monomers can
be found in the Additional file 1: Table S8 and 9).

For Test-set 1, we constructed 10 datasets based on
the sequence identity (% ID) filtering ranging from 40 %
to 100 % ID (e.g, 40 % means no two sequences in
the dataset have more than 40 % identity): <40 %,
<50 %, <60 %, <70 %, <80 %, <90 %, <95 %, <98 %,
<99 %, <100 % (i.e., non-identical sequences). The fil-
tering was done by using CD-hit [30]. Only the lon-
gest sequence was retained of a set of sequences
above the sequence identity threshold. For Test-set 2,
we only use the <100 % dataset.

Structural information of the homodimers from the
description of interface region by PISA was employed to
identify interface, surface and buried residues. We used
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Accessible Surface Area (ASA) before association and
Buried Surface Area (BSA) during the association as de-
fined by PISA. ASA indicates the solvent-accessible sur-
face area of the corresponding residues and BSA means
the solvent-accessible surface area of the residue that is
buried upon interface formation. We use these two pa-
rameters to divide the residue positions into the three
categories:

(1)Interface sites (interacting residues): ASA >0 and
BSA >0

(2)Surface residues (Solvent-accessible residues):
ASA >0and BSA=0

(3)Buried residues (Inaccessible residues): ASA =0 and
BSA=0

Interacting and non-interacting homologs

To investigate conservation differences of interaction
positions between interacting and non-interacting ho-
mologs, knowing the homologous relationship between
a set of interacting homologs and a set of non-interacting
homologs is essential for grouping the sequences. Using
the sequence sets defined above, we created paired
homodimer-monomer alignments. The paired alignments
derived from the <100 (non-identical) sequence set, we
refer to as the 'complete' set. Figure 1 summarizes the
scheme to get homologous groups of interacting and non-
interacting subgroups. We did this for each of the 10 se-
quence datasets of Test-set 1.

First, BLASTP [2] is used to detect homologous rela-
tionships in an All-against-All comparison in our cus-
tom database of all 9152 (homodimer) and 13,355
(monomer) sequences combined. For each homodimer
query sequence, we search for the nearest non-
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Fig. 1 Scheme of building interacting and non-interacting subgroups. This figure shows how we construct and align the subgroups for detecting
interface positions from specificity, and validation based on structure. Details are in main text
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interacting (monomer) homolog first. The set of inter-
acting (homodimer) sequences that are closer (lower
BLAST e-values so up in the list) than the nearest
monomer sequence constitute the interacting subgroup.
A minimum of five homologs is required to form a sub-
group. Subsequently, the first monomer hit is also used as
query, and, symmetrically, all monomer hits closer than
the first homodimer hit constitute the non-interacting
subgroup (again with a minimum of five sequences).
These two subgroups together then compose an interact-
ing and non-interacting pair group for conservation and
specificity analysis. The requirement that each sub-group
has at least five sequences ensure the necessary evolution-
ary information is obtained for analysis. MUSCLE [11], a
fast alignment method, was used with default parameters
to build the approximately 20,000 alignments for all the
sequences in the pair group. Default parameters are used
when running BLASTP and MUSCLE.

For Test-set 2, all 1416 homodimers and 2453 mono-
mers are used to obtain homologous groups of interact-
ing and non-interacting subgroups following the method
described above. The difference is we use all the se-
quences (Test-set 1+ Test-set 2) as a blast database to
get enough sequence information.

Two filtering conditions were applied on our custom
sequence database to test whether these might influence
the specificity signal of the interface positions:

(1)interacting (homodimer) protein length cut-off ran-
ging from 50 to 600 amino acids as minimum se-
quence length.

(2)High scoring Segment Pair (HSP) length from
BLAST between the homodimer and its first
homologous monomer hit ranging from 25 to 200
amino acids as minimum length cut-offs. The HSP
length between a homodimer and its first monomer
hit was used as reported by BLAST when finding
the interacting and non-interacting homologs.

Scoring for conservation

To describe the degree of conservation, sequence en-
tropy [46, 49] is used to indicate the differences between
varied positions. The formula of entropy calculation for
a column i is expressed as:

Si = _Zpi.x logpi,x
x

where p;, means the fraction of amino acid x at the i-th
position of the sequence; the sum is over all 20 amino
acids. A low sequence entropy S; represents higher evo-
lutionary conservation. We calculated average entropies
for each pair group for comparison among varied
positions.
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Detecting Specificity signal
Sequence Harmony [6, 39], an entropy based method, is
applied to detect the compositional differences between
subgroups. The program is accessible as a web-server
from: http://www.ibi.vu.nl/programs/seqgharmwww/.
With a multiple alignment with sequence groups la-
belled, Sequence Harmony (SH) measures the overlap in
amino acid frequencies between labeled groups at a cer-
tain alignment position i as follows:

Pl

- 1/22%105;17%

where pf. indicates the observed frequency in homodi-
mer group H for amino acid type x at position i in the
sequence, and analogously for monomer group M, and
the sum is over all 20 amino acids . Therefore, an SH
score of 0 indicates an amino acid position that has no
co-occurring residues in the two groups, indicating
complete specificity between the two sequence groups,
whereas an SH score of 1 indicates a complete compos-
itional overlap between the two groups at this amino
acid position. SH scores were calculated between the
interacting (H) and non-interacting (M) pair group at
each position in the alignment. The lower-scoring sites
are then predicted to constitute the interface region.

SH;, =

Detecting Specificity signal

Using the interface sites as defined above, we analyse
how predictive the specificity signal is to recognize
the interaction sites. We used the area under the
curve (AUC) of the receiver operator characteristic
(ROC; true positive rate vs. false positive rate) plot to
evaluate the performance of the specificity signal
Average AUC is calculated for each of the filtered
datasets described above. We also used our SH-score
as a two-state prediction method by applying a cut-
off of SH<0.2 (0.2 was recommended in [39]). True
positives (TP) are true interface residues predicted
correctly, false positives (FP) denote false prediction
of interaction sites, true negatives (TN) designate
non-interacting sites that the specificity signal recog-
nized, and false negatives (FN) are true binding sites
which were not predicted. Precision and recall were
also calculated for comparison with other tools. The
formulas used are as follows:

e Recall (True Positive Rate, Sensitivity or
Coverage) = TP/(TP + FN)

e Talse Positive Rate (FPR) = FP/(TN + FP)

e Precision (Positive Predictive Value) = TP/(TP + FP)
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Comparison with other method

SPPIDER [43] is a machine learning-based methods
that can predict interaction sites using sequence
information only, although, support for sequence-only
prediction in SPPIDER is experimental. We tested the
performance of the SPPIDER web server using the
same datasets as we used for our method. Precision
and Recall were calculated for each method to com-
pare performance.

Results

We applied our analysis on the 10 pair-group sets cre-
ated based on sequence identity (i.e., the complete set,
<99 %, <98 %, <95 %, <90 %, <80 %, <70 %, <60 %,
<50 % and <40 %) for Test-set 1. The number of pair-
group alignments in each of the sets can be found in
Additional file 1: Table S1. With lower sequence identity
cut-off values, the numbers of homodimer and mono-
mer sequences within each of the groups and the total
number of groups are reduced. The complete set
(Test-set 1) consists of 1593 pair-group alignments,
each containing on average 25 homodimer and 14
monomer sequences per group.

Conservation differs for buried sites

From the alignments created, for each position the en-
tropy was calculated to quantify the evolutionary conser-
vation pattern. Figure 2 shows the conservation
difference between three types of positions: interface,
other surface and buried residues in the homodimer
subgroup. For each alignment, the overall average entro-
pies for each of the three types of positions were calcu-
lated for the homodimer subgroup.

As described in methods, interface sites stand for the
residues for which accessible surface area becomes buried
during association; surface residues are solvent-accessible,
but not interface; and buried residues are inaccess-
ible. When filtering on maximum sequence identity
from <40 % to <100 % (<100 % yielding the complete
dataset), average entropies went down because more simi-
lar sequences were included in the datasets. It was not
surprising that the buried (inaccessible) sites were more
conserved than the other two (interface and other surface
sites). During evolution, proteins usually conserve their
hydrophobic core to keep structural stability. However,
the conservation differences between interface and the
rest of the protein surface were small over the whole range
of % ID cut-offs.

In summary, it is easy to separate the buried sites from
surface residues because the conservation pattern differs.
However, it is virtually impossible to distinguish the
interaction sites from other surface sites using sequence
conservation information only, because differences in
conservation are generally negligible.
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Fig. 2 Conservation differs for buried sites. The conservation differences
in interacting (homodimer) sub-group between the three types
of positions with sequence identity cut-off (Test-set 1). Average
entropies were calculated to describe the difference. ‘Interface’,
‘Surface’ and ‘Buried’ stand for Interaction sites, other Surface
and Buried inaccessible residues, respectively. Buried sites show
distinctly lower entropy (higher conservation), but differences

between surface and interface are negligible

Specificity differs between interface, surface and buried
positions

Next, we calculated the specificity between interacting
and non-interacting groups for the three aforementioned
types of positions using Sequence Harmony. In our hy-
pothesis, the lower SH scores should be located at the
interface positions. We took the complete dataset to
show the specificity. Sequence Harmony detected com-
positional differences between interacting and non-
interacting sub-groups for the three different types of
positions. The overall average SH value for interface is
0.358, for other surface 0.375 and buried position 0.380
(p-value < 0.05 between interface and other surface using
two-sided Student's ¢-test). Indeed, the interface posi-
tions show the lowest SH scores. In other words, there is
signal present in the specificity.

We investigated whether there was a subset of our
pair-groups which could score much stronger SH sig-
nals. Two parameters were used to make different data-
set selections. First is the length of the High-Scoring
Segment Pair (HSP) between query homodimer and its
first monomer hit as given by BLAST. The HSP length
cut-off was used to exclude hits which only consisted of
small local alignments from the BLAST results. Our pair
groups should reflect homologous relationships between
two groups of homologs: the homodimer group which
conserves interaction, and the monomer group which
conserves non-interaction. Since longer HSPs reflect
stronger evidence for a homologous relation, we con-
sider longer HSP hits reported by BLAST as more rele-
vant. With increasing HSP-length, the difference
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between the average SH scores of the different positions
grows steadily, as can be seen in Fig. 3. This is caused by
the SH scores of the interaction sites decreasing more
rapidly than the scores for the two other types of posi-
tions. The differences of average SH values between
interface and surface become even more significant from
100 aa to 300 aa minimal HSP length (p-value <107°
using two-sided Student's ¢-test). In other words, the
specificity signal appears to be able to separate inter-
action sites out of both the other surface sites and bur-
ied residues, and better for the more significant, longer
HSP pair groups. The numbers of pair groups retained
after filtering on HSP-length and sequence length are re-
ported in Additional file 1: Table S2 and S3.

The second selection parameter was the interacting
(homodimer) sequence length. Additional file 1: Figure S1
shows the changes of average SH score with increasing se-
quence length (of the interacting protein). The figure
shows that with increasing sequence length, the differ-
ences between the SH scores of the three groups remained
rather stable, unlike the diverging trend observed for
HSP-length selection (Fig. 3.).

Interface prediction depends on HSP length and % ID
filtering

In light of the observed trends in differences of SH
scores, we tested if the specificity signal could be
used to predict interaction sites. Predictions were vali-
dated against interaction site annotations obtained
from the PISA database (see Methods for details). For
all pair groups, the Area Under the Curve (AUC) of

Average SH

—+— Interface
0.25
—— Surface
—— Buried
0.20
T T T T T T T T T T T T
0 50 100 150 200 250 300

minimum HSP length

Fig. 3 The different trends of SH scores at three kinds of positions.
The different trends of SH scores at the three kinds of positions with
increasing minimal HSP length (0 to 300 aa) from BLAST (Test-set 1).
0 means all sequences (longer than 0 HSP length. The SH of interacting
sites was lowest and separation with the other two increased with
increasing HSP length. 'Star' in plot means from 100 aa HSP
length, the differences between interface and surface become
significant (p-value <1079
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Receiver Operator Characteristic (ROC) plots was cal-
culated as a measure of performance.

Figure 4 presents the average AUC versus increasing
HSP-length. As can be seen, the performance is rising
with increasing HSP length, as expected based on
Fig. 3. Moreover, the performance also increases with
lower sequence identity cut-offs. For the dataset
filtered at 50-99 % ID, the average AUC reaches a
maximum of around 0.64-0.65, a feasible range for
prediction purposes. Figure 4B shows that the AUC
values may be increased further by combining the se-
quence identity cut-off with a minimum sequence
length. Interestingly, the <100 % ID set performs
worse than the others at higher HSP length cut-offs.
This set contains many single-residue mutants that
appear to bias the scoring. The highest average AUC
increased to about 0.7 with the dataset selected by
sequence identity <70-98 %, sequence length >400 aa
and HSP length between interacting and non-
interacting group >200 aa. The AUC with the datasets
filtered at a 40 % identity cut-off, or at HSP-length
>250 aa are not shown because too few pair-groups
remain (see also Additional file 1: Table S3).

Thus sequence length and HSP length were used in
combination to select a final dataset. In this part we se-
lect the dataset filtered at 80 % ID for performance rea-
sons. Figure 5 shows the ROC plots using different HSP
cut-off values and a minimal length of 400 aa. All ROC
plots show a better-than-random performance of predic-
tion. Also with minimal sequence length 400 aa, the
average AUC was improving when the HSP length was
increasing. Here, we could achieve an AUC of 0.7 using
an HSP length of 175 aa or 200 aa.

Interface prediction is a challenging problem

Since we could achieve reasonably good AUC values
for our SH method, we compared our approach with
SPPIDER [43], using the same datasets. Table 1 shows
precision and recall for our method and SPPIDER.
For comparison, both the complete and selected data-
sets are used. Because there is no scriptable version
available for SPPIDER, we use SPPIDER only for the
smaller Test-set 2 and the selected Test-set 1 (HSP-
length >200 aa and sequence length >400 aa). With
our complete Test-set 2, the precision of SPPIDER is
slightly better than our method (24.8 % vs 22.8 %).
However, our method (SH <0.2) covered much more
interacting sites (recall 41.3 % versus 8.9 % for SPPI-
DER). With the selected Test-set 1, both the precision
and recall (coverage) of our method are the better of
the two methods, with recall for our method far ex-
ceeding that of SPPIDER. For Test-set 2, an inde-

pendent dataset, we get very similar prediction
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Predicting the interface that stabilizes the ligand binding
regions in a phosphatase and a kinase family

To illustrate the impact of accurate interface prediction,
we here show details of two protein families with the
highest AUC in ROC performance in our dataset, indi-
cating the specificity signal strongly correlates with the
interface region.

1.0
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False positive rate
Fig. 5 Interface prediction performance. ROC-plots measuring
performance of interface prediction at different HSP-length with
minimal sequence length 400 (<80 % ID dataset). The diagonal
line represents a random prediction. The chart showing all HSP
length thresholds used can be seen in Additional file 1: Figure S3. The
dataset used here is Test-set 1

The first example is chronophin, a cofilin-activating
phosphatase of the haloacid dehalogenase (HAD) super-
families, directly dephosphorylates cofilin with high spe-
cificity [17]. C2a-type HAD Hydrolases, usually show
interaction between two chains, froming a homooligo-
mer chronophin. This phosphatase subfamily is only ac-
tive as oligomer, because the interactions are crucial for
substrate specificity loop positioning, while other sub-
families may not all require oligomerization [25]. We
constructed pair groups using 3QGM as query sequence
following the scheme described in methods. The inter-
acting group contains all four dimeric C2a-type HAD
Hydrolases (3QGM, 1Z]J], 1YV9, 20YC), and the non-
interacting groups contains all 11 monomeric Cl-type
HAD Hydrolase group (2NYV, 2HSZ, 2HIO, 2AHS5,
4EX6, 3MC1, 3D6J, 3KBB, 3KZX, 2HDO, 3SD7). The
AUC of ROC for prediction is 0.756 (Additional file 1:
Figure S4). With the SH value cut-off <0.2, our method
identifies 85 positions, including 21 binding sites out of
all 31 interface sites: Recall 67.7 %, FPR 27.7 %, Precision
24.7 %. Fig. 6 shows the interface and predicted interface
sites in the structure. The binding site is clearly delin-
eated by the amino acids correctly predicted to be
interacting.

The second example is Amino-imidazole riboside kin-
ase (1TZ6), which has a homodimeric structure with
one active site per monomer. The active site is cov-
ered by a lid which is supposed to be a morpho-
logical marker for evolution within the ribokinase
superfamily [3, 56]. The homodimeric structure is
formed through lid-to-lid interactions [3, 56]. The
query monomer sequence found is 2ABS, adenosine
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Table 1 Comparison of performance between SPPIDER and our SH
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Size SPPIDER SH
Prec Recall Prec Recall
Complete set1 : <100 % ID (Test-set 1) 1592 1) 223 % 41.7 %
Complete set2 : <100 % ID (Test-set 2) 40 24.8 % 89 % 228 % 413 %
Selected Test-set 1: 200HSP +400length 52 249 % 6.9 % 25.1 % 40.9 %
Selected Test-set 2 : 200HSP +400length 1 2) 231 % 50.5 %

Table 1 Four datasets: The full set at 100 % ID and a selected set by using minimal HSP-length 200 and sequence length 400. Higher Precision and Recall for each
dataset in bold. 1) SPPIDER not run 2) Only one protein family and SPPIDER gave no correct prediction

kinase, another member of the ribokinase superfamily
which can be active as a monomer. We identify 53
positions and detect 13 interacting sites out of all 24
binding sites below the SH value cut-off 0.2: Recall
54.2 %, FPR 14.7 %, Precision 24.5 %. The AUC of
ROC reaches 0.746 (Additional file 1: Figure S4.)

Discussion

Interaction site prediction using sequence information
alone remains a challenging problem. It is particularly
important in the context of increasing protein sequence
data and given the relative paucity of structure informa-
tion which always needs expensive and time-consuming
experiments. We demonstrate that sequence specificity
information from interacting proteins and their non-
interacting homologs is able to detect interaction sites.
To the best of our knowledge, this is the first time that
predicting interaction sites using subfamily specificity by
including non-interacting information is performed at a
scale beyond a few protein families.

Our results show that prediction is well beyond
random: The SH signal is able to obtain ROC values
greater than 0.6 AUC. The AUC increases to 0.7 if
the dataset is filtered on sequence length and HSP-
length between interacting and non-interacting

groups. HSPs are formed by BLAST local alignments
based upon residue similarity, thus residues should
be similar. However, this goes against looking for dif-
ferences between two subgroups, which is the hall-
mark of SH scoring. Since shorter HSPs should have
more similar alignment positions to get a high-
enough BLAST score, longer HSPs may contain less
similar positions; i.e., that differ more between the
subgroups, here implying interface residues that con-
fer interaction specificity. Additionally, alignments
comprising shorter HSPs contain larger regions of
higher divergence, which will likely lead to more false
positive predictions.

For our analysis, on average only 25 homodimer and 14
monomer sequences were used in a group. Furthermore,
we do not lose prediction performance with low numbers
of sequences, above the minimum of 5 required in our
analysis. This is a vast improvement to covariance-based
methods that require an estimated five times more se-
quences than the length of the alignment to detect inter-
acting sites. Thus, this opens up the possibility of deriving
interaction signals from genomes with little sequence data
available, or from sparsely sampled protein families.

We observe that conservation of interaction sites is in-
distinguishable from other surface sites (Fig. 2), which
corroborates observations by others (e.g., [7, 28]). This

interface sites (cyan) we predicted correctly

Fig. 6 Interface prediction example. a Secondary stucture of two chains of PDB 3QGM (chain C and D). The interface is in white, chain Cis in
blue and different colors in chain D show helices (red), sheet (yellow) and loop (green). b The interface (in white) for one monomer. ¢ The

only one
monomer

b c
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also helps explain why predicting interaction sites only
using sequence conservation information still remains a
very difficult problem. We also observe low correlation
(R=0.22) between AUC of ROC plots and sequence
length of query homodimers, which suggests that the
size of protein and its interface are unimportant factors
in interaction. That is similar to what Dhole et al. [10]
reported recently.

The definition of 'mon-interacting' in our manu-
script is not that the monomer can not interact with
all the other proteins but the monomer loses the
interaction with another monomer (itself). It is re-
ported that, the same protein involved in different
interaction might have different binding sites [35]. If
the monomer in our non-interacting group also binds
to other proteins, the interaction sites might be dif-
ferent. Then, the sequence specificity between the
interacting sub-group (homodimer) and monomer
sub-group can still be used to pinpoint the homodi-
mer interaction sites.

Our dataset is obtained from PISA and PDB and
might include any bias which the PDB has. To test
this, we map the homodimer query sequences from
each group in Test-set 1 (both Complete and
Selected) onto CATH superfamilies and calculate the
overall performance of our method (Average area
Under Curve, AUC) for each superfamily. Our Test-
set 1 covers all four main classes, 62.5 % (25/40)
architectures, 11.5 % (158/1375) topologies, 8 %
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comprising 1593 out of 69058 (2.3 %) total proteins
in CATH. Our method does not only predict super-
familes which are enriched in PDB but also those
for which few (homodimer) structures are solved.
For the selected dataset, the sequences map to 7
superfamilies. Interestingly, we also selected one
superfamily which our method can not predict well.
The results of this can be found in Additional file 1:
Figure S7 and S8.

In order to show that we exploit useful information
from sequence (sequence specificity between interact-
ing and non-interacting homologs) to predict inter-
action sites, we compared our results with other
sequence-based methods. A clean comparison is diffi-
cult, since methods may rely on a particular way in
which the data is prepared (e.g., particular database,
or % identity filtering), and, in our case the inclusion
of a non-interacting group. Figure 7 shows the pre-
diction performance of other interacting site predic-
tion methods using their own dataset from a recent
benchmark [10]. Note that, due to the lack of a non-
interacting group, we cannot apply our method to
the Dhole et al. benchmark dataset. For comparison,
performance of our method and SPPIDER using our
dataset are also shown (cf. Table 1). On our dataset
we achieve similar precision, but considerable higher
recall than SPPIDER, and we get similar precision
and recall compared to the best ones reported by
Dhole et al. [10]. Overall, we conclude that our

(219/2738) superfamilies in CATH while only method performs well compared to counterparts,
80.0
SPPIDER (h)
70.0 .
LORISdeds (0)
"« "LORIS(m) LORIS (h)
60.0 : -
PSIVER (h)
SH (S-Tset2) .
50.0 SPRIBER (8) ¥ SSIVER (BSIVER (0)
< ' SH (TsetBH (Tset2)  SH (S-Tsetl) PSIVER (m)
= | |
3 00 SPPIDER (m) Isis(e
g 1SIS (h) . ISIS (o)
30.0
ISIS (m)
20.0
SPPIDER (Tset2)
10.0 SPPIDER éS-Tsetl)
[
0.0
16.0 18.0 20.0 22,0 24.0 26.0 28.0 30.0
Precision %
Fig. 7 Comparison with other methods on different data. Precision versus Recall, dots in dark blue are cf. Dhole et al. [10], ¢, 'm’, 'h" and ‘o’ stand
for easy, medium, hard and overall, respectively; see Dhole et al. for details. In red, we show our method (SH) on Test-set 1 and the independent
Test-set 2 (both complete and selected). In light blue we show SPPIDER on Test-set 2 and Test-set 1 selected. See also Table 1
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although alternative methods may perform better on
individual datasets.

We tested the robustness of our interface prediction to
changes in the selection of homodimer and monomer se-
quences. For selecting sequences into either subgroup, ho-
modimer or monomer, we use an effective e-value cut-off
which is based on the first occurrence of a sequence of
the other class in the BLAST results; i.e. the first mono-
mer found for a homodimer query determines the e-value
cut-off for creating this homodimer group (and vice
versa). By changing this e-value cut-off we changed the
selection of sequences and thereby test the robustness.
We created three variations: 1) By taking the lowest of the
two e-values for the homodimer and monomer groups in
a pair-group, we obtain a stricter selection; this tests the
effect of missing data. 2) By relaxing the threshold up to
the point where 20 % of the other class was mixed in, we
obtain a looser selection; this tests the effects of polluting
the data. 3) By taking a fixed, strict but arbitrary e-value
cut-off of 10E-10, we test the case where no complete
annotation of interaction status of the sequences is avail-
able. Figure 8 summarizes the results for these three varia-
tions. For comparison, also the original selections are
shown, and p-values for the comparisons are listed
in Additional file 1: Table S7. A stricter threshold (vari-
ation 1) does not affect results, and neither does a fixed
10E-10 cut-off (variation 3). The polluted or 'mixed’ data
(variation 2) does yield a lower AUC, but only slightly so.
This means our method for predicting interfaces is stable
with respect to missing data, incorrect annotations, as well
as to a particular choice of e-value cut-off. This opens up
the possibility of extending the method to use a single
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e-value cut-off to delineate both groups, which means a
full annotation of interaction status of all proteins may
not be required.

Although our results demonstrate an advance in
predicting interaction sites from sequence informa-
tion alone, it is clear that, like other approaches, our
approach also holds some limitations. First, detection
of functionally conserved homologs is still a difficult
problem. Thus, care should be taken in selecting
homologous proteins that are likely to conserve
interaction. Initially, our procedure was based on
ortholog clustering databases, such as COG and
OrthoMCL, but unfortunately, interaction appears to
be an ill conserved property within these orthologous
groups [28]. This introduces considerable noise into
the specificity signal [14]. Second, for our prediction
we need homologous sets of interacting and non-
interacting groups. Not for all interacting proteins
will one be able to identify non-interacting homologs.
Proteins interacting with different partners might be
used instead [14, 39], but that remains to be investi-
gated further.

Conclusion

We have shown it is possible to predict interaction sites
out of all residues by combining sequence and group
specificity information. When used as a prediction
method in its current form, on homodimer versus
monomer data the Sequence Harmony specificity signal
yields similar precision as other signals but may obtain
higher coverage.

a
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