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Abstract

Background: Phenome-wide association studies (PheWAS) are a high-throughput approach to evaluate comprehensive
associations between genetic variants and a wide range of phenotypic measures. PheWAS has varying sample sizes for
quantitative traits, and variable numbers of cases and controls for binary traits across the many phenotypes of interest,
which can affect the statistical power to detect associations. The motivation of this study is to investigate the various
parameters which affect the estimation of statistical power in PheWAS, including sample size, case-control ratio, minor

allele frequency, and disease penetrance.

Results: We performed a PheWAS simulation study, where we investigated variations in statistical power based on
different parameters, such as overall sample size, number of cases, case-control ratio, minor allele frequency, and disease
penetrance. The simulation was performed on both binary and quantitative phenotypic measures. Our simulation on
binary traits suggests that the number of cases has more impact on statistical power than the case to control ratio; also,
we found that a sample size of 200 cases or more maintains the statistical power to identify associations for common
variants. For quantitative traits, a sample size of 1000 or more individuals performed best in the power calculations. We
focused on common genetic variants (MAF > 0.01) in this study; however, in future studies, we will be extending this

effort to perform similar simulations on rare variants.

Conclusions: This study provides a series of PheWAS simulation analyses that can be used to estimate statistical power
for some potential scenarios. These results can be used to provide guidelines for appropriate study design for future

PheWAS analyses.
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Background

Phenome-wide association study (PheWAS) has been
implemented in a variety of different studies, like within
the eMERGE network [1-5], using electronic health
record (EHR) information that includes international
classification of disease version 9 (ICD-9) code based
diagnoses, laboratory test measurements and demo-
graphic information [6-12]. Other PheWAS have used
data from epidemiological studies [13, 14], as well as
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clinical trials [8, 9] such as the AIDS clinical trial group
(ACTG), which consist of measurements for different
clinical domains like pharmacology, metabolism, vir-
ology, and immunology [15, 16]. Cohorts like these with
a large number of measurements for every individual
have made PheWAS a practical approach when scanning
over hundreds and thousands of phenotypes in a high-
throughput way. PheWAS generates genetic association
hypotheses for further study and provides insights
through cross-phenotype associations.

Unlike genome-wide association studies (GWAS) where
one phenotype is investigated in a study population,
PheWAS uses a wide range of phenotypes collected for a
variety of reasons for each dataset, often with minimal
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curation. Thus, in PheWAS, the data collected for differ-
ent measurements can vary considerably in sample size,
including the numbers of cases for diagnoses, depending
on the rarity of the diagnosis. This makes the estimation
of statistical power for PheWAS a challenge. For example,
in electronic health record (EHR) data, one of the most
commonly used data types to define case-control status is
through ICD-9 codes; these codes provide information on
disease diagnosis, procedures, and medications in the
form of three- to five-digit codes. The longitudinal ICD-9
data collected over many years varies between patients
due to multiple factors, such as differences in the
frequency of patient visits, differences in length of records
due to different start and end dates, and incomplete
patient medical history. These factors generate sparseness
and missing information in the data and, hence, variability
in the number of cases, the case-control ratio, and the
overall sample size in case-control study designs. These
factors can then affect downstream association testing.
Three issues exist for measures with low sample sizes: 1)
low statistical power to identify or replicate genetic associ-
ations and, 2) potentially biased estimates in analyses with
low sample size, and 3) an increase in multiple hypothesis
testing burden through including low powered phenotypes
that may not provide insights but increase the number of
statistical tests.

In Table 1, we provide the range of sample sizes,
including case and control counts from already published
PheWAS analyses. It highlights that some studies have
included binary phenotype with case counts as low as 11
and for quantitative traits, we found phenotypes with

Table 1 Distribution of Samples in Published PheWAS. In this
table, we highlight the range of cases and controls for PheWAS
on binary phenotypes and range of sample sizes for the
quantitative phenotypes used in few PheWAS analyses in
literature

Study

Min/Max Case
Counts Range

Binary Phenotypes (EHR-based ICD-9 codes)

Min/Max Control
Count Range

Denny et al. [23] 25/8185 4206/13746
Hebbring et al. [9] 11/3450 NA

Namjou et al. [24] 23/1131 1840/3609
Simonti et al. [25] 20/8128 794/13258
Shameer et al. [26] 22/6082 NA

Karnes et al. [11] 40/12197 9354/28737

Quantitative Phenotypes

Study Sample Size Range
Karaca et al. [27] 323-973

Hall et al. [14] 258-6363

Moore and Verma et al. [16] 1175-3269
Pendergrass et al. [13] 48-1331
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sample size as low as 48 individuals (Table 1). Using the
information from these existing studies, our goal for this
study is to investigate differences in the power estimates
by testing different parameters commonly used in a
PheWAS analysis. We investigated these parameters using
a simulation approach to characterize and determine the
effect of case numbers or case-control ratio in a case-
control study, as well as the sample size for quantitative
trait PheWAS. With our findings from the simulation ana-
lysis, we provided recommendations to consider for future
PheWAS study design.

Methods

Simulation design

To investigate the power of the PheWAS approach and
the sample size requirements, we simulated an additive
genetic model with a range of effect sizes, case-control
ratios, and minor allele frequencies. The simulation
design assumes no confounding effects due to the
environmental exposure and covariates. Genotypes were
simulated as SNPs, which were drawn according to
Hardy Weinberg Equilibrium (HWE) probabilities. Since
multiple diseases and phenotypes are investigated in an
EHR-based PheWAS, the prevalence of the diseases
could differ in the study population. In our simulated
datasets, we used a constant disease prevalence, which is
represented as {3, in the regression model and set to 0.1
[17]. We represented the effect sizes in terms of pene-
trance functions, which is a combination of genotypes
and the risk of diseases. The penetrance function is use-
ful in estimating the probability of disease given the
genotype in a specific population. It is used to assign the
case disease status to samples whose genotypes are influ-
encing the disease risk and vice versa for controls. We
used a custom script written in R [18] to generate ran-
dom population-based samples with genotypes in HWE
and their phenotypes using different input parameters as
shown in Fig. 1. We simulated both binary and quantita-
tive trait phenotypes. For quantitative trait phenotypes,
the same penetrance function was used to generate the
normalized distribution of phenotypes where genotypes
of samples at the upper and lower end of the distribu-
tion are associated with phenotype values. All the sam-
ples in the simulated datasets were drawn at random, so
there is no relatedness among the individuals.

For binary phenotypes, we generated the simulated
datasets by varying the following parameter settings:
cases, case-control ratios, SNP minor allele frequencies,
and disease penetrance. In this simulation study, we only
investigated a study population with unbalanced and
unmatched cases and controls. For example, we simu-
lated a dataset with a random set of 30 individuals. The
parameter settings for this simulated dataset were as
follows: case-control ratio = 1:2, cases = 10, controls = 20,
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Fig. 1 Simulation workflow. We designed a simulation approach to test different testing parameters for a PheWAS analysis and their effect on the
power estimates. For each combination of testing parameters, we generated 1000 simulated datasets. Then, we performed association testing
using logistic and linear regression for binary and quantitative phenotypes respectively. The power estimates were calculated for each combination of
parameter setting at significance level of a =0.00025 (Binary trait) and a = 0.004 (Quantitative trait)

4

disease penetrance =0.15, and SNP MAF =0.01. The
simulated dataset was generated for four SNPs and 10
phenotypes, including one SNP-phenotype model with
signal, and other models were simulated as noise. The
noise was added to evaluate any systematic bias in the
power estimates. The noise SNPs were generated by ran-
domly assigning the genotypes in the study population
but keeping the MAF the same as the signal SNP. We
randomly assigned the cases for the noise phenotypes.
Under each parameter setting, we generated 1000 data-
sets and then calculated associations using logistic re-
gression. Please refer to Fig. 1 for all the different
combinations of parameter values used for simulation.

For the continuous or quantitative trait simulations, we
investigated the power estimates similarly by varying the
sample size, minor allele frequencies, and disease pene-
trance. The simulated dataset was generated for four SNPs
and one phenotype, with one signal SNP-phenotype
model, and the rest was noise data. We generated 3 noise
SNPs as in the binary phenotype simulations. Again, we
generated 1000 datasets for each parameter setting and
then used linear regression to calculate associations with
the quantitative trait. Please refer to Fig. 1 for all the dif-
ferent combinations of parameter settings used for the
quantitative trait simulations. All the association testing
for binary and quantitative phenotypes was performed
using PLATO [19].

We calculated the power estimates by counting the
number of associations below an alpha value based on total
number of tests within each set of 1000 simulated datasets
for all parameter settings. For binary trait, we used a =0.
00025 (0.01/40) and for the quantitative trait, we used o =
0.004 (0.01/4).

Results
Binary trait simulations
We designed a simulation approach with different combi-
nations of genotype and phenotype parameters and then
performed association testing so as to investigate the
factors that could influence the power to detect the signal.
In Fig. 2, we show trends in the estimates of power at
a =0.00025 for the parameters used in the simulations.
First, we observed an increase in power with an increase
in penetrance irrespective of any change in other param-
eters, and this is expected as highly penetrant diseases
are more likely to be identified even with small numbers
of samples (this is due to high effect size). We also
determined that the ratio between cases and controls
does not have much impact on the power. The number
of cases is what primarily influences the power to detect
genetic associations. For example, as shown in Fig. 2, the
case-control ratio has a negligible effect on power,
whereas with the increase in case numbers, we see the
increase in the power to identify an association. These
simulations also show the importance of minor allele
frequency threshold when calculating associations on
genotype models with an additive effect. Here, we find
that all of the simulation models showed increased per-
formance, with minor allele frequency greater than 5%.
The models with lower frequency variants (MAF be-
tween 1% and 5%) did not reach 100% power until the
case threshold of 1000 samples, and it was only repre-
sented in the model simulated with high disease pene-
trance. We observed that the common variants (MAF >
1%) have signal when there are 200 or more cases. The
Type 1 error for the parameter settings used to design
simulation dataset is well controlled (Additional file 1:
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Fig. 2 Binary Trait Power Results. The power estimates of the simulations are represented in the gradient color. Each panel represents the power
estimate for a specific parameter setting. For each panel, minor allele frequencies are represented on the y-axis; the disease penetrance appear
on the x-axis; the case numbers appear on the top, and the respective case-control ratios are on the right side of the box
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Figure S1) and we show an example of Type 1 error for
one parameter set simulated data with cases = 200 in Fig. 3.

Quantitative trait simulations

We also performed similar simulation analyses on quanti-
tative traits (such as clinical lab variables) to identify a
sample size threshold for multi-phenotype -based studies
like PheWAS. For quantitative traits, we used different
sample sizes for the simulation, ranging from 10 to
25,000, as these are based on sample sizes we observed in
previously published EHR or clinical trials based Phe WAS
analyses (Table 1) [20, 21]. As shown in Fig. 4, we
observed almost no power until the dataset had approxi-
mately 1000 samples for a phenotype with a penetrance of
0.15 and; as expected, we saw the increase in power with
higher penetrance, even in smaller sample sizes. Around

the sample size of 1000, we see an increase in power, with
a slight variation with different minor allele frequencies.
Again, variants with rare minor allele did not perform well
until we had reached a sample size of 1000 and a pene-
trance of 0.3. These quantitative trait simulations suggest
that a threshold of 1000 samples for models with MAF
greater than 5% in PheWAS is recommended. Also, for
the variants with MAF <5% require either association
analyses with much larger sample sizes or a different
statistical approach to evaluate rare variants. As shown in
Fig. 5, the Type I error for quantitative trait simulations
are also well controlled.

Discussion
PheWAS provides the genomic landscape for multiple
phenotypes, but a challenge of PheWAS is the range of
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sample sizes and case numbers inherent when using a  Geisinger for ~ 100,000 consented participants in the
wide range of data instead of a single phenotype like in ~MyCode Community Health Initiative [20], we evaluated
GWAS. For example, there are 14,025 possible ICD-9  the extent of the variability in the number of ICD-9
diagnosis codes and 3824 procedure codes in a EHR codes by case count. In order to account for misdiag-
system used by healthcare providers. With the introduc- nosis, we defined a patient as a case for an ICD-9 code
tion of ICD-10, the number of ICD-based codes has fur- only when a patient had three or more independent
ther increased to approximately 66,000. Testing 14,025  visits where that specific code was represented in the
diagnosis codes for association with up to 1 million or  patient’s record. Out of 14,025 codes for data collected
more genetic variants results in a very high multiple between the years 1996 and 2015 for ICD-9 codes alone,
testing burden. Usually, a large fraction of codes have 33% were not present at all and ~30% ICD-9 based
very low case numbers due to the rarity of the diagnoses,  diagnoses had less than 10 patients with that code (case
and thus, they may not be sufficiently powered for count <10). In Fig. 6, we show the trends on ICD-9
association detection. For example, Geisinger Health codes with cases at different thresholds and even after
System (GHS) is one of the largest healthcare providers dropping out more than 60% of the ICD-9 codes, there
in central Pennsylvania, with an EHR system including are still 3568 ICD-9 codes with 10 or more patients
~ 1.2 million unique patients. Using the EHR data in labeled as cases. This can increase the number of ICD-9
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code based phenotypes for association testing, and it adds
to the multiple hypothesis burden. In our binary trait sim-
ulations, we show that we need 200 or more cases to have
enough power to detect genetic associations for common
variants (MAF > 0.01). So, at that threshold, there are 831
ICD-9 codes with at least 200 patients with status as the
case (as shown in Fig. 6). Based on our simulations, we
recommend using 200 as a case threshold for the common
variant PheWAS analysis.

Using the findings from these simulations, we addressed
three issues related to low sample size and its impact on
PheWAS approach. First, the impact of low sample size is
evident in quantitative trait simulations, which suggests
that the sample size of 1000 individuals for each pheno-
type is important to consider in the study design. How-
ever, in binary trait simulations, we observed that overall
sample size does not affect the power, but instead the
number of cases drives the power estimates. Secondly, low
Type 1 error across all parameter settings (Figs. 3 and 5,
Additional file 1: Figure S1) shows no systematic bias in
the regression method. However, low sample size or low
case numbers will not have enough statistical power to
detect the associations. Lastly, we demonstrate that using
the above-suggested thresholds of case numbers for binary
traits and sample size for quantitative traits can help with
the selection of phenotypes and reduce the number of
tests and; hence, this can reduce the multiple hypothesis
testing burden.

Limitations

Using the simulation approach, we were able to identify the
parameters impacting the power to determine genetic asso-
ciations and we provided recommendations for PheWAS
analysis design. However, there can be other factors that
can influence the power of PheWAS analysis. We primarily
ran all the simulations based on a regression model (linear
or logistic regression), but there are now many other statis-
tical methods for phenome-wide association analysis [22].
Further extensions of these simulation studies to explore
other statistical methods will be important. We limited our
investigation in this study to an additive effect of genotypes.
However, it will be important to investigate other genetic
effects as well such as dominant, recessive, weighted, and
interaction. There are also other factors that can influence
the power estimates; these include environmental exposure,
confounding covariates (age, sex, and ancestry. In the
future, we will plan to include such factors in our simula-
tion design.

Conclusions

PheWAS have become a common tool to explore the
genotype-phenotype landscape of large biobanks linked to
comprehensive phenotype/trait data collections as in EHRs,
clinical trials, or epidemiological cohort studies. This high-
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throughput analysis approach has been met with much
success in recent years [4, 6, 14]. However, the community
has been lacking guidance for making study design deci-
sions regarding sample size, case to control ratios, and
minor allele frequency thresholds. At present, there is not a
PheWAS Power Calculator available to researchers. Thus,
we implemented a large-scale simulation study to provide
some guidelines for understanding the statistical power of
PheWAS analyses under different scenarios. We believe
these simulation results provide the needed power esti-
mates for future PheWAS analysis decisions.

Additional files

Additional file 1: Figure S1. Binary Trait Type | Errors. The plot shows
the Type | errors for different parameter settings. Each panel represents
the different case number on the top and case-control ratio on the right
which was used for the simulation dataset. The Type | error on the y-axis
is calculated based on the number of false positive association below
significance level of a=0.00025. The disease penetrance is represented
on the x-axis and each colored point represent different MAF used in
the simulations. (PNG 379 kb)

Additional file 2: Summary Results: The summary results used to
generate the figures. (XLSX 56 kb)
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