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Abstract

Background: Zebrafish is a widely used model organism for studying heart development and cardiac-related
pathogenesis. With the ability of surviving without a functional circulation at larval stages, strong genetic similarity
between zebrafish and mammals, prolific reproduction and optically transparent embryos, zebrafish is powerful in
modeling mammalian cardiac physiology and pathology as well as in large-scale high throughput screening.
However, an economical and convenient tool for rapid evaluation of fish cardiac function is still in need. There
have been several image analysis methods to assess cardiac functions in zebrafish embryos/larvae, but they are still
improvable to reduce manual intervention in the entire process. This work developed a fully automatic method to
calculate heart rate, an important parameter to analyze cardiac function, from videos. It contains several filters to
identify the heart region, to reduce video noise and to calculate heart rates.

Results: The proposed method was evaluated with 32 zebrafish larval cardiac videos that were recording at
three-day post-fertilization. The heart rate measured by the proposed method was comparable to that
determined by manual counting. The experimental results show that the proposed method does not lose
accuracy while largely reducing the labor cost and uncertainty of manual counting.

Conclusions: With the proposed method, researchers do not have to manually select a region of interest before
analyzing videos. Moreover, filters designed to reduce video noise can alleviate background fluctuations during the
video recording stage (e.g. shifting), which makes recorders generate usable videos easily and therefore reduce
manual efforts while recording.
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Background
Congenital heart disease (CHD) is the most common
congenital defect, which accounts for 3% of infant deaths
[1]. To better prevent and treat this defect, a further un-
derstanding on the cardiac development is pre-requisite.
Many automatic or semi-automatic analysis systems
based on optical recording have been proposed for this
purpose. Zebrafish is a vertebrate model with high gen-
etic similarity to mammals [2]. The externally fertilized
transparent embryos and larvae enable a real-time obser-
vation of cardiac development during embryogenesis.
Embryos receive oxygen directly from the surrounding
environment by passive diffusion before reaching seven-
day post-fertilization (dpf). This characteristic allows for

investigation on cardiac structure and function even
when severe congenital heart defects are induced [3].
The aforementioned advantages make zebrafish an ideal
model for studying cardiac development [4].
To date, there have been many methods that assess

cardiac functions in zebrafish embryos/larvae [5–13].
These methods need manually pre-selected regions of
interest (ROI) for satisfying results. To solve this prob-
lem, several digital image analysis methods have been
developed to standardize and automate cardiac assess-
ment in zebrafish embryos/larvae [14–20]. The afore-
mentioned semi-automatic and automatic methods have
been developed for videos obtained under different con-
ditions. For example, the work of Luca et al. [15] used
videos from resonant laser scanning confocal micro-
scope, which is rather expensive for some laboratories.
The issue of anesthetization has been addressed in
Pylatiuk et al.’s work [16], but a recent work by
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Puybareau et al. [19] still chose to anesthetize the fish
embryos with Tricaine. The contribution of these com-
putational methods is to accurately estimate heart rate
for a practical acquisition process.
Although the videos were obtained under different con-

ditions, all of the aforementioned methods have to face
two important issues after video acquisition: (a) identifica-
tion of the heart area and (b) image processing to enhance
heartbeat signals in the video. This work has developed a
novel method for heart rate estimation. For the first issue,
this work proposes a half-heart mask to identify the ROI.
For the second issue, this work proposes that Empirical
Mode Decomposition (EMD) could be used as a high-
pass filter to reduce video noise. Another contribution of
this work is the comparison strategy between the
proposed method and manual counting. This work
designed an experiment to quantify manual error, which
was used as a reference to evaluate the computational
error. The experimental results show that the proposed
method achieves the same error level as human.
This article is organized as follows. Section 2 describes

the proposed method, which includes three major steps.
Section 3 describes its performance, including the details
of zebrafish larva preparation, video acquisition and an
experiment to compare the calculated heartbeat rate
with manual counting. Section 4 concludes this work
and discusses possible extensions.

Methods
The concept of the proposed heart rate calculation is
based on brightness intensity of each video frame. Fig. 1
shows that the brightness intensity through a video has a
repetitive pattern related to heartbeats. This brightness in-
tensity function is denoted heartbeat signal (h-signal) in
this article. Fig. 2 shows the workflow of the proposed
method. For a zebrafish larva video, the first step is to gen-
erate a mask where the brightness intensity is calculated.

The second step is to extract an h-signal. The third step is
to calculate a heart rate from the extracted h-signal.

Half-heart mask generation
Figure 3a shows the variation level of brightness inten-
sities of all frames in a video. Extracting the h-signal
from the entire video region includes brightness

Fig. 1 Heartbeat signals (h-signals): (a) a zebrafish larva video (ID: MVI_5280) in which each heartbeat corresponds to two brightness intensity
peaks; (b) a zebrafish larva video (ID: MVI_5269) of which the zebrafish larva slid. The x-axis is frame index; the y-axis is brightness intensity of that
frame. Light (the top half) and dark (the bottom half) curves indicate brightness intensities before and after, respectively, the proposed processing
steps. Vertical dotted lines indicate the counting timings of the operator when he recognized a heartbeat through the video

Fig. 2 Flow chart of the proposed heart rate calculation
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intensity from uninteresting regions, such as the bright
pixels at the top right of Fig. 3a. They seriously affect
the extracted h-signal but are weakly related to the
heartbeats. A common practice to solve this problem is
pre-selecting the heart region as a mask to screen out
uninteresting regions. However, this practice requires
manual intervention, which is not applicable for an auto-
matic pipeline.
This work developed a procedure for half-heart mask

generation, which consists of four filters. Given a zebra-
fish larva video, the first filter is to calculate, for each
pixel, the variation level of brightness intensity through
the video. This filter first converts each video frame to a
grayscale image. In this work, 12 color-to-grayscale
methods analyzed in [21] have been tested. The Luma
method [22] without Gamma correction yielded the best
performance and was adopted in this work. The per-
formance of using the 12 color-to-grayscale methods can
be found in the Additional file 1. After this conversion,
each pixel in the frame has a brightness intensity, y. This
work defines the variation level of brightness intensity of
a pixel at (i, j) in an n-frame video as the variation of the
n-1 brightness intensity differences of two consecutive
frames at that pixel:

1
n−1

Xn−1

k¼1

yi; j;kþ1−yi; j;k
���

���

where yi,j,k is the brightness intensity of pixel (i, j) in the
k-th video frame. The variation levels of all pixels for a
video are normalized to [0,255] so that they can be

rendered to a grayscale image as shown in Fig. 3a, which
is the output of the first filter.
The second filter is to find a region in which the

brightness intensity varies drastically. This filter converts
the grayscale image of variation levels into a binary mask
by setting a percentage threshold, θ. The θ% pixels with
the highest variation levels are converted to black
(region of interest), otherwise are converted to white
(region of non-interest). Since the target area of interest
is heart, the ideal θ of a zebrafish larva video depends on
its heart-to-video ratio: the area ratio of the heart region
to the entire video. The heart-to-video ratios of the 32
testing videos collected in this work varied from 0.9% to
10.0%. This work used θ = 4 for all testing videos. The
result of this filter is a binary mask as shown in Fig. 3b.
The third filter is to further reduce the archipelago-

like mask of Fig. 3b to focus on the heart region. The
concept of this filter is to retrieve the biggest circle-like
island. Long and narrow islands, even with large area,
are not the region of interest. Invoking region-growing
algorithms can solve this problem [23, 24]. The
DBSCAN algorithm [25], which clusters pixels by “pixel
density”, was adopted for this task. The nature of
DBSCAN inhibits the growth of long and narrow
clusters, because their pixel densities are difficult to
maintain during the scanning process. Another benefit
of DBSCAN is that the number of clusters is not pre-
required. By applying neighborhood expansion,
DBSCAN can filter out noise (i.e. spots in an image) to
accurately recognize clusters of arbitrary size [26]. The
DBSCAN algorithm defines core pixels based on two

Fig. 3 Outputs of the four filters in the proposed half-heart mask generation step: (a) variation level of brightness intensity (brighter pixels have
higher variation); (b) highly varied region; (c) heart mask; (d) half-heart mask. The outputs require the information of all frames of a video and are
generated only once for each video
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parameters, epsilon (eps) and minimum number of
points (minPts). For a black pixel, q, its eps-neighbor-
hood contains pixels of which the distance to q is less
than eps. If the eps-neighborhood has more than minPts
pixels, q is defined as a core pixel. The scanning process
of DBSCAN picks an arbitrary pixel p from the un-
scanned black pixels to start. If p is a core pixel, p and
its eps-neighborhood form a new island. All pixels in this
island are then scanned and their eps-neighborhoods are
added into the island. The newly added pixels are also
scanned to see if more pixels can be added to the island.
This scanning process is conducted recursively until no
more pixels can be added to island. If p is not a core
pixel, p is considered as a noise and assigned to no is-
land. Then, DBSCAN moves to the next un-scanned
black pixel and stops when all black pixels have been
scanned. Figure 4 shows the pseudocode of DBSCAN.
This work used eps = 20 and minPts = 300 for all testing
videos, of which the video resolution was 1280 X 720.
If the video resolution changes, minPts should be ad-
justed because the number of pixels in the same area
changes. The eps should also be adjusted to maintain
the pixel density (minPts/eps2). For example, if a video
resolution changes from 1280 X 720 to 640 X 360 (i.e.
area becomes 1/4), the minPts is suggested to be 300/4
= 75 and the eps is suggested to be 20/sqrt(4) = 10. The
result of this filter is the largest island of DBSCAN as
shown in Fig. 3c, which is close to the heart.
The fourth filter is to split the heart mask of Fig. 3c

into halves, corresponding to the atrial and ventricular
of a zebrafish heart. When most of the blood cells stay
in atrial, the brightness intensity in the atrial region
reaches a minimum but that in the ventricular region
reaches a maximum. Therefore, the brightness intensity
in the entire heart region falls into two states, where a
heartbeat might correspond to two brightness intensity
peaks as the light curve in Fig. 1a. To solve such a

double-peak issue, this work aims to extract the bright-
ness intensity from either the atrial or ventricular rather
than from the entire heart. To split the heart mask into
two halves, this filter first calculates the brightness in-
tensity centroid in the heart mask of each video frame.
An n-frame video results in n centroids. The k-means al-
gorithm [27] is then invoked to cluster the n centroids
into the two clusters: one contains frames where most
blood cells are in the atrial and the other contains
frames where most blood cells are in the ventricular.
The k-means algorithm partitions centroids based on
their locations into k disjoint clusters. When clustering n
data points into k cluster, the k-means algorithm mini-
mizes the following equation:

Xk

i¼1

Xn

j¼1

wi; j � ci−pj

���
���
2

where cj is the center of the i-th cluster, pj is the j-th
data point, and wi,j equals to 1 if pj belongs to cj or 0
otherwise. This work sets k = 2 for atrial and ventricular.
After k-means, the two cluster centers are connected to
form a line segment. The perpendicular bisector of the
line segment cuts the heart mask into two halves. The
final mask of this step is the first half as shown in Fig. 3d.
Depending on recording angles, the final half-heart mask
could be either an atrial or ventricular.

Heartbeat signal extraction
In this step, the brightness intensity of each video frame
inside the half-heart mask is extracted to form an h-
signal. For the h-signal of a video, the y-value at position
x is defined as the brightness intensity sum of all pixels
in the x-th frame of that video. Peaks in an h-signal cor-
respond to heartbeats (Fig. 1). Before peak detection,
two filters are introduced in this step to enhance signals.
The first filter uses moving average to reduce high fre-
quency noise; the second filter uses the Empirical Mode
Decomposition (EMD) method [28] to reduce low fre-
quency noise.
In an h-signal, the variation of brightness intensity

comes from the distribution change of blood cells. The
distribution of blood cells has a repetitive pattern related
to heartbeats but not stable. Therefore, h-signals are
usually jagged. A jagged signal could be modelled as a
target signal (i.e. heartbeat in this work) mixed with
noise signals of frequency higher than the target signal
[29]. Moving average is a widely adopted technique to
reduce high frequency noise. In this work, the exponen-
tial moving average (EMA) is adopted as a low-pass fil-
ter. The EMA method is model-free and has been
widely used in time series analyses [30]. In EMA, recent
data points have higher weights than older ones [31].

Fig. 4 Pseudocode of the DBSCAN algorithm
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The smoothed (EMA-transformed) h-signal is the
output of this filter.
In addition to high frequency noise, the smoothed

h-signals of some zebrafish larva videos have low
frequency noise such as the light curve in Fig. 1b.
Visually, smoothed h-signals with low frequency noise
have an overall increasing/decreasing trend. The over-
all trend could be modelled as adding a signal of fre-
quency much lower than the target signal. To deal
with this problem, this work proposes a high-pass fil-
ter based on EMD. The EMD method is a way to de-
compose an input signal into intrinsic mode functions
(IMFs), which represent a collection of simple oscilla-
tory modes that compose the input signal. In an IMF,
by definition, the number of extrema is equal to or at
most differ by one with the number of zero-crossings
[28]. Figure 5 shows the workflow of the EMD-based
filter. First, the smoothed h-signal is used as the ini-
tial signal, s. Second, the local maxima of s are con-
nected as an upper envelope; while the local minima
of s are connected as a lower envelope. Third, the
mean curve, m, between the upper and lower enve-
lopes is interpolated. Fourth, the component, h, is
calculated as the difference between s and m. If h is
not an IMF, the above four operations are repeated
with s = h to obtain a new component. The entire
loop stops when some component fulfills the require-
ments of IMF. The final component is the output of the
high-pass filter as well as the output of the h-signal extrac-
tion step. The subsection “Effects of half-heart mask gen-
eration” discusses the low frequency noise and the effects
of the proposed EMD-based filter on it.

Heart rate calculation
This step calculates heart rates based on peaks in h-
signals. Common recording operations (e.g. setup and
remove the camera) might introduce fluctuations at the

start and end of a video. To preclude such interferences,
only the middle 20% time of an h-signal is considered
for heart rate calculation. If the duration of an h-signal
is less than 15 s, the middle 3 s are considered. In this
step, the input h-signal is decomposed into data points.
Each data point is the brightness intensity sum of a
video frame. A data point is detected as a peak if its
value is greater than its two consecutive points. Suppose
n peaks are detected in the considered time span, t. The
conventional formula of heart rate is n/t. This formula
assumes that the time span contains roughly n periods.
In practice, however, the time from the span start to the
first peak plus the time from the last peak to the span end
is not guaranteed to be a complete period. To prevent
such an uncertainty, this work proposed a heart rate for-
mula that trims the time outside the first and last peaks:

n−1
tn−t1

ð1Þ

where tn and t1 are the timestamps of the last and first
peaks, respectively, in the considered time span.

Results
The subsection “Evaluation indices” introduces four evalu-
ation indices. The subsection “Performance of heartbeat
rate calculation” presents a validation that compared the
heart rates calculated by the proposed method against
those by manual counting. The subsection “Effects of half-
heart mask generation” explores the effect of the proposed
half-heart mask. The subsection “Larva sliding problem
and the EMD-based filter” discusses a larva sliding prob-
lem and the proposed EMD-based filter.

Evaluation indices
Table 1 shows the four error indices adopted in this
work to evaluate heart rate calculation. The first index is

Fig. 5 Workflow of the Empirical Mode Decomposition-based filter: (a) input signal, s; (b) upper and lower envelopes; (c) mean curve, m; (d) IMF
component, h = s - m
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mean absolute error (MAE), which is the expected dif-
ference of each estimation to the answer. The second
index is root-mean-square error (RMSE), which squares
each error and then reports the square root of the aver-
age of the squared errors. This square-then-root oper-
ation amplifies extreme values, which makes RMSE an
indicator of outliers. The third and fourth indices are
relative MAE (rMAE) and RMSE (rRMSE), which trans-
form each error to its relative form (i.e. divide the error
by the answer) before other calculations.

Performance of heartbeat rate calculation
The proposed method was applied to calculate the heart-
beat rates of 32 zebrafish larval cardiac videos. Each
video was also counted by 11 operators for manual
counting results. The 11 operators came from a bioinfor-
matics laboratory with basic training. In nature, the
heart rates delivered by an operator have certain differ-
ences when counting the same video multiple times. To
alleviate such manual instability, a video was counted 30
times by an operator. With 30 repeated counting results
of 11 operators, this work defined two kinds of manual
errors: (a) individual error, which measures the variation
between repeated experiments of an operator (i.e. hu-
man instability) and (b) crowd error, which measures the
variation between different operators. The answer of a
video for computational results and for crowd error was
the average of all manual counting results for that video.
The answer of a video for individual error was different
by operator, where the answer of an operator was the
average of his 30 counting results.
Table 2 shows the error of the proposed method and

of manual counting in heartbeat detection and heart
rate calculation. The performance of this work with the
main features (the half-heart mask and noise filters de-
scribed in the subsections of “Half-heart mask gener-
ation” and “Heartbeat signal extraction”) disabled,
denoted as “This work (-)” in Table 2, is also provided.
For heartbeat detection, the average error was less than
one (MAE = 0.844), indicates that the proposed method
is accurate. However, the manual counting achieved

better performance in terms of MAE, RMSE and
rMAE. The relatively bad rRMSE of manual counting
was caused by a few outliers—operators whose errors
were extremely large than those of others. This reveals
a problem of manual counting—the operator must be
carefully selected. This problem is a critical advantage
of automatic counting. Finally, the MAE, RMSE, rMAE
and rRMSE of this work were 50.9%, 63.7%, 52.7% and
65.7% to those of this work (−). This gap reveals the
importance of the proposed half-heart mask and noise
filters, which are further analyzed in the next two
subsections.
For heart rate calculation, this work achieved the best

performance in all evaluation indices. Note that the error
of number of heartbeats and that of heart rate cannot be
compared directly since they are in difference scales. The
time span of consideration (the denominator of Eq. 1) for
the 32 videos ranges from 2.3 to 6.3. Namely, an un-
detected heartbeat, which contributes 1 absolute error in
terms of heartbeat, contributes about 0.16 to 0.43 absolute
error in terms of heart rate. Although the number of
heartbeats (n in Eq. 1) was less accurate than manual
counting, it was compensated by the duration (the de-
nominator of Eq. 1). The instability of counting timing on
the first (t1 in Eq. 1) and last (tn in Eq. 1) cycles harmed
the performance of manual counting. Fig. 1 illustrates a
typical manual error in heart rate calculation—the
counting timings (vertical dotted lines) did not locate at
the h-signal peaks. When watching a video, an operator
naturally figures out a visual pattern to recognize a heart-
beat. This visual pattern is repetitive (i.e. the relative loca-
tion of the manual counting timing in each h-signal cycle
is similar as those in other cycles) but varies among indi-
viduals (i.e. the relative locations of the manual counting

Table 1 Evaluation indices

Index Abbreviation Equationa

Mean absolute error MAE 1
n

P jei−aij
Root-mean-square error RMSE ð1n

P jei−aij2Þ1=2

Relative MAE rMAE 1
n ∙
P j ei−aiai

j
Relative RMSE rRMSE ð1n

P j ei−aiai
j2Þ1=2

aThe definition of the abbreviations used: n is the number of samples, ei is the
estimation for the i-th sample, and ai is the answer of the i-th sample. For
heartbeat detection, ei and ai are the number of heartbeats of the i-th video.
For heart rate estimation, ei and ai are the heart rates of the i-th video

Table 2 Performance of heart rate calculation

Method MAE RMSE rMAE rRMSE

Number of heartbeats

This work 0.844 1.490 7.0% 12.4%

Individual1 0.498 0.673 3.3% 17.3%

Crowd2 0.524 0.848 3.5% 21.9%

This work (−)3 1.656 2.339 13.3% 18.8%

Heart rate

This work 0.054 0.071 1.8% 2.4%

Individual 0.073 0.106 2.1% 5.6%

Crowd 0.089 0.167 2.5% 8.8%

This work (−) 0.338 0.528 11.1% 17.4%

The best performance of each evaluation index in heartbeat detection and in
heart rate calculation are highlighted in bold. 1Error of manual counting,
where the average of an operator was used as the answer for his 30 results.
2Error of manual counting, where the average of all operators was used as the
answer. 3Stands for “This work minus,” in which main features (the half-heart
mask and noise filters) of this work were disabled
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timing in an h-signal are different by operator). In addition
to the crowd error of different visual patterns, there is al-
ways individual error. It is hard for human to count at
exactly the same timings when counting the same video
multiple times. The displacement of the first (t1) and the
last (tn) counts leads to individual error. This work outper-
formed manual counting in heart rate calculation because
of eliminating such instability. Finally, as in heartbeat
detection, the half-heart mask and noise filters played im-
portant roles in heart rate calculation. The MAE, RMSE,
rMAE and rRMSE of this work were 15.8%, 13.4%, 16.4%
and 14.0% to those of this work (−). The gap was larger
than that in heartbeat detection.
In summary, heart rates calculated by the proposed

method and by manual counting were accurate (MAE <
0.1 and rMAE < 5%). The performance of manual count-
ing depended on the operator (relatively large RMSE
and rRMSE). The proposed half-mask mask and noise
filters largely reduced the heart rate error (reduced more
than 80% error in all evaluation indices). These results
indicate that the proposed method can accurately and
stably calculate heart rate from zebrafish larval cardiac
videos.

Effects of half-heart mask generation
As described in the subsection “Half-heart mask
generation”, the automatic half-heart mask generation of
this work has four filters. The first two filters ask the
brightness intensity of the generated region to be highly
varied. The third filter asks the region to be big and be
circle-like. The fourth filter asks the brightness intensities
of pixels in the region to vary in a similar phase. This sub-
section discusses the effects of these filters on heart rate
calculation. The heartbeat error is omitted here since it is

alleviated by the trimmed version of heart rate calculation
and is not critical to the proposed method.
Table 3 shows the heart rate errors of the proposed

method with the four filters enabled incrementally. The
performance of video mask does not match that of this
work (−) in Table 2 because the noise filters (subsection
“Heartbeat signal extraction”) were enabled. The varied
region mask filtered out more than 95% of the area. The
area of the final half-heart mask was only 1.4% to the en-
tire video, which is close to the smallest heart-to-video
ratio of the testing videos. All evaluation indices show a
strictly decreasing trend as the filters enabled incremen-
tally. Namely, these filters successfully identified sub-
regions that are more critical than the regions delivered
by the previous filters. Fig. 6 compares the performance
improvement among filters. In general, the varied region
mask contributed the largest improvement. The half-
heart mask had the second largest contribution and the
heart mask had the least contribution. The contribution
of the heart mask was small because it also amplified the
double-peak issue—the brightness intensity in the entire
heart region has two peaks in a heartbeat cycle—while

Table 3 Effects of the half-heart mask generation on heart rate
estimation

Mask Areaa MAE RMSE rMAE rRMSE

Videob 787.2 k 0.491 0.665 11.1% 17.4%

Varied regionc 30.2 k 0.180 0.339 6.1% 11.6%

Heartd 23.7 k 0.161 0.284 5.2% 8.8%

Half-hearte 11.3 k 0.054 0.071 1.8% 2.4%
aArea of the mask (unit: pixel). Heartbeat signals were extracted from the
bentire video (i.e. no filter of the half-heart mask generation was enabled),
chighly varied region (the first two filters were enabled), dheart region (the first
three filters were enabled) and ehalf-heart region (all filters were enabled)

Fig. 6 Contribution of each mask generation step. For each bar, the steps from top to bottom are varied region, heart region and half-heart
region. For the Area bar, the contributions of heart and half-heart regions are 0.8% and 1.6%, respectively
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filtering out region of non-interest. Therefore, some im-
provement was neutralized. In this regard, the half-heart
mask then recovered the improvement of focusing on
heart region by solving the double-peak issue. Moreover,
the contributions of the half-heart mask in RMSE and
rRMSE were relatively larger than those in MAE and
rMAE. The contribution of the half-heart mask
exceeded that of the varied region mask in rRMSE
(42.4% vs. 38.2%). These results suggest that the half-
heart mask played a relatively critical role in reducing
outliers and in the stability of the proposed method.
In summary, the large contribution of the varied re-

gion mask came from filtering out a large area. The
heart mask yielded a relatively small contribution, but it
is a necessary step for the half-heart mask. The large
contribution of the half-heart mask came from accur-
ately identifying pixels whose brightness intensities vary
in a similar phase. This phase consistency was important
to enhance stability.

Larva sliding problem and the EMD-based filter
Although the zebrafish larvae in this work were mounted
on slides, the sliding of larva was still observed in some
videos. Fig. 7 shows a sample video with the larva sliding
problem, which leads to a global “tilting” preference of h-
signals. The EMD-based filter of this work was developed
to solve the tilting preference by removing the low fre-
quency noise in h-signals. To evaluate the effect of the
EMD-based filter, this work proposed an index to measure
the tilting preference (denoted as tp-index):

1−
1
n

Xn

i¼1

min pi−li; pi−rið Þ
max pi−li; pi−rið Þ

where n is the number of peaks, pi is the i-th peak, li is
the left trough of pi, while ri is the right trough of pi
(Fig. 8). The sub-equation within the summation mea-
sures the ratio of the smaller peak-trough difference of
the i-th peak to the larger one. The ratio decreases when
the titling preference increases. The tp-index is normal-
ized to a range of [0, 1], from small to large tilting pref-
erence. Videos with large tp-indices were manually
reviewed and confirmed to have larva sliding.
With the tp-index, the 32 testing videos were divided

into two groups. The first group, denoted as large-tp
group, included ten videos with tp-index > 0.5; the other
group, denoted as small-tp group, included 22 videos
with tp-index < 0.5. The EMD-based filter was expected
to have a larger effect on the first group than that on the
second group. Table 4 shows the performance on the
two groups with and without the EMD-based filter. The
tp-index difference between two groups was large (0.623
vs. 0.300). The tp-index average of the large-tp group
exceeded 0.5, indicating the ten videos suffered from ser-
ious larva sliding conditions. The EMD-based filter
largely decreased the tp-index of this group (0.623–0.
256 = 0.367). A smaller improvement (0.300–0.120 = 0.
180) was also observed in the small-tp group. With
reducing the tilting preference, the EMD-based filter
improved all evaluation indices on both groups. The

Fig. 7 A zebrafish video with larva sliding problem (ID: MVI_5269). The timestamps of (a) to (d) are 0, 7, 13 and 20 s. The top area shows the full
video frame and the bottom area zooms into the red rectangle. The bottom area shows that the larva in the video slides upward. Namely, the
larva slides towards the top right corner of the full video frame. In a video frame, the larva is darker than the background. If a larva slides into the
screen when recording, the extracted h-signal has an overall decreasing trend; conversely, if a larva slides out the screen like this sample video,
the extracted h-signal has an overall increasing trend as shown in Fig. 1b

Fig. 8 A schematic diagram of the proposed tp-index
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performance of EMD (+) in the large-tp group was close
to those of EMD (−) and EMD (+) in the small-tp group.
This indicates that the EMD-based filter successfully
solved the larva sliding problem.

Discussion
The proposed method has been tested on two videos
provided in [10], where one is a fly heart (BTN4602-RR-
Ocorr-Sup_85747a.mov) and the other is a mouse heart
(BTN4602-RR-Ocorr-Sup_85750a.mov). The program
output of the two videos can be found in our online
demo page (https://merry.ee.ncku.edu.tw/zebrafish/).
Table 5 shows the results.
Although making a conclusion based on only two in-

dependent videos might be too arbitrary, the results re-
veal the potential of the proposed method on heart
videos of other species.

Conclusions
This work introduced a pipeline that calculate heart rate
from zebrafish larval cardiac videos. The proposed
method contains filters to identify the heart region auto-
matically and can be performed without pre-selecting a
region of heart manually. It also contains filters to with-
stand background fluctuations during the video record-
ing stage, which makes recorders generate usable videos
easily. The experimental results show that the proposed
method does not lose accuracy while largely reducing
the labor cost in long-period heartbeat counting. The
automatic and accurate heart rate calculation method
proposed in this work can be extended to calculate other
cardiac functions like heartbeat regularity.

Online demonstration
As the target of the proposed method is video, an online
demo page at https://merry.ee.ncku.edu.tw/zebrafish/ was
setup to supplement the static figures in this manuscript.
The source code of the proposed method is deposited in
Github at https://github.com/mbilab/zebrafish.

Additional file

Additional file 1: Table S1. Performance of heart rate estimation with
different color-to-grayscale methods. (DOCX 14 kb)
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