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Abstract

Background: In bioinformatics, network alignment algorithms have been applied to protein-protein interaction
(PPI) networks to discover evolutionary conserved substructures at the system level. However, most previous methods
aim to maximize the similarity of aligned proteins in pairwise networks, while concerning little about the feature of
connectivity in these substructures, such as the protein complexes.

Results: In this paper, we identify the problem of finding conserved protein complexes, which requires the aligned
proteins in a PPI network to form a connected subnetwork. By taking the feature of connectivity into consideration,
we propose ConnectedAlign, an efficient method to find conserved protein complexes from multiple PPI networks.
The proposed method improves the coverage significantly without compromising of the consistency in the aligned
results. In this way, the knowledge of protein complexes in well-studied species can be extended to that of
poor-studied species.

Conclusions: We conducted extensive experiments on real PPI networks of four species, including human, yeast,
fruit fly and worm. The experimental results demonstrate dominant benefits of the proposed method in finding
protein complexes across multiple species.
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Background
A protein complex is a bimolecular that contains a num-
ber of proteins interacting with each other to perform
different cellular functions which is described in many
prior works such as the work proposed by Hu at al. in
[1]. The identification of protein complexes in a protein-
protein interaction (PPI) network [2] can, therefore, lead
to a better understanding of the roles of such a network in
different cellular systems. It is for this reason that the pro-
tein complex identification problem has received a lot of
attentions, and a considerable number of techniques and
algorithms have been proposed to address such problem.
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Graph structure is widely adopted in many applications
[3, 4]. By representing a PPI network as a graph [5],
whose vertices represent proteins and edges as interac-
tions between proteins, these algorithms are able to iden-
tify clusters in single PPI network based on different graph
properties [6]. For example, an uncertain graph model
based method is proposed to detect protein complex from
a PPI network [7]. To identify protein complexes, previous
works proposed to consider not just topological but also
biological information in the network [1]. However, they
all focused on finding protein complexes in a single PPI
network, and finding conserved protein complexes from
multiple PPI networks still remains challenging.

Network alignment provides a possible way to identify
protein complexes from multiple PPI networks [8]. Con-
serving functional and topological features are two goals
for network alignment. Functional module represents a
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collection of molecular interactions that work together
to achieve a particular functional objective in a biologi-
cal process, while topological module represents locally
dense neighborhoods in a PPI network [9]. Network align-
ment can be categorized into two classes: global alignment
and local alignment. Global alignment [10] finds over-
all best functional orthologs among entire PPI networks,
while local alignment identify smaller conserved subnet-
works in part of the networks [11]. In the context of local
alignment, when a given small network is aligned with
large networks, the problem can be projected as network
query problem. In this paper, we concern more on the
local alignment, which is more related to our problem.

Traditional pairwise network alignment detects func-
tional orthologs of proteins in PPI networks by maximiz-
ing the similarity between proteins, while ignoring the
subnetwork structure of protein complex. Therefore, the
disconnected subnetwork problem might be caused when
applying those methods to identify conserved protein
complexes. For example, in Fig. 1, there are two PPI net-
works Net x and Net y. When aligning complex (x1, x2, x3)
in Net x to Net y, protein x1 and x2 are aligned with y1
and y2. But only maximizing pairwise similarity of pro-
teins might lead x3 to be aligned with y6, which results
in disconnected subnetwork in the alignment and doesn’t
meet well with the requirement of protein complex.

Aligning multiple networks promises additional insights
into the protein complexes as well as the knowledge-
transfer across multiple species. However the alignment
of multiple PPI networks has additional challenges. For
example, if directly applying the methods of pairwise net-
work alignment to the multiple network alignment, incon-
sistency problem might be caused. For example, as shown
in Fig. 2, the substructure (x1, x2, x3) in Net x is aligned
with (y1, y2, y3) in Net y. When they are expected to be
further aligned with the (z2, z3, z4) in Net z from consis-
tent perspective, (y4, y5, y6) might be the best alignment

Fig. 1 Disconnected sub-network problem. Proteins are represented
by vertices, PPIs by solid lines, and links between bipartite graphs by
dashed lines. Traditional pairwise local alignment might miss the
desired protein complex. For example, x1, x2 are aligned to y1 and y2,
but x3 might be aligned to y6 when maximizing the vertex similarity
score, which results in disconnected substructure

Fig. 2 Inconsistency problem. Applying traditional pairwise local
alignment in multiple alignment might miss the desired protein
complex. For example, when (x1, x2, x3) is aligned to (y1, y2, y3),
(z2, z3, z4) might be aligned to (y4, y5, y6) while (y1, y2, y3) is the more
consistent alignment. Then, inconsistency arises in Net y

instead if it was a pairwise alignment between Net y and
Net z. However, since the goal of multiple network align-
ment is to find conserved protein complexes across all PPI
networks, (y1, y2, y3) should be a better result.

In this paper, we propose a new approach to find con-
served protein complexes by network alignment. The
main contributions are as follows:

• We identify the problem of finding conserved protein
complex via aligning multiple PPI networks. In this
way, the knowledge of protein complexes in
well-studied species can be extended to that of many
poor-studied species.

• We propose an efficient method to find conserved
protein complexes from multiple PPI networks. In
this method, we take the feature of subnetwork
connections into consideration, which improves the
coverage significantly without compromising the
consistency of aligned results.

• Extensive experiments are conducted on the PPI
networks of four species including human, yeast, fruit
fly and worm. These results in terms of coverage and
consistency illustrate the dominant benefit of the
proposed method in finding protein complexes
across species.

Method
Problem definition
Definition 1. Target network: A PPI network Gt = (Vt , Et)
is called target network if the given protein complexes to be
aligned belong to Gt, where Vt is the set of proteins and Et
is the set of interactions between them.
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The knowledge such as protein complexes of a target
network can be extended to other PPI networks via net-
work alignment. We define the other PPI networks as
aligned networks.
Definition 2. Aligned networks: Let G = {Gi} (1 ≤ i ≤ ξ)

be the set of aligned networks, where ξ is the number of PPI
networks to be aligned with target network. Gi = (Vi, Ei)
(1 ≤ i ≤ ξ) is the ith PPI network to be aligned, where Vi,
Ei are the sets of proteins and their interactions.

Given target network, aligned networks and protein
complexes of target network, we define the input of the
problem as follows.

Input: (1) The set of aligned networks G = {Gi, 1 ≤ i ≤
ξ}, where ξ is the number of aligned networks. (2) The
set of well studied protein complexes in target network
Gt : S = {S1, S2, ...Sζ }, where ζ is the number of protein
complexes to be aligned.

Then the alignment result as the output is defined as
follows.

Output: Without loss of generality, for any protein com-
plex M0, M0 ∈ S, the alignment result is a matchset
M = {M1, M2, . . . , Mξ } consists of a set of ξ subnetworks,
where Mk ⊆ Gk , 1 ≤ k ≤ ξ , Gk ∈ G, which satisfies:
(1) any Mk ⊆ Gk is a connected subnetwork of Gk ; (2)
maximizing the similarity score of {M0, M1, M2, . . . , Mξ }.

With the definitions and notations above, our algorithm
of finding protein complexes across multiple PPI networks
via network alignment mainly follows two procedures:
assigning scores to proteins according to both biological
and structural features, and then heuristically selecting
proteins that form connected subnetwork in each PPI
network which finally achieves optimized total score for
multiple PPI networks.

Scoring strategy of network alignment
Overall, we utilize both the biological similarity between
proteins and the topological structure to assign scores on
subnetworks for subsequent heuristic selections of pro-
teins. Formally, given a protein complex of target network
M0 ⊆ Gt , its match result {M1, M2, . . . , Mξ } in aligned
networks, where Mk ⊆ Gk , is assigned with a real-valued
score �:

� =
∑

k∈{1,...,ξ}

∑

vj∈VMk

(
α ∗ δbio(vj) + (1 − α) ∗ δtopo(vj)

)

(1)

where ξ is the number of PPI networks, VMk is the set of
proteins in Mk , α is a coefficient to trade off biological
and topological scores, δbio and δtopo are the biological and
topological scores respectively. In the following, we will
describe the details of determining the δbio and δtopo.

Assume Mk ⊆ Gk is the current subnetwork to be
assigned a score, where Gk , 1 ≤ k ≤ ξ , is the current
aligned network. At each time, choose another PPI net-
work denoted as Gh, (h �= k) ∧ (1 ≤ h ≤ ξ), then
Gt , Gk , Gh construct a group of triple networks. Denote
Mh ⊆ Gh as subnetwork of Gh to align with M0. For every
h, we calculate score for the proteins in Gk in the triple
networks.

We use Fig. 3 as an example to show the method of
assigning scores, where M0 is the target subnetwork in
target network Net x consisting of (x1, x2, x3), Mk is the
subnetwork in aligned network Net y to be assigned scores
consisting of (y1, y2, y3). And the subnetwork of (z2, z3, z4)
in aligned network Net z is to be aligned with M0.
Definition 3. Link: If a pair of proteins (u, v) comes from
different PPI networks, and (u, v) are sequence similar, then
(u, v) is called a link.

Sequence similarity [12] can be obtained with the
BLASTP method [13]. We connect a dashed line to denote
a link in this paper.
Definition 4. Thread: If triple proteins (u, v, t) comes from
three different PPI networks, and there exist links between
(u, v), (u, t) and (v, t) at the same time. Then they form a
thread.

The biological score of a protein consists of: (1) the
number of links with the subnetwork M0, (2) the num-
ber of links with the subnetwork Mh, and (3) the number
of threads among these three subnetworks which contain
the current protein. We denote these three scores as δ1

bio,
δ2

bio, δ3
bio. Taking y1 in Fig. 3 as example, there are links

(y1, x1), (y1, z2) and thread (y1, x1, z2). Therefore, δ1
bio, δ2

bio,
δ3

bio of vertex are all “1". To avoid excessive influence of one

Fig. 3 Illustration of assigning scores. Net x is the target network, and
M0 is the given protein complex. Net y is an aligned network. Taking
y1 as example, its scores (δ1

bio , δ2
bio , δ3

bio , δ1
topo , δ2

topo) are 1, 1, 1, 2, 3,
respectively
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factor, we adopt a transform techniques by multiplying a
coefficient. The biological score of a protein u is:

δbio(u) = (
δ1

bio
) 1

λ + (
δ2

bio
) 1

λ + (
δ3

bio
) 1

λ (2)

where δ1
bio, δ2

bio, δ3
bio are the numbers of links with M0, Mh

and the number of threads respectively. e is Euler number
and λ (λ > 1) is the parameter of transform.
Definition 5. Component: a connected graph Gc =
(Vc, Ec) is a component of subnetwork Mk if Gc ⊆ Mk.

The topological score of a vertex consists of (1) the
degree of current vertex; (2) the size of the maximal com-
ponent that includes the current vertex. As the same with
biological score, we adopt a transform techniques by mul-
tiplying a coefficient. The topological score of a vertex u
is:

δtopo(u) =
(
δ1

topo

) 1
ω +

(
δ2

topo

) 1
ω (3)

where δ1
topo is u’s degree in its subnetwork, and δ2

topo is
the size of the maximal component that includes u. ω is a
parameter of transform. In our method, ω > 1.

Alignment algorithm
Given the multiple PPI networks and target protein com-
plex from the target PPI network, the alignment process is
shown in Algorithm 1, which It mainly includes:

(1) Generate initial candidate pools.
Only those proteins that have links with given protein

complex can be selected as candidate proteins since
links represent the biological similarity between proteins
across PPI networks according to Definition 3. For each
aligned network Gi 1 ≤ i ≤ ξ , we construct a pool for a
given protein complex M0, where M0 ∈ Gt . All vertices in
Gi are put into the pool of Gi if they have links with any
vertex in M0, as shown in Line 5 of Algorithm 1. Then,
the initial subnetworks M are selected randomly from the
pools.

(2) Simulated annealing process.
Simulated annealing process adopts iteration method

for global optimal solution. In each loop, a protein from
the candidate pool is chosen randomly to be determined
as aligned protein in the corresponding PPI network (Line
14 of Algorithm 1). On the other hand, there are two
kinds of proteins that could be moved out from the cur-
rent alignment solution (Line 13 of Algorithm 1). The first
kind is the protein whose score is the lowest in the cur-
rent solution: {v|v ∈ VMε ∧ argminv score(v)}. The other

Algorithm 1: Alignment algorithm
Input: Set of PPI networks to be aligned

{G1, G2, . . . , Gξ }, a target PPI network Gt and
protein complex M0 ⊆ Gt , Tmax, θ , K, N

Output: Set of matched protein complexes
M = {M1, M2, . . . , Mξ }

1 T0 = Tmax ;
/* Initiate candidate pools: */

2 foreach g ∈ {G1, . . . , Gξ } do
3 poolg = NULL ;
4 foreach u ∈ VM0 do
5 poolg = poolg ∪{v|(u, v) exists a link ∧ v ∈ Vg}
6 end foreach
7 Mg = random(poolg , |VM0 | ∗ θ ) ;
8 end foreach
/* Simulated annealing process: */

9 for i ← 1 to K do
10 Ti = T0 − i ∗ (Tmax − Tmin)/K ;
11 foreach j ← 1 to N do
12 ε = j MOD ξ ;
13 vout = RandomGetOne{v|v ∈

VMε ∧(degree(v) == 0∨(argminv score(v)))} ;
14 vin = RandomGetOne{v|v ∈ poolε ∧ v �∈ Mε} ;
15 M′

ε = Mε − vout + vin ;
16 �� = ∑

g∈{G1,...,Gξ }
(
�(M′

g) − �(Mg)
)

;

17 if (�� > 0) or (rand(0, 1) < e
��
sTi ) then

18 Mε = M′
ε ;

19 end if
20 end foreach
21 end for
22 for i ← 1 to ξ do
23 Mi = largest component in Mi
24 end for
25 return M = {M1, M2, . . . , Mξ }

kind is the protein whose corresponding vertex in the cur-
rent subnetwork is not connected with other vertices, i.e.,
its degree is zero. As shown in Line 16–19 of Algorithm
1, if the new candidate solution achieves higher score, it
will take place the previous solution. If not, it still has
chance to replace the prior solution with a probability

of
(

rand(0, 1) < e
��
sTi

)
, where e

��
sTi returns the selection

threshold for the selection of simulated annealing process.
Finally, the algorithm returns the best solution as the
alignment of protein complexes M = {M1, M2, . . . , Mξ }.

Results and discussion
In this section, we evaluate the performance of our
method through extensive experiments. We compare our
method to LocalAli [14] since LocalAli is the most recent
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local alignment method for PPI networks. We measure the
coverage and consistency of the alignment networks.

Dataset and experimental setup
Real-world PPI networks of four species are used in
our experiments, including Homo sapiens (human), Dor-
sophila melanogaster (fruit fly), Caenorhabditis elegans
(worm) and Saccharomyces cerevisiae (yeast) [15]. The
detailed numbers of proteins and interactions for each
species are listed in the Table 1.

We also obtained the corresponding sequences of all
proteins from manually annotated and reviewed database
UniProtKB/Swiss-Prot [16] for calculating pairwise pro-
tein similarity, i.e., e-value, by conducting BLASTP 2.3.0
(downloaded from the NCBI BLAST [17]) and setting
e−7 as the e-value cutoff, to select the potential homolo-
gous proteins across different species. The corresponding
Gene Ontology (GO) annotations of the proteins are col-
lected from the Uniprot-GOA database for the alignment
evaluations.

As human and yeast are the two best studied species
[18], we build data sets by assigning them alternatively as
the target PPI network for the alignment, and choose two
from the rest of our collected PPI networks as aligned net-
works. There are total of six datasets generated, with each
dataset as a group of multiple PPI networks to perform
alignment. The composition of the six datasets are listed
in Table 2.

With most local alignment algorithms that are pairwise,
LocalAli [14] is one of the few most recent local align-
ment approaches. In LocalAli, a framework is proposed
to reconstruct the evolution history of conserved mod-
ules based on a maximum-parsimony evolutionary model.
LocalAli aims to identify functionally conserved modules
from multiple biological networks, which is able to be
used as a comparison method to our proposed algorithm.
We run LocalAli with its default parameters on the six
datasets in Table 2 to obtain target protein complexes, by
retrieving every matchset in its results and obtain whose
proteins form a component in the target network. The
components from the target network are used as the input
of our algorithm. In the experiment, we set the parame-
ters α = 0.5, θ = 1.1, K = 20, N = 100, Tmax = 100, λ =
4.5, ω = 3. The results are compared with LocalAli in
terms of coverage and consistence.

Table 1 Proteins and interactions of four species

PPI networks # Proteins # Interactions

A:Human(H.sapiens) 11,258 47,031

B:Worm(C.elegans) 9,302 15,669

C:Fruit Fly(D.melanogaster) 8,725 27,053

D:Yeast(S.cerevisiae) 5,494 54,163

Table 2 Datasets composition

Datasets Target species A Aligned species B Aligned species C

D1 A:Human B:Worm C:Fruit Fly

D2 A:Human B:Worm D:Yeast

D3 A:Human C:Fruit Fly B:Worm

D4 D:Yeast B:Worm A:Human

D5 D:Yeast B:Worm C:Fruit Fly

D6 D:Yeast C:Fruit Fly A:Human

Coverage
A larger and denser connected component can give more
insight of common topology of the network and it could be
more biologically significant. The coverage analyzes the
numbers of proteins in the aligned subnetworks from each
aligned PPI networks with the given motifs in the target
network.

As shown in Table 3, We compare our algorithm with
LocalAli [14] on the six datasets, where D1∼D3 are
assigning human PPI network as the target network and
D4∼ D6 get the yeast as the target network. For each
dataset, since we utilize the largest component in the
according target PPI network from the LocalAli as our tar-
get protein complex for alignment, the average number of
proteins in every target network are all the same to that

Table 3 Comparison of coverage

Dataset PPI network Average size of protein complexes Ratio

Proposed LocalAli [14]

D1 target network A 7.05 7.05 100.00%

aligned network B 4.73 3.64 129.95%

aligned network C 5.54 3.07 180.46%

D2 target network A 8.56 8.56 100.00%

aligned network B 4.99 2.75 181.45%

aligned network D 9.89 3.99 247.87%

D3 target network A 6.86 6.86 100.00%

aligned network C 3.07 3.07 100.00%

aligned network B 7.86 5.79 135.75%

D4 target network D 7.74 7.74 100.00%

aligned network B 7.09 3.47 204.32%

aligned network A 8.82 7.79 113.22%

D5 target network D 5.05 5.05 100.00%

aligned network B 4.28 3.95 108.35%

aligned network C 3.55 3.32 106.93%

D6 target network D 5.81 5.81 100.00%

aligned network B 4.31 4.13 104.36%

aligned network A 6.88 5.75 119.65%

The ratio is the result obtained by dividing the average size of protein complexes of
our proposed method by that of LocalAli
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of the LocalAli, i.e., ratio is 100% for the target network.
The ratio is the result obtained by dividing the average size
of protein complexes of our proposed method by that of
LocalAli. As in the aligned networks, our method can gen-
erate larger sizes of aligned protein complexes than that of
the LocalAli among all datasets. One exception is in the
dataset D3, where two method obtained equal coverage in
one of the aligned networks, while obtaining much higher
coverage in the other aligned networks. Similar situation
exist in dataset D6. In dataset D1, D2, and D4, our algo-
rithm achieves significantly higher coverage in all aligned
networks, with the largest one has nearly 248% coverage
to the LocalAli.

Consistency
The calculation of the consistency utilizes the Gene
Ontology (GO) annotations associated to each of the
proteins, with three basic types of ontologies describing
biological properties: biological process (BP), molecular
function (MF) and cellular component (CC) [19]. It is
assumed that proteins with more similar GO annotations
are more functionally coherent [20]. We calculate and ana-
lyze such functional similarity by the fraction of aligned
proteins that share same GO annotations. The larger the
fraction, the more biological significance the alignment
has.

The consistency, specifically measured by the mean
entropy (ME) and mean normalized entropy (MNE),
serves as a specificity metric to measure the quality of
alignment. To calculate ME, we first obtain the entropy
E(M) of a matchset M, i.e. the protein complexes aligned
to one protein complex in the target species among all
participated PPI networks, with following formulation:

E(M) = E(v1, v2, . . . vn) = −
d∑

i=1
pi × log(pi) (4)

where pi is the fraction of all proteins in the matchset M
with the annotation GOi, and d represents the total num-
ber of different GO terms in M. Thus the aligned matchset
with more consistency will have lower entropy. The ME of
the matchset is then calculated by averaging the entropies
of all matchsets generated from the alignment to all the
protein complexes in the target species, and the lower
the ME of the alignment results, the higher consistency a
method performs, indicating a better biological quality.

Similar to ME, for the MNE, we first calculate the
normalized entropy NE(M) for a matchset as:

NE(M) = NE(v1, v2, . . . vn) = − 1
logd

d∑

i=1
pi×logpi (5)

where pi and d have the same interpretation of those in the
E(M). The MNE of the alignment results is then computed
by calculating the average of the normalized entropy of

all matchsets with their size. The lower MNE, the better
functional consistency an alignment method achieves.

The comparison of consistency between the results
from LocalAli and our algorithm is shown in Table 4. The
ratio is the result obtained by dividing the ME or MNE of
our proposed method by that of LocalAli then subtract-
ing one. We can observe that in D1, D4, D5 and D6, our
method generates aligned protein complexes with slightly
higher ME and MNE than that of the LocalAli, where the
ratio of the consistency less to LocalAli range from 0.76 to
6.48%. Meanwhile, we achieve higher ME and MNE than
LocalAli in D2 and D3, with 8.12% better consistency at
most.

For PPI network alignment, it is more important
to achieve the alignment of functional modules than
the alignment of proteins alone. The proposed Con-
nectedAlign achieves this goal without losing the consis-
tence and coverage. In the future, the genome information
could be used for biological network alignment [21].

Conclusion
In this paper, we proposed a novel approach to iden-
tify conserved protein complexes across different species.
Given target protein complexes in the target network, the
proposed method can find conserved protein complexes
in multiple aligned PPI networks. Since we take the bio-
logical feature and topological feature into consideration,
including subnetwork connectivity, our method achieves
higher coverage significantly, and keeps stable consistence
compared with previous network alignment method. The
experimental results demonstrate the significant benefits
of our proposed alignment method.

Table 4 Comparison of consistency

Dataset Metrics Consistency Ratio

Proposed LocalAli [14]

D1 ME 18.72 17.58 6.48%

MNE 4.19 4.06 3.20%

D2 ME 33.76 35.97 -6.14%

MNE 6.34 6.90 -8.12%

D3 ME 18.50 18.63 -0.70%

MNE 4.27 4.30 -0.70%

D4 ME 35.70 34.59 3.21%

MNE 6.62 6.57 0.76%

D5 ME 11.1 10.82 2.59%

MNE 2.90 2.87 1.05%

D6 ME 17.72 17.44 1.61%

MNE 4.13 4.09 0.98%

The ratio is the result obtained by dividing the ME or MNE of our proposed method
by that of LocalAli then subtracting one
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