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Abstract

Background: miRNAs play important roles in the regulation of gene expression. The rapidly developing field of
microRNA sequencing (miRNA-seq; small RNA-seq) needs comprehensive, robust, user-friendly and standardized
bioinformatics tools to analyze these large datasets. We present miRge 2.0, in which multiple enhancements were
made towards these goals.

Results: miRge 2.0 has become more comprehensive with increased functionality including a novel miRNA detection
method, A-to-I editing analysis, integrated standardized GFF3 isomiR reporting, and improved alignment to miRNAs.
The novel miRNA detection method uniquely uses both miRNA hairpin sequence structure and composition of isomiRs
resulting in higher specificity for potential miRNA identification. Using known miRNA data, our support vector machine
(SVM) model predicted miRNAs with an average Matthews correlation coefficient (MCC) of 0.939 over 32 human cell
datasets and outperformed miRDeep2 and miRAnalyzer regarding phylogenetic conservation. The A-to-I editing
detection strongly correlated with a reference dataset with adjusted R2 = 0.96. miRge 2.0 is the most up-to-date aligner
with custom libraries to both miRBase v22 and MirGeneDB v2.0 for 6 species: human, mouse, rat, fruit fly, nematode
and zebrafish; and has a tool to create custom libraries. For user-friendliness, miRge 2.0 is incorporated into bcbio-
nextgen and implementable through Bioconda.

Conclusions: miRge 2.0 is a redesigned, leading miRNA RNA-seq aligner with several improvements and novel utilities.
miRge 2.0 is freely available at: https://github.com/mhalushka/miRge.
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Background
MicroRNAs (miRNAs) are short, single-stranded RNAs
that post-transcriptionally regulate gene expression via
mRNA decay and/or translational repression [1, 2]. MiR-
NAs are transcribed by RNA polymerases II and III, gen-
erating precursors that undergo a series of cleavage
events to form mature miRNAs [3]. Around 30 to 60%
of all human protein coding genes are regulated by miR-
NAs [4], involved in almost all biological process ranging
from development to metabolism to cancer [5–7].
With the continued popularity of small RNA sequen-

cing to characterize miRNAs, much attention has been
focused on miRNA alignment software. In 2015 we in-
troduced miRge, a fast, multiplexing method to align
miRNAs and other RNA species to expressed libraries
[8]. Since that time, a number of developments in the

field have occurred necessitating improvements to this
alignment tool.
The number and classification of true miRNAs has be-

come controversial. miRBase, the central resource for
miRNA curation, lists 2656 human miRNAs in their re-
cently updated version (v22) [9]. Other manuscripts have
listed thousands more putative novel miRNAs [10–12]
including new passenger miRNA sequences of known
miRNAs. However, the MirGeneDB group has indicated,
using strict criteria, that only 586 human miRNA genes
(1171 miRNA 5p and 3p strands) exist, calling into ques-
tion the continued search for novel miRNAs and per-
haps the loose methods employed to designate short
RNAs as miRNAs from deep RNA-seq data [13].
In recent years, there has also been an increased aware-

ness and value placed on isomiRs. IsomiRs are categorized
into three main classes: 5′ isomiRs, 3′ isomiRs and poly-
morphic isomiRs, with 5′ and 3′ isomiRs subclassified
into templated and nontemplated modifications [14]. The
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5′ and 3′ isomiRs are the result of imprecise and alterna-
tive cleavage during the precursor miRNA (pre-miRNA)
processing, post-transcriptional modifications, and/or
editing by various post-transcriptional enzymes including
exoribonucleases and nucleotidyl transferases [15–19].
IsomiRs are beginning to be considered as more selective
than just miRNA expression levels and must become
well-characterized [20] and taken into account for align-
ment strategies [21]. True internal modifications (not
technical artifacts) are generally the result of adenosine
deaminase (ADAR) acting on RNA to cause an A to I
modification [22] as noted in a variety of RNA species. Re-
cently, a call to develop a consistent nomenclature for iso-
miRs using a. GFF3 file format has been made.
In response to these advancements, we now report major

improvements in the 2.0 version of miRge. These include a
highly-specific novel miRNA detector based on a machine
learning algorithm, a standardized GFF3 isomiR reporting
option, and an A-to-I (ADAR1) modification detector.
Smaller revisions have been made to the algorithm and li-
braries to improve miRNA and tRNA calling, increase flexi-
bility of reporting and unification of the code base to
Python for ease of programming and allowing for the im-
plementation of miRge 2.0 into the bcbio-nextgen frame-
work. Bcbio-nextgen is a shared-community Python-based
toolkit for pipelining and automated analysis of deep se-
quencing data (https://github.com/bcbio/bcbio-nextgen).
We report the improvements and comparisons to other
tools below.

Implementation
Sequence databases and software dependencies
miRNA libraries were obtained from both miRBase.org [9]
and MirGeneDB [13, 23]. mRNA and noncoding libraries
were obtained from Ensembl (www.ensembl.org) and other
sources (See Additional file 1: Extended Materials and
Methods). miRge 2.0 was written in Python (2.7.12) and
utilizes a number of tools and libraries including Bowtie
(v1.1.1) [24], RNAfold (v2.3.5) [25], SAMtools (v1.5) [26],
cutadapt (v1.11) [27], biopython (v1.68), sklearn (v0.18.1),
numPy (v1.11.0), SciPy (v0.17.0), pandas (v0.21.0), reportlab
(v3.3.0) and forgi (v0.20). (See Additional file 1: Extended
Materials and Methods), which are included in an installer.
The entire package is available through Bioconda and
https://github.com/mhalushka/miRge. miRge 2.0 runs on a
Linux platform (Ubuntu 16.04.3).

miRge 2.0 workflow
Figure 1 shows the workflow of miRge 2.0. In Fig. 1,
similar to the original miRge, the input FASTQ (or
FASTQ.GZ) file(s) undergo prealignment steps of quality
control, adaptor removal (cutadapt v1.11) and collapse
into unique reads. Their observed counts are subse-
quently merged across all unique samples [8]. This file is

then annotated against multiple search libraries: mature
miRNAs, miRNA hairpins, mRNAs, mature & primary
tRNAs, snoRNAs, rRNAs, other non-coding RNA, and
(optional) known RNA spike-in sequences [28, 29]. A
full rationale of the method was given previously [8] and
additional modifications are described in “Improvements
of miRge 2.0” and in the Additional file 1: Extended
Material and Methods.

Datasets to model novel miRNA detection
Sequencing datasets from 17 tissues in human and
mouse (adrenal, bladder, blood, brain prefrontal cortex,
colon, epididymis, heart, kidney, liver, lung, pancreas,
placenta, retina, skeletal muscle, skin, testes and thyroid)
were retrieved from the NCBI Sequence Read Archive
(SRA) (Table 1).
These samples were processed through miRge 2.0 to

identify the different RNA species for machine learning
controls. MirGeneDB miRNAs were used to assemble
positive clusters (known miRNAs). RNAs in the cat-
egories of tRNA, snoRNA, rRNA or mRNA were used
to assemble negative clusters (known non-miRNAs).
Sequences in repeat elements were excluded. The de-
tails regarding the final selection of RNA species used
are listed in “Generation of read clusters” and in the
Additional file 1: Extended Materials and Methods.

Clustering reads to determine features for model
construction and novel miRNA detection
To build a predictive model and for novel miRNA detec-
tion, unmapped reads are aligned and clustered to the
genome. Figure 2a illustrates this process, specifically dur-
ing the development of the predictive model, where
known miRNAs and known non-miRNAs are processed
through multiple steps. During novel miRNA detection,
all reads are processed as one, features are determined
and these are then fed into the predictive model, rather
than being used to build the predictive model. For both
development and use of the predictive model, structural
features (Additional file 2: Table S1) were generated from
the clusters. These methods are described in further detail
in the Additional file 1: Extended Materials and Methods.

Calculating compositional features of read clusters
miRNAs have a characteristic processing pattern by
DICER and DROSHA to create a unique, but compli-
cated family of reads and isomiRs. The 5′ ends of the
family of reads tends to consistently begin at the same
nucleotide, the 3′ end tends to be variable and nucleo-
tide additions of uracils (U/T) or adenines (A) are fre-
quently seen here. Non-miRNAs tend to not share
these features, so this difference can be exploited
(Additional file 3: Figure S1). In order to codify these
patterns, several features of read clusters were defined
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as follows: 1) the 5′ and 3′ unstable length of the clus-
ter; 2) genome (DNA) nucleotide proportion at the po-
sitions − 3, − 2, − 1 of 5′ and + 1, + 2, + 3, + 4, + 5, + 6
of 3′ in the stable range of the cluster sequences; 3) A,
T, C, and G percentages in the expressed RNA at the
positions − 3, − 2, − 1 of 5′ and + 1, + 2, + 3, + 4, + 5, +
6 of 3′ in the stable range of the cluster sequences. In
addition, sequence type count, total read count and
the proportion of reads that are an exact match to the
cluster sequences were calculated as well.

Prediction models for novel miRNA detection
We generated measurable features associated with read
cluster composition and precursor miRNA structures.
These features are listed in Additional file 2: Table S1. The
discrimination power of each feature was ranked by its
Minimum Redundancy Maximum Relevance (mRMR)
score. We applied forward stepwise feature selection [30],
to subselect the most informative features.
To test the model for robustness, the dataset was ran-

domly split into training and validation sets at the ratio

Fig. 1 Workflow of miRge 2.0. It illustrates the flow chart from input to output. The models of A-to-I editing sites for known miRNAs and novel
miRNAs detection are newly added functions, while the original outputs are shown in dashed box
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Table 1 Data sets for constructing the predictive model in human and mouse

Tissue Type SRA References in human SRA References in mouse

Adrenal SRR944031, SRR944034 SRR3653309, SRR3653310

Bladder SRR333658, SRR333674 SRR3652859, SRR3652860

Blood SRR837475, SRR837477 SRR5241767, SRR5241768

Brain Prefrontal Cortex SRR1635903, ERR409900 SRR3540303, SRR3540304

Colon SRR837839, SRR837842 SRR1973865

Epididymis SRR384894 NA

Heart SRR553574, ERR038425 SRR5832818, SRR5832819

Kidney SRR553575, ERR038420 SRR3652244, SRR3652245

Liver ERR038413, ERR038410 SRR5832837, SRR5832838

Lung SRR372648, SRR372650 SRR5059366, SRR5059367

Pancreas ERR852097, ERR852099 SRR1973869

Placenta SRR567637, SRR567638 NA

Retina ERR973611, ERR973613 SRR1427160, SRR1427161

Skeletal Muscle SRR1635908, SRR1820680 SRR3651659, SRR3651660

Skin SRR2174513, SRR2174517 SRR3402126, SRR3402132

Testes SRR333680, SRR553576 SRR1647951, SRR1647953

Thyroid SRR1291267, SRR1291269 NA

a b

Fig. 2 The process of construction of the predictive model. a The building of the predictive model composed of data preparation, feature
calculation, feature selection and machine learning model training. (Key parameters are in parentheses.) b Schematic diagram of generating a
stable range of clustered sequences in a cluster. The sequences in the cluster were aligned against the assembled sequence. The probability of
the major nucleotide at each position was computed. A threshold of 0.8 was selected to determine the stable range of the cluster sequence
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of 4:1 in 10 replicates. Standardization was performed
to scale the features into zero mean and unit variance.
The parameters of the estimator were optimized by 10
fold cross-validated grid-search over a parameter grid.
The searching space of C and gamma in radial basis
function kernel of SVM [31] were {0.0001, 0.001, 0.01,
0.1, 1.0, 10.0, 100.0, 1000}. The SVM model was imple-
mented by scikit-learn Python package (http://scikit-le
arn.org). Matthews correlation coefficient (MCC) was
used to evaluate the performance of the training model.
The models were additionally tested on 12 rat samples
(Additional file 4: Table S2).

A-to-I editing analysis
We utilized the mapped output file to identify all reads
corresponding to each miRNA for A-to-I editing, as
noted as an A to G change. Four exclusion criteria were
made to reduce false positive A-to-I identifications based
on possible and known sequence similarities and align-
ment problems. We excluded the putative A-to-I signals
if: 1) the locations where similar miRNA families or
miRNA SNPs that have A/G differences could be mis-
taken for A-to-I changes (i.e. nucleotide position 19 in
let-7a-5p and let-7c-5p which differ only by an A/G vari-
ation and miR- 548al which has a SNP (A-to-G) at pos-
ition 8 with the frequency of 0.18); 2) the 455 miRNAs
found in repeat elements which could give false positives
(i.e. miR-6503-3p is located in a MTL1D long terminal
repeat.); 3) the miRNAs where the RPM of the canonical
sequence is less than 1; 4) the miRNAs where the corre-
sponding one nucleotide switched sequence (A to G)
can be aligned to more than 1 location in the genome
with trimming the last two nucleotides at 3′. Further de-
scription is present in the Additional file 1: Extended
Materials and Methods.

GFF3 isomiR reporting
The increased awareness and interest in isomiRs is chal-
lenged by the lack of consistent isomiR reporting. As a
result, a consensus standard has been developed by the
miRTop consortium utilizing CIGAR values (https://
samtools.github.io/hts-specs/SAMv1.pdf). This GFF3
formatted output reports on each isomiR sequence and
its relationship to the miRNA precursor.

Comparison to other novel miRNA tools
Currently, miRDeep2 [32] and miRAnalyzer [33] are two
prevailing tools for the prediction of novel miRNAs. In our
annotation comparison study, default parameters were uti-
lized except that the ‘-l’ was set to be 17 in the mapper.pl
for miRDeep2 and default parameters were utilized in miR-
Analyzer. In our prediction comparison study, new FASTQ
files were generated from the unmapped read data of an
original miRge run. Default parameters were utilized when

running miRDeep2 and miRAnalyzer. Two metrics of novel
miRNAs were used to compare three tools: PhyloP score
and quality score. Basewise conservation scores across miR-
NAs were calculated from PhyloP data downloaded from
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/phyloP20
way/ [34] using the PHAST package [35]. For each miRNA,
the mean of PhyloP values across its length was calculated.
The quality scores for each miRNA by each tool was de-
fined by: 1 - (ranking percentile by the tool).

Hardware
All processing was performed on a workstation with 56
CPUs (dual Intel(R) Xeon(R) E5–2690 v4 at 2.60GHz) and
256GB DDR4-RAM. Novel miRNA modelling was per-
formed using 32 CPUs. For speed testing, the number of
CPUs in running original miRge, miRge 2.0, miRDeep2
and miRAnalyzer were 5, 5, 5 and 1, respectively. Due to a
java incompatibility on the workstation, miRAnalyzer was
run on a desktop with 4 CPUs (Intel(R) Core(TM) i7–
6700 CPU at 3.40GHz) and 16GB DDR4-RAM.

Results
Improvements of miRge 2.0
The major improvements of miRge 2.0 consist of a novel
miRNA detection method, improved alignment parameters,
and the reporting of A-to-I changes in the sequence. These
are described below, while smaller improvements are re-
ported here. Utilizing updated search parameters, miRge
2.0 is able to annotate reads more precisely. In human data,
using the miRBase v22 library, miRge 2.0 will align to 2817
miRNAs of which 149 are merged due to a similarity of
their sequences. Although most miRNA alignment tools
are agnostic to exact (canonical) or mismatched alignments
(nontemplated isomiRs), miRge 2.0 sets a threshold (default
value: 0.1; range 0–0.5) of the proportion of canonical reads
to all reads for any given miRNAs. This can eliminate over
reporting of miRNAs in which too high a percentage of se-
quences are nontemplated isomiRs, likely from other gen-
omic loci or species contamination. miRge 2.0 also provides
an optional GFF3 file report, which implements the miR-
Top guidelines for isomiR reporting utilizing CIGAR values.
These can be used for isomiR-driven analyses. Additionally,
the GFF3 data file is easily incorporated into other analysis
pathway software including the bcbio-nextgen frame-
work. miRge 2.0 also generates a .csv and .pdf file re-
port of summary statistics; replacing a html report
which was more difficult to process for tabular infor-
mation. We also made several revisions to the search li-
braries. For the miRBase-based alignment search, we
included additional SNP information in the miRNA li-
brary based on the updated miRNASNP database [36].
For the miRBase based searches, we have also included
161 5p or 3p miRNAs that are the complement of known
miRBase miRNAs for which the passenger strand was
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detected recently [11]. Thus we have expanded our miR-
Base search library from 2656 miRNAs in our original
method to 2817 miRNAs currently. We have also built a
MirGeneDB 2.0-based alignment library that is corrected
for SNP information for those investigators seeking this
more specific set of miRNAs. We have also improved the
tRNA alignments by adding “CCA” to the 3′-end of
mature tRNA sequences and the precursor tRNA se-
quences at the 3′-end. For any alignment, we have added
an optional spike-in RNA library search based on two
popular sources of spike-in normalization [28, 29]. This
search can easily be expanded to capture newer spike-in
normalization methods as they appear. All options to call
in miRge 2.0 are shown in Additional file 5: Table S3.

Speed and annotation comparison of original miRge and
miRge 2.0
We performed tests of speed and annotation function of
miRge 2.0 using six datasets. Both miRBase and MirGen-
eDB based libraries were analyzed although novel miRNA
detection and A-to-I analysis were not performed. We
found the processing time of miRge 2.0 was similar to the
original miRge although bowtie searching libraries and
searching parameters were adjusted (Table 2).
The number of detected miRNAs was slightly decreased

as well. The alignment speed was essentially the same as
miRAnalyzer and significantly faster than miRDeep2. The
discovery of novel miRNAs is more time and memory in-
tensive, as expected. For the dataset SRR553572 with 25.7

Table 2 Annotation comparison of the first version of miRge, miRge 2.0, miRDeep2 and miRAnalyzer

Tissue/Cell SRA References Alignment Tool Processing time miRNA Reads Unique miRNAs miRNAs > 10 RPM

Human Adipose Tissue SRR772563 miRge - mb 35 s 2,041,433 484 240

miRge 2.0 - mb 36 s 2,039,835 477 238

miRge 2.0 - MDB 35 s 2,034,710 390 220

miRDeep2 9.3 min 1,981,793 598 224

miRAnalyzer 30 s 1,752,855 689 243

Human Alpha Cell SRR1028924 miRge - mb 14.6 min 44,124,580 920 293

miRge 2.0 - mb 15.6 min 43,880,855 911 279

miRge 2.0 - MDB 15.0 min 43,752,598 583 261

miRDeep2 56.0 min 42,326,135 864 267

miRAnalyzer 18.4 min 34,349,816 1124 281

Human Beta Cell SRR873410 miRge - mb 6.5 min 26,196,298 896 297

miRge 2.0 - mb 6.6 min 26,197,845 889 291

miRge 2.0 - MDB 6.5 min 26,130,904 585 274

miRDeep2 34.1 min 23,280,604 754 273

miRAnalyzer 8.0 min 14,240,669 1113 289

Mouse Stomach Tissue SRR3653378 miRge - mb 2.0 min 7,063,128 804 457

miRge 2.0 - mb 2.3 min 7,175,534 806 420

miRge 2.0 - MDB 2.2 min 7,094,217 578 378

miRDeep2 18.5 min 6,738,987 748 387

miRAnalyzer 2.5 min 6,818,220 1086 423

Mouse Epididymal Epithelial Cell SRR2075702 miRge - mb 3.0 min 1,394,193 435 364

miRge 2.0 - mb 3.6 min 1,387,591 411 290

miRge 2.0 - MDB 3.4 min 1,381,670 360 271

miRDeep2 24.4 min 1,367,627 402 212

miRAnalyzer 3.0 min 925,019 532 270

Mouse B3 Cell SRR2960463 miRge - mb 3.7 min 9,515,760 604 322

miRge 2.0 - mb 3.9 min 9,612,571 606 282

miRge 2.0 - MDB 3.9 min 9,553,713 359 227

miRDeep2 32.6 min 8,321,228 487 251

miRAnalyzer 4.2 min 6,856,264 819 289

Key: mb =miRBase; MDB =MirGeneDB. Starting read counts: SRR772563 = 2,373,604 reads; SRR1028924 = 82,497,527 reads; SRR873410 = 33,233,648 reads;
SRR3653378 = 9,587,887 reads; SRR2075702 = 13,890,643 reads; SRR2960463 = 17,652,076 reads
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million reads, to identify novel miRNAs, the calculation
time and maximum memory consumption were 17 mins
and 6.7 GB RAM respectively.

A-to-I editing analysis
To evaluate the accuracy of A-to-I editing analysis, we
performed A-to-I analysis using a pooled human brain
sample (SRR095854) and compared the results to prior
published data on this sample [37]. We identified 19 sig-
nificant A-to-I modification sites compared to 16 re-
ported in the reference paper. Comparing the two sets
of results, the adjusted R2 of A-to-I proportion of these
shared 16 sites was 0.96 and the slope of the linear re-
gression was 0.99 indicating high reproducibility be-
tween our method and the established method (Fig. 3a).
We then performed a new A-to-I editing analysis across
colon tissue (Sequence Read Archive samples: SRR837842
and SRR837839), colon epithelial cells (SRR5127219), colon
cancer (SRR1646473 and SRR1646493), and the colon can-
cer cell lines DKO1 (SRR1917324), DLD1 (SRR1917336)
and DKS8 (SRR1917329). Significant miRNA editing sites
with A-to-I percentage ≥ 1% in at least one sample were
shown in Fig. 3b, with the data indicating differences be-
tween tumor and normal cells in ADAR activity [38].

Validation of the predictive model
To determine the optimal number of features to use in
the human and mouse predictive model, the MCC for
the training and validation sets for the top 40 ranked
features based on mRMR scores are shown in Fig. 4. For
human data, when the number of features reached 21,
the mean value of MCC of training and validation set

approached the maximum and became stable. These top
features are listed in Table 3.
Among them, there are 11 precursor miRNA structural

features and 10 compositional features. The ultimate
model was constructed using these selected features. We
used 32 human cell data sets to test the model. The posi-
tive and negative miRNAs were generated through the
same process described above. The predictive result is
shown in Table 4. The mean of MCC is 0.94, indicating
that the performance of the model in the test set is good.
Meanwhile, in the mouse predictive model, the opti-

mal number of features are 12 which is shown in
Additional file 6: Table S4. These 12 features are a sub-
set of the 21 human features used. The performance of a
mouse model towards 19 mouse cell datasets are shown
in Additional file 7: Table S5 where the mean of MCC is
0.93, indicating that the mouse model performed well on
the test dataset.

Comparison with other novel miRNA detection tools
Using miRge 2.0, we identified 302 RNA species that are
putative novel miRNAs from 32 cell types [11]. Referring to
these sequences as novel miRNAs, without further valid-
ation, may be incorrect terminology. However, without
other terminology for these small “true miRNAs” or “miR-
NA-like RNA species,” we will refer to them as putative
novel miRNAs. We then used the same unmapped reads
generated from miRge 2.0 as input for miRDeep2 and miR-
Analyzer. They predicted 1975 and 18,168 putative novel
miRNAs respectively. After thresholding the data from
those two tools to the same parameters as miRge 2.0 (≥10
total reads, ≥3 sequences, etc.), there were 312 and 391 pu-
tative novel miRNAs remaining. As shown in Fig. 5a, a

a b

Fig. 3 A-to-I analysis. a The A-to-I proportion of the sites is strongly correlated with a reference dataset analysis with adjusted R2 of 0.96 in the
log-log plot. b The output of miRge 2.0 showing an illustrated heat map of miRNA A-to-I editing sites across colon tissue, primary colon cell,
colon cancer tissue and colon cancer cells from multiple sources
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Fig. 4 Model performance on top 40 features for training and validation sets for human a and mouse b miRNA discovery. Each dot stands for
the mean value of Matthews correlation coefficient (MCC)

Table 3 Top 21 features in human predictive model. Hairpin structural features are labeled in italics, while read compositional
features are not

Rank Feature name Description of the feature

1 count_bindings_in_miRNA Number of bindings in the stable range of sequences

2 exactMatchRatio The proportion of reads that are an exact match to the cluster sequence in the cluster

3 pair_state_No Whether there is another stable range of sequences located at the other arm of precursor

4 mFE Minimum free energy (MFE) of the precursor

5 head_minus3_TemplateNucleotide_percentage Proportion of genomic templated nucleotide at position −3 relative to the 5′ end of the
stable range of the cluster sequences

6 hairpin_count Number of hairpin loops in the precursor

7 stem_length Stem length of the precursor

8 distanceToloop Distance between the stable range of sequences and the terminal loop

9 percentage_PairedInMiRNA Number of bindings in the stable range of sequences divided by its length

10 headUnstableLength 5′ unstable length of the cluster

11 pair_state_Yes Whether there is another stable range of sequences located at the other arm of precursor

12 tail_plus2_A_percentage Proportion of non-templated adenine (A) at position + 2 relative to the 3′ end of the stable
range of the cluster sequences

13 head_minus2_TemplateNucleotide_percentage Proportion of genomic templated nucleotide at position −2 relative to the 5′ end of the
stable range of the cluster sequences

14 binding_count Number of bindings in the precursor hairpin

15 tail_plus1_A_percentage Proportion of non-templated adenine (A) at position + 1 relative to the 3′ end of the stable
range of the cluster sequences

16 armType_loop Whether the stable range of sequences is located at the terminal loop if the precursor

17 tail_plus3_A_percentage Proportion of non-templated adenine (A) at position + 3 relative to the 3′ end of the stable
range of the cluster sequences

18 tail_plus5_TemplateNucleotide_percentage Proportion of genomic templated nucleotide at position + 5 relative to the 3′ end of the
stable range of the cluster sequences

19 tail_plus1_TemplateNucleotide_percentage Proportion of genomic templated nucleotide at position + 1 relative to the 3′ end of the
stable range of the cluster sequences

20 interiorLoopCount Number of interior loops in the precursor

21 head_minus1_TemplateNucleotide_percentage Proportion of genomic templated nucleotide at position −1 relative to the 5′ end of the
stable range of the cluster sequences
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Venn diagram depicts the overlap among miRge 2.0, miR-
Deep2 and miRAnalyzer, showing 129 novel miRNAs
shared between the three methods. We then calculated the
mean PhyloP scores as a measure of nucleotide conserva-
tion across primates for the novel miRNAs (Fig. 5b). More
conservation was noted for the shared novel miRNAs
(0.14) compared to miRAnalyzer (0.013) and miRDeep2 (−
0.036). Conservation was equivocal between the shared
novel miRNAs and the miRge 2.0 novel miRNAs (0.15) As
all three tools give a quality score to each novel prediction,
we compared these values for miRNAs found shared vs.

those unique to each method. As shown in Fig. 5c, the
overlapped miRNAs ranked higher in quality for each
method, further suggesting these 129 are the optimal puta-
tive novel miRNAs from the group. The full list of putative
novel miRNAs generated by the three tools are available in
Additional file 8: Table S6.

Comparison between the human model and mouse model
We used our SVM model to create an optimal novel
miRNA tool for both human and mouse. We also
trained a model using combined human and mouse data.

Table 4 Predictive results of 32 human cell data in a test set by the human model

Cell Type SRA References AUC Precision Recall MCC

Fibroblast Aorta Adventitia SRR5127206 0.995 0.983 0.963 0.945

Smooth Muscle Cell Aorta SRR5127217 0.994 0.981 0.961 0.938

Astrocyte SRR5127214 0.994 0.98 0.968 0.949

Smooth Muscle Cell Bladder SRR5127215 0.992 0.971 0.963 0.936

Fibroblast Dermal (Adult) SRR5127205 0.995 0.983 0.974 0.95

Fibroblast Dermal (Neonatal) SRR5127225 0.995 0.989 0.96 0.942

Epithelium Keratinocyte (Adult) SRR5127203 0.994 0.977 0.962 0.934

Epithelium Keratinocyte (Neonatal) SRR5127208 0.993 0.975 0.942 0.923

Endothelial Aortic SRR5139121 0.988 0.975 0.932 0.915

Endothelial Umbilical vein SRR5127213 0.993 0.981 0.954 0.926

Epithelium Bronchial SRR5127216 0.988 0.974 0.951 0.935

Chondrocyte SRR5127229 0.995 0.985 0.959 0.944

Endothelial Microvascular SRR5127201 0.991 0.973 0.957 0.945

Fibroblast Cardiac SRR5127236 0.992 0.983 0.945 0.94

Melanocyte SRR5127207 0.995 0.99 0.981 0.954

Epithelium Mammary SRR5127224 0.99 0.976 0.941 0.927

Epithelium Prostate SRR5127212 0.992 0.975 0.961 0.948

Epithelium Renal Cortex SRR5127204 0.988 0.966 0.948 0.927

Epithelium Renal Proximal SRR5127230 0.992 0.978 0.949 0.936

Stromal cell Prostate SRR5127226 0.991 0.976 0.963 0.94

Myoblast Skeletal Muscle SRR5127218 0.99 0.974 0.956 0.932

Epithelium Intestinal SRR5127223 0.994 0.985 0.973 0.957

Myofibroblast SRR5127220 0.991 0.987 0.965 0.95

Smooth Muscle Cell Prostate SRR5127222 0.991 0.978 0.961 0.943

Neuron Dopaminergic SRR5127234 0.982 0.963 0.922 0.916

Neuron Cortical SRR5127209 0.986 0.968 0.917 0.917

Mesangial SRR5127221 0.996 0.986 0.971 0.948

Osteoblast SRR5127233 0.997 0.986 0.955 0.946

Fibroblast Periodontal ligament SRR5127227 0.994 0.986 0.962 0.946

Epithelium Renal SRR5127235 0.992 0.989 0.954 0.936

Epithelium Retinal Pigment SRR5127210 0.994 0.988 0.974 0.959

Skeletal Muscle Cell SRR5127202 0.995 0.984 0.96 0.936

Mean 0.992 0.98 0.956 0.939

Std dev 0.003 0.007 0.014 0.012
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We questioned how well those tools could predict novel
miRNAs in another mammalian species. We utilized these
three (human-only, mouse-only and combined) models on
the 12 rat miRNA samples shown in Additional file 4:
Table S2. Using known miRNAs and known non-miRNAs,
we found the average MCC for the rat samples to be essen-
tially equivalent among the three models (0.95–0.96). The
average MCC for testing the human model on the mouse
data and mouse model on the human data are 0.93 and
0.89, respectively. Therefore, although same-species model-
ing might be ideal, the combined human and mouse SVM
model is incorporated to be used for other mammalian
species in miRge 2.0.

Discussion
In light of the positive and negative feedback we re-
ceived for our original miRge tool, we generated an im-
proved 2.0 version. miRge 2.0 has a more robust search,
better overall output reporting, more run options, and
new parameters for novel miRNA detection and A-to-I
editing detection. It can be installed by bioconda and
implemented within the bcbio-nextgen framework to
better integrate with other software tools. It still remains
one of the fastest options for alignment and can multi-
plex multiple samples in a single run. The new novel
miRNA detection tool has reasonable requirements for
RAM and can be used widely.
Our data suggests the miRge 2.0 novel miRNA detec-

tion tool is more robust than the earlier tools miRDeep2
and miRAnalyzer. As much recent literature suggests,
the novel miRNA detection tools have been too open in
their parameters, allowing an explosion of novel miRNA
reporting, that is likely inaccurate. For novel miRNA de-
tection in established species, less is likely more. We be-
lieve that our more strict requirements and unique use
of compositional features has improved miRNA discov-
ery and is a better approach going forward. We caution
though, that these are putative novel miRNAs and

should not be thought of as bona fide miRNAs unless
they meet additional parameters [13]. We are also won-
dering if a novel detection tool built for one mammalian
species could be used to detect putative novel miRNAs
in other species. Our human and mouse models assayed
with the rat data indicates, that, indeed, at least among
mammalia, our tool is robust.
We have also tried to make miRge 2.0 more robust to

current concerns of the community. Many authors have
argued that miRBase—the online repository for miRNAs
—is riddled with false positive miRNAs [39–42]. There-
fore, we have built a MirGeneDB 2.0-based alignment li-
brary, incorporating SNPs, for six species to cater to
those investigators seeking a better-defined set of miR-
NAs. We have reported concerns with using reads per
million miRNA reads (RPM) as a normalization tool
[43]. Therefore, we have added an optional spike-in
RNA library search step for spike-in normalization.
Spike-in for miRNA RNA-seq is still in its infancy, so
this step can easily be expanded/modified to account for
newer spike-in normalization methods. Currently, the
sequence libraries of human, mouse, rat, nematode,
fruitfly and zebrafish datasets are provided, but miRge
2.0 can be used by individual users to investigate any
species by constructing the sequence libraries to incorp-
orate in the miRge 2.0 workflow using our miRge_bow-
tie_build.py tool.
In our original miRge tool, we accepted that reads

could randomly align to highly similar miRNAs, e.g.
miR-192-5p and miR-215-5p; thus we reported those to-
gether as miR-215-5p/192-5p reads. The cross-mapping
of sequencing reads can create false alignments that may
be interpreted as sequence or expression alterations
which can occur in other alignment tools, as other tools
have generally not hand-curated their alignment librar-
ies. Our improvements in miRge 2.0 optimize the num-
ber of miRNAs that are clustered together to reduce
these random alignment challenges.

Fig. 5 Venn diagram for novel miRNAs predicted by miRge 2.0, miRDeep2, and miRAnalyzer. a Overlapped novel miRNAs among the three tools.
b The average basewise conservation scores across novel miRNAs. c The average Quality score across novel miRNAs among the three tools
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With the interest in ADAR activity and A-to-I changes
in RNAs, we have added a feature to miRge 2.0 to cap-
ture this information. miRge 2.0 performs robustly in
identifying these ADAR sites, comparable to other
stand-alone programs.

Conclusion
In summary, miRge 2.0 is an update of our original
miRNA alignment tool that more comprehensively and
more robustly analyzes miRNA sequencing data. We be-
lieve the improvements in miRge 2.0 will be useful to a
wide range of scientists who are interested in interpret-
ing small RNA-seq data for miRNA expression patterns.

Availability and requirements
Project name: miRge 2.0.
Project home page: https://github.com/mhalushka/

miRge
Operating System: Linux.
Programming Language: Python.
Other Requirements: Bowtie (v1.1.1), RNAfold

(v2.3.5), SAMtools (v1.5), cutadapt (v1.11), biopython
(v1.68), sklearn (v0.18.1), numPy (v1.11.0), SciPy (v0.17.0),
pandas (v0.21.0), reportlab (v3.3.0) and forgi (v0.20).
License: GNU GPL 3.0.
Any restrictions to use by non-academics: none.
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