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Abstract

Background: The search for molecular biomarkers of early-onset colorectal cancer (CRC) is an important but still
quite challenging and unsolved task. Detection of CpG methylation in human DNA obtained from blood or stool
has been proposed as a promising approach to a noninvasive early diagnosis of CRC. Thousands of abnormally
methylated CpG positions in CRC genomes are often located in non-coding parts of genes. Novel bioinformatic
methods are thus urgently needed for multi-omics data analysis to reveal causative biomarkers with a potential
driver role in early stages of cancer.

Methods: We have developed a method for finding potential causal relationships between epigenetic changes
(DNA methylations) in gene regulatory regions that affect transcription factor binding sites (TFBS) and gene
expression changes. This method also considers the topology of the involved signal transduction pathways and
searches for positive feedback loops that may cause the carcinogenic aberrations in gene expression. We call this
method “Walking pathways”, since it searches for potential rewiring mechanisms in cancer pathways due to
dynamic changes in the DNA methylation status of important gene regulatory regions (“epigenomic walking”).

Results: In this paper, we analysed an extensive collection of full genome gene-expression data (RNA-seq) and
DNA methylation data of genomic CpG islands (using lllumina methylation arrays) generated from a sample of
tumor and normal gut epithelial tissues of 300 patients with colorectal cancer (at different stages of the disease)
(data generated in the EU-supported SysCol project). Identification of potential epigenetic biomarkers of DNA
methylation was performed using the fully automatic multi-omics analysis web service “My Genome Enhancer”
(MGE) (my-genome-enhancer.com). MGE uses the database on gene regulation TRANSFAC®, the signal transduction
pathways database TRANSPATH®, and software that employs Al (artificial intelligence) methods for the analysis of
cancer-specific enhancers.
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TCF7, ZNF43.

Conclusions: The identified biomarkers underwent experimental testing on an independent set of blood samples
from patients with colorectal cancer. As a result, using advanced methods of statistics and machine learning, a
minimum set of 6 biomarkers was selected, which together achieve the best cancer detection potential. The
markers include hypermethylated positions in regulatory regions of the following genes: CALCA, ENO1, MYC, PDX1,

Keywords: Prognostic biomarkers, Colorectal cancer, Multi-omics analysis, DNA methylation, Circulating DNA,
Transcription factor binding sites, Signal transduction, Genetic algorithm

Background

Search for molecular biomarkers of colorectal cancer
(CRC) is an important and still quite challenging and yet
unsolved task, despite extensive studies of many research
groups in the world. Especially important are early bio-
markers that might recognize either the predisposition
or early stage of the disease. Cancer-specific regulation
of gene expression by aberrant DNA methylation has
been extensively described for CRC. Also, methylated
DNA fragments are well represented in the circulating
DNA. Therefore, detection of CpG island methylation in
human DNA obtained from blood or stool has been pro-
posed as a promising approach for noninvasive screening
and early diagnosis of colorectal neoplasms [1, 2]. Aber-
rantly methylated genomic DNA fragments are consid-
ered as attractive biomarkers for cancer detection and
diagnosis because of their presence as part of cell-free
circulating tumor DNA (ctDNA) in body fluids (liquid
biopsies) such as stool and blood. Usually, CRC methy-
lome is characterized by thousands of abnormally meth-
ylated CpG positions in genome, often located in
non-coding parts of genes [3]. Only few of them actually
have a cancer-driving role and their methylation level
correlates with cancer-specific changes of expression of
the respective genes. With huge amount of “omics” data
generated today novel bioinformatics methods are ur-
gently needed that would be able to reveal causative bio-
markers with potential driver role on early stage of
cancer from a multi-omics data analysis.

Colorectal cancer is one of the best-studied types of
cancer, at least in terms of its molecular etiology in com-
parison with all other types of cancers that originate
from epithelial cells. Recently, a great number of studies
have been carried out worldwide to decipher the mo-
lecular mechanisms of development of this type of can-
cer. Large international consortia, such as ICGC [4] and
SysCol [5] dedicated their work to this goal. These con-
sortia have generated a massive amount of genomic,
transcriptomic and epigenomic cancer data. These ex-
tremely valuable sources of information have to be
mined now to identify molecular markers that can be
used for early diagnosis of CRC. Thus, the present work

was dedicated to the detailed analysis of large volumes
of RNA-seq and DNA methylation data, primarily gener-
ated by the SysCol project and published in previous
publication [6].

In our study we focused our attention on the identifi-
cation of DNA methylation events as potential bio-
markers of early carcinogenic processes. The successful
application of one of the first DNA methylation bio-
markers, SEPT9, to detect colorectal cancer is one of the
hallmarks in this direction [7]. It became evident that
the analysis of DNA methylation events in early stages
of cancer and understanding the molecular mechanisms
of their influence on the drastic changes of gene expres-
sion in cancer will give us a key to identify most promis-
ing and robust biomarkers. Analyzing the influence of
DNA methylation on the binding of transcription factors
(TFs) to the genome is very important to understand the
role of DNA methylation in the regulation of gene ex-
pression. In a recent publication, Yin et al. have system-
atically analysed the effect of CpG methylation on the
binding of 542 human transcription factors [8]. They
found that CpG methylation can significantly inhibit
binding of many TFs of such classes as bHLH, bZIP, and
ETS, but can promote binding of TFs of the homeodo-
main, POU, and NFAT class.

We applied the fully automatized multi-omics analysis
web service “My Genome Enhancer” (MGE) (my-gen-
ome-enhancer.com) to identify DNA methylation pat-
terns that can serve as epigenetic biomarkers. As input
to MGE we took the RNA-seq and DNA methylation
data previously generated on the tumor samples ob-
tained from the patients of colorectal cancer together
with samples of non-affected gut mucosa from the same
patients. MGE uses the database on gene regulation
TRANSFAC:, the signal transduction pathways database
TRANSPATH?", and software that employs a genetic al-
gorithm to reveal some of the DNA methylation posi-
tions and potential causative biomarkers of colorectal
cancer. 47 of the proposed biomarkers underwent ex-
perimental testing on an independent set of blood sam-
ples from patients with colorectal cancer. As a result,
using advanced methods of statistics and machine
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learning, a minimum set of 6 biomarkers was selected,
which together achieve the best cancer detection poten-
tial. The markers include hypermethylated positions in
regulatory regions of the following genes: CALCA,
ENO1, MYC, PDX1, TCF7, ZNF43.

Methods

Samples

In the framework of the SysCol project [5], the samples
for the analysis were obtained from biobanks of colorec-
tal tissue at four Surgical Departments, located at three
major hospitals, within the Central Denmark Region,
were further processed at Aarhus University and pre-
pared for transcriptomics and DNA methylation analysis.
Tissues were collected from adenomas and carcinomas
together with matched normal mucosa, whenever pos-
sible. DNA and RNA was extracted from these samples
and was sent to Institut d’Investigacié Biomédica de
Bellvitge, Spain (IDIBELL) for DNA methylation analysis
(using 450 K Affymetrix microarrays) and to Université
de Genéve, Switzerland for RNA sequencing. In the
present study, we used data from altogether 313 tumor
samples and 30 normal colon mucosa samples. These
data were published in the earlier publications coming
from these groups [6, 9].

For testing of obtained biomarkers in this work we
used a set of samples from an independent cohort of pa-
tients from oncological clinics in Moscow and Novosi-
birsk, Russia. Subject of this study was a cohort of
patients without cancer diseases (patients who had col-
onoscopy for the diagnosis of inflammatory colon dis-
eases, 100 patients) and patients with colorectal cancer
(102). We randomly split these samples into the valid-
ation samples of 90 CRC and 88 control samples and
the test sample of 12 CRC and 12 controls. Blood sam-
ples from all study participants were obtained from City
Clinical Hospital Nel, Novosibirsk. The detailed cohort
information is given in the Additional file 1: Table SI.
From each patient, 8 ml of plasma was obtained. Plasma
samples (about 4 ml) were prepared by centrifugation at
1000g for 10min. Immediately after receiving the
plasma samples were frozen and stored at — 20 °C until
the test period. The specified volumes and modes of
preparation and storage of biological samples are com-
mon for a standard diagnostic laboratory.

During the tests, 6 markers were determined in the
plasma samples. We measured the number of methyl-
ated CpG dinucleotides in the following loci
(cg06972019 [ENO1], cg02991571 [PDX1], cg00163372
[MYC], ¢g01421342 [CALCA], ¢g24093411 [TCF7],
cg02612618 [ZNF43]) in the samples. In short, the pro-
cedures for the isolation of DNA from plasma samples;
procedures for reverse transcription; procedures for
bisulphite modification and amplification of DNA were

Page 3 of 20

carried out according to the standard protocols. The py-
rosequencing reaction was carried out using the Pyro-
Mark Gold Q96 Reagents (Qiagen) reagent kit, using
PyroMark Q96 ID (Qiagen) pyrosequencer device ac-
cording to the manufacturer’s instructions. The percent-
age of methylated CpG was calculated automatically
using the PyroMark Q24 Analysis Software software. All
measurements were performed in triplicate.

Sample preparation protocol

The protocol of preparation of samples from the SysCol
study has been published in [6, 9]. A short description of
the protocol is given in the Additional file 1: Supplement
Methods, Sample preparation protocol.

The protocol of preparation of samples from the inde-
pendent validation cohort of CRC patients was the
following.

Peripheral whole blood samples (202) were collected
in a 8.5 mL PPT™ tube (Becton Dickinson) containing a
gel barrier to separate the plasma after centrifugation.
All samples were processed at room temperature within
2 h from the time of blood extraction. Plasma was sepa-
rated from the cellular fraction by centrifugation at
1500 g for 10 min at 4°C. After centrifugation, plasma
samples were stored immediately at -80°C until
cell-free DNA (cfDNA) extraction.

Cell-free DNA was isolated using the QIAamp Circu-
lating Nucleid Acid (QCNA) Kit (QIAgen, Valencia, CA,
USA), as specified by the manufacturer.

Bisulfite conversion of cfDNA was performed using
the EZ DNA Methylation-Gold Kit. Methylation of 47
CpG-locus was measured by Pyrosequencing. The se-
quences of PCR and sequencing primers used for each
assay are shown in the Additional file 1: Table S2.

Further details of the protocol are described in the
Additional file 1: Supplement Methods, Sample prepar-
ation protocol.

Methylation microarray analysis

Genomic DNA (gDNA) was isolated from the samples
used for gene expression assay, the interphase and or-
ganic phenol-chloroform phase of TRIzol’Reagent (Life
Technologies, USA). A total of 1 ug of gDNA was bisul-
fite converted by the EZ DNA Methylation™ Kit (Zymo
Research, USA) according to manufacturer’s protocol.
After that, for genome-wide screening of methylation
events we used (Illumina Infinium Human Methyla-
tion450 BeadChip). This platform interrogates 487,734
CpGs (around 21,000 well-annotated genes). All proce-
dures were performed according to the standard Illu-
mina protocol. Arrays were scanned on the Illumina
iScan. Overall chip performance and the quality of the
raw data were checked using Illumina GenomeStudio
(Methylation Module) software in accordance with the
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manufacturer’s instructions. The raw intensities data
were quantile-normalized. Methylation level of each
CpG locus was calculated as methylation beta-value (f§ =
intensity of the methylated allele (M) / (intensity of the
unmethylated allele (U) + intensity of the methylated al-
lele (M) + 100).

The level of methylated cytosine was determined in
percentage, based on the ratio of the height of peaks T
and C in the analysed sequence YG. All calculations
were performed automatically using the software Pyro-
Mark CpG SW1.0. For each locus, the average values of
the methylation level of CpG extracellular plasma DNA
were calculated in the group with CRC and in the con-
trol group. The reliability of differences in the level of
methylation of CpG in the compared groups was deter-
mined using the T-test; as a threshold significance level,
p =0.05 was used.

RNA-sequencing

For determining the transcriptional state of CRC tumors,
the partners of the SysCol project have sequenced total
RNA of 313 tumor and 30 normal colon mucosa sam-
ples that were obtained from the CRC patients from the
clinic as it was described in the Method section above.
The samples were paired-end sequenced with a read
length of 49bp on the Illimina HiSeq platform. We
attained a mean read count of approximately 57 million
reads, ~ 30 million of which were exonic. After sequen-
cing the we have conducted read mapping on the refer-
ence human genome (build hgl9) and performed a
standard statistical analysis of differentially expressed
genes using Limma R package incorporated into the
My-Genome-Enhancer tool.

Statistics

All statistical analysis and basic bioinformatics analysis
of DNA methylation and RNA-seq data was done using
most up-to-date R packages of Bioconductor [10] and
Galaxy [11] integrated in the geneXplain platform [12].
Gene Ontology-term enrichment analysis was performed
using geneXplain platform own tool that applies hyper-
geometric test (p-value< 0.01).

Promoter analysis

To identify master regulators potentially orchestrating
the changes of gene expression observed in the course
of carcinogenesis, on the first step, we carried out
large-scale analyses of enriched motifs in promoters of
differentially expressed genes (from -1000 to + 200).
The enrichment analysis was conducted using the
F-Match algorithm [13]. F-Match takes information (all
known TF motifs) from the TRANSFAC® database [14,
15]. The motifs are specified using position weight
matrices (PWMs) that give weights to each nucleotide in
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each position of the DNA binding motif for a TF or a
group of TFs. For each PWM, the algorithm finds a
score threshold that gives an optimal overrepresentation
of the predicted TF binding sites in the regulatory re-
gions of interest (Yes sequences) compared to a back-
ground (No sequences). Through several iterations for
each chosen PWM score threshold the algorithm com-
pares the frequency of found motifs in Yes sequences
with their background frequency in No sequences.
F-Match applies a hypergeometric test and reports those
motifs (and corresponding transcription factors) whose
frequency in Yes set is significantly higher than in the
background No set. The optimal score maximizes the
odds for a predicted binding site being located in a Yes
sequence while satisfying a chosen statistical significance
threshold. The applied implementation optimizes the
Yes/No discrimination with respect to two criteria. The
first criterion (site overrepresentation) takes into ac-
count all predicted binding sites and tests for overrepre-
sentation by the binomial test. The second (sequence
overrepresentation) seeks to maximize the enrichment
of sequences containing at least one binding site in the
Yes set and applies the Fisher test for statistical signifi-
cance. The false discovery rate is controlled by estimat-
ing the adjusted p-value (using Benjamini-Hochberg
procedure).

Composite module analyst with correlation analysis
(CMAcorrel)
Composite Module Analyst (CMA) builds a model of
gene regulatory regions, which consists of one or several
composite regulatory modules. The structure of the
model and the algorithm applied to build the models is
described in detail in our previous reports [16, 17]. Here
we present a new variant of the algorithm that con-
structs the model of gene regulatory regions with the
structure correlating with quantitative genomic charac-
teristics, such as gene expression value or value of DNA
methylation in particular genomic region or ChIP-seq
peak height or any other value that may correlate with
the composition of TEBS in the regions under study.
Each composite module (CM) can be represented as
duplet (M,¥), where M is a set of positional weight
matrices (PWMs) included in the module and ¥ is a set
of parameters: an average width of the module (0); num-
ber of PWMs (K), number of best sites x® recognized
by the PWMs in the sequence that are taken into ac-

count by the algorithm, cut-offs qil;)t_oﬁ associated with

PWMs. All these parameters are not specified at the be-
ginning of the analysis, their values are to be identified
by the algorithm itself.

Once the parameters of CM are specified, the CM can
be applied to classify any nucleotide sequence. It uses
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the Match™ algorithm to search for potential TF sites in
the sequence s under study by applying the PWMs from

M with the cut-offs qﬁﬁl_oﬂ. After that, the algorithm se-
of the matches of the PWM k with the
highest scores (q > qcm oﬁ,) and it goes through all po-

lects the x®

sitions x in the sequence s of the length I(s) and finds
the position x,,,,, that maximizes the cm_score(s) accord-
ing to the the following equation (which is a modified
version of the score presented in [16]):

PIPIAUAC
0.0 ) (1)

CVI’I_SCOV'B = max

x=1.U(s

X f(‘x—Qj (s)

where qg.k) (s) is the score of j-th match of the k-th PWM
> g the f5,0,0 2)- is the
function of normal distribution with mean=0 and

in the sequence s and qE.

standard deviation o; 6;1() (s) - is the position of the j-th

match of the k-th PWM in the sequence s.

So, the c¢m_score(s) finds the position x,,,, in each se-
quence s with the highest concentration of TF binding
sites for the given PWMs, since the sites located in the
vicinity of the central position x,,,, contribute more to
the score than the sites that are located on a larger dis-
tance from this position. The contribution of the sites to
the score is regulated by the function of the normal dis-
tribution with the standard deviation o which corre-
sponds to the avarage “width” of the composite module.

If the cm_scores(s) is higher then a predefined thresh-
old cm_score,,.op the program reports a match of the
composite module to the sequence (Fig. 1).
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The regulatory region of a gene, for instance, 5'-regu-
latory region, which is usually considered as a genomic
region of several hundred nucleotides upstream of the
TSS (start of transcription) plus one or two hundred nu-
cleotides downstream of TSS, may contain sub-regions
corresponding to several different CMs. Each such
sub-region contains a cluster of sites for several TFs that
bind to DNA in synergistic (or antagonistic) manner
leading to particular regulation (enhancement or repres-
sion) of expression of the target gene. Such sub-regions
correspond to specific enhancers or silencers acting on
the target genes. So, the full model of the regulatory re-
gions of the genes of our focus contains several CMs
and computed additively according to the following
equation:

reg_score(s)

T
= Z cm_score;(s)
=1

here, T is the number of CMs in the full model of the
regulatory regions.

The parameters of the full model of the regulatory re-
gions are found by an optimization strategy based on the
genetic algorithm. The genetic algorithm uses a fitness
function for directing the optimization of the parameters
of the model. In our previous work [16] we have defined
a fitness function that uses two sets of regulatory re-
gions, a positive set (Yes set) and a negative set (No set),
and maximizes the discrimination between these two
sets. In the current paper we describe a new fitness func-
tion that takes the full set of regulatory regions and ac-
tually optimizes the correlation between the computed
composite score of the regulatory region and a quantita-
tive value reflecting a functional characteristic of the

f(/X-XmaX/IOI O-z )_

X

max

TSS

( ) ¥-3c X-2a X-la

=
g, (s)

»

a7(s) ¢V(s) q'(s) 42 4
» (2)(S)
GO

Fig. 1 Schematic representation of a match of a composite module (CM) in a particular promoter (s) (TSS — transcription start site). Several TF
sites are concentrated around position X,q, found by the algorithm in the sequence
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regulation regions under study, such as the expression
value (or expression fold change) of the target genes or
the value of DNA methylation in a particular genomic
region or ChIP-seq peak height or any other value.

The genetic algorithm proceeds through several itera-
tions of generating “populations” of models, introducing
random “mutations” of model parameters, and selecting
models characterized by highest values of the fitness
function. The output of CMAcorrel is the model of regu-
latory regions under study that gives the best-achieved
correlation between the model score and the quantita-
tive value associated with these regulatory regions.

Below we describe the details of the fitness function
used in the CMAcorrel algorithm.

Let’s have a set of pairs:

P ={(s,value)| s € S}

where s are the regulatory sequences from the set S of
regulatory sequences under study; value is the quantita-
tive value functionally associated with sequence s (for in-
stance LogFC of the gene expression changes of the
genes whose promoters we are analyzing in the given
study). First, we search for TF binding sites apply-
ing Match™ (using TRANSFAC PWMs) for the whole
set S of sequences. The results of the site search are then
forwarded to the CMAcorrel.

Let’s define the following set of pairs that is computed
for a given model of the regulatory regions:

Pycore = {reg_score(s), value)|(s, value)eP}

={(X;,Y)}.

For the sets of values X; and Y; we can compute the
ranks rgy. and rgy . Let’s define the value of “correlation”
as the coefficient of rank correlation of Spearman that is
calculated according to the following formula:

. cov(rgy,
correlation = M,

OrgxOrgy

where cov(rgyx, rgy) is the covariance of the rank values,
and 0, , 0y, are the standard deviations of the ranks.
So, the final fitness function for a given model is:

fitness(model) = —complexity PV 1g(1-|correlation|),

where penalty is a free parameter defined by the user,
complexity is the complexity of the model, which is usu-
ally computed as a total number of different PWMs in-
cluded into the model.

As the result, CMAcorrel returns the best model and
also a set of TFs that are associated with the PWMs that
were included into the model. The set of TFs is used
then for the algorithm of identification of master
regulators.

Page 6 of 20

Identification of master regulators

We define those molecules (or genes) as master regula-
tors that regulate the expression of the differentially
expressed genes through concerted control of the activ-
ity of those TFs acting on these genes. Master regulators
are identified by applying the key-node analysis algo-
rithm published earlier [13], which has been introduced
into the Genome Enhancer tool used in this work. The
algorithm uses the TRANSPATH® database on gene
regulatory and signal transduction pathways [18]. All
signal transduction reactions from TRANSPATH® (in-
cluding ligand binding reactions, phosphorylation and
de-phosphorylation reactions, complex formation reac-
tions, ubiquitination and other reactions known from
the scientific literature) are considered as a weighted
and directed graph. For an input set of TFs the algo-
rithm searches in the graph for potential common regu-
lators (key-nodes) using a modified shortest path
algorithm. The key-nodes are then prioritized according
to a score that is computed on the basis of the weighted
ratio between the number of molecules from the input
set that can be reached from the key-node in a limited
number of steps (radius parameter) and the total num-
ber of reachable nodes in the graph. The higher the
score the greater is the chance that the key-node plays
the master regulatory role in the process in focus.

Algorithm of identifying “walking pathways”

We have developed a modification of the master-regula-
tor search algorithm that considers potential rewiring of
cancer pathways due to dynamic epigenetic changes
such as changes in DNA methylation status of gene
regulatory regions during cancer development. We call
this method search for “Walking Pathways”, since it at-
tempts to identify rewiring of the signaling pathways at
their “legs” — at the most downstream level of the path-
ways when activated transcription factors are binding to
their binding sites in genome. In cases when the TF
binding sites appear to be closed at some genomic re-
gions of “normal” tissues and are opened at other gen-
omic regions in “tumorous” tissues due to the epigenetic
changes in the genome, the respective TFs are binding
to the new places and consequently the most down-
stream layer of signaling pathways is changing — “the
pathway legs are walking”. Such “walking” can lead to
the abnormal gene regulation which happens due to the
epigenetic rewiring of the target DNA sequences of
some signaling pathways.

The search of the walking pathways is done detecting
positive feedback loops in the network that is demon-
strated in the of the Additional file 1: Fig. S1. We as-
sume that due to TF binding to the epigenetically
altered regions of a genome a number of genes are chan-
ging their level of expression (which is detected by
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genome-wide transcriptomics measurements, e.g. using
RNA-seq method). In turn, such changes of expression
of genes encoding the corresponding TFs as well as
other components of the signaling network upstream of
these TFs may lead to an increase of the activity of the
whole signaling cascade involved in the gene regulation.
We hypothesize that the presence of multiple positive
feedback loops in the signaling pathway characterizes
the most active state which is achieved by the network
system during its dynamic rewiring (pathway walking) in
the course of carcinogenesis. Therefore, search for the
network structure with multiple feedback loops will en-
able us to identify the active carcinogenic pathways and
also to find the master-regulators of these pathways. We
will consider various components of such pathways as
potential causative biomarkers that will be taken for fur-
ther experimental verification.

For detection of pathways with positive feedback loops
we apply the “Context algorithm” that was described in
our previous publication [19]. The algorithm takes into ac-
count information of the up-regulated gene products
(context information) during the master-regulator search.
The context algorithm modifies costs of the edges in the
signaling network that are adjacent to the nodes repre-
senting products of the up-regulated genes. The idea of
the approach is to direct the master-regulator search algo-
rithm (e.g. the underlying Dijkstra algorithm for shortest
paths) towards such nodes by decreasing the total costs of
the path through these nodes in the network. As a result,
the algorithm will search for the network sub-structures
that contain one or more feedback loops.

Pipeline “My-Genome-Enhancer.com”

The complete analysis of RNA-seq and DNA methyla-
tion data was performed with the help of the fully au-
tomatized multi-omics analysis web service “My
Genome Enhancer” (MGE) (my-genome-enhancer.com).
MGE uses the rich environment of bioinformatics soft-
ware and databases of the geneXplain platform [12].
MGE uses the database on gene regulation TRANSFAC®
[14] (release 2017.2), the signal transduction pathways
database TRANSPATH® [18] (release 2017.2), and soft-
ware that employs Al (artificial intelligence) methods
such as genetic algorithms for the identification of po-
tential cancer-specific enhancers and employs also ad-
vanced methods of graph analysis for identification of
master regulators in signal transduction pathways. In
Fig. 2 we provide a general scheme of the pipeline of
data analysis that was performed in this paper.

All the tools and algorithms described in this paper
(including the F-Match, CMA and master-regulator
search) are available in the geneXplain platform upon
free registration. The results of the analysis obtained in
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the study are available for the readers in the geneXplain
platform in the “Example” section of the platform.

Results

Identification of differentially expressed genes

In the first step of the analysis the differentially
expressed genes (DEGs) were identified from the gene
expression data. We applied the Limma tool (R/Biocon-
ductor package integrated into our pipeline) and com-
pared gene expression of the genes in Cancer samples
versus Control samples. Limma calculated the LogFC
(the logarithm to the base 2 of the fold change between
these different conditions), the p-value and the adjusted
p-value (corrected for multiple testing) of the observed
fold change. As a result we detected 690 upregulated
(Additional file 2: Table S3) and 455 downregulated
(Additional file 2: Table S3) genes (adjusted p-value<
0.05, LogFC> 1.5 for up-regulated and LogFC<-1.5 for
down-regulated).

Functional classification of target genes

A functional analysis of genes that were differentially
expressed was done by mapping the up- and down-regu-
lated genes to several available ontologies, such as Gene
Ontology (GO), disease ontology (based on HumanPSD™
database) and the ontology of signal transduction and
metabolic pathways from the TRANSPATH® database.
Statistical significance was computed using a binomial
test. Additional file 3: Figs. S2-S4 show the most signifi-
cant categories. Among the most significant GO categor-
ies we revealed: increased nucleic acid metabolic
process; among signaling pathways: S phase and
Aurora-A cell cycle regulation; and among diseases: Di-
gestive System Neoplasms. All these results reveal genes
that are clearly involved in carcinogenic processes re-
lated to the colorectal cancer.

Comparison of samples with different tumor stages
Next, we separately analysed samples with different tumor
stages. We analysed the following number of samples: 33
adenomas, 44 samples of CRC stage I, 124 samples of
CRC stage 11, 93 samples of CRC stage III and 19 samples
of CRC stage IV. Figure 3 shows Venn diagrams of the dif-
ferentially expressed genes (DEGs were identified by com-
paring samples of particular grade with samples of normal
tissues with the following filtering parameters: LogFC> 1.0
or < - 1.0 and adj. p-value< 0.05).

We can see that the majority of DEGs, more than
50%, are common to all tumor stages. These common
genes belong to the following main GO categories:

»” s ” o«

“regulation of cell migration”, “ion homeostasis”, “regula-
tion of cell communication”, “regulation of cell prolifera-
tion”. The second largest group with 13% are the DEGs

that are specific for the stage IV, indicating that at the
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DNA methylation data
CRC tumors (313
samples) (Denmark)

Correlation
between gene
expression and

methylation

Detection of
differentially
methylated CpGs

F-Match, CMA, TRANSFAC®
Search for TFBS enrichment of single sites
and composite modules around CpG.
17 TF identified

Upstream search in TRANSPATH® and
detection of master-regulators.
23 master regulators identified

Downstream search and selection of
biomarkers.
47 CpG potential markers
identified

Detection
of DEGs

Gene expression data.
CRC tumors (313
samples) (Denmark)

Classification accuracy
92.3 %

Evaluation of classification
accuracy of the signature of
6 CpG markers by
pyrosequencing in blood of
CRC stage | patients (12
samples CRC and 12 samples
control)

(Russia)

Testing of DNA methylation by
pyrosequencing in blood of CRC
patients (pooled: 90 samples CRC
and 80 samples control)
(GUESE))

9 CpG markers validated in
peripheral blood

Fig. 2 General scheme of the data analysis pipeline applied in this study
.

Construction of
biomarker signature
Using SVM

latest cancer stage activates significant additional genetic
programs. Analysis of TRANSPATH pathways of the
genes of this group revealed enrichment of IL-3 signal-
ing, angiotensin pathway. Among highly enriched GO
categories: “regulation of immune response” and “regula-
tion of lymphocyte activation”, which fully agrees with

the increased role of immune system at the latest stages
of tumor development. Since we were particularly inter-
ested in the early onset of CRC, we analysed the group
of genes specific for the early stage I. This group has got
146 genes and enriched GO terms are: “developmental
process”, “regulation of cellular localization”, “regulation

Stage I1

.

Fig. 3 Venn diagram of the number of differentially expressed genes revealed for each tumor stage

Stage III

Stage IV
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of transport”, “lipid catabolic process”. Among the
enriched pathways we can see: “pathway of metabolism
of Diacylglycerol (DAG)”.

Analysis of DNA methylation data

The DNA methylation data were generated from the
same samples of tumor and normal gut epithelial tissues
as RNA-seq data. The data generated were obtained
from the EU-supported SysCol project [5]. DNA methy-
lation data were generated using Illumina methylation
arrays described in the Methods section. The analysis of
DNA methylation data was performed with the help of
the fully automatized multi-omics analysis web service
“My Genome Enhancer” (MGE) (my-genome-enhancer.-
com). As it is described in the Methods section, the
methylation level of each CpG locus was calculated as
methylation beta-value (B). First of all, we applied
Limma and identified CpG loci with beta-values signifi-
cantly higher or lower in tumor samples compared to
the samples of normal tissues. Out of 485,513 CpG sites
assayed at the Illumina array we identified 25,864 CpGs
with beta-value fold change higher 1.5 or lower 0.67
(which is 1/1.5) with adjusted p-value < 0.0001. We con-
sider these loci as most interesting for our further study,
since the statistically significant difference in DNA
methylation values is observed in tumor samples in
comparison to samples from the normal tissue.

Analysis of correlation between DNA methylation and
gene expression

Next, we combined the analysis of gene expression
(RNA-seq) with DNA methylation data of genomic CpG
loci. We analysed correlation (Spearman rank correl-
ation) between beta-values of DNA methylation at each
of the 25,864 CpGs selected at the previous step and ex-
pression values of genes computed using RNA-seq data.
In total, we identified 5746 CpG loci with correlation co-
efficient higher then 0.18 (critical value of correlation
coefficient for p-value < 0.05) with expression of at least
one gene in genome. These loci were in our focus of the
next analysis steps in the study.

We also searched for CpG methylation sites that are
located inside genes and in proximal regulatory regions
(+/- 2 kb upstream and downstream) of genes differen-
tially expressed in the tumors of stage-I and with high
correlation of methylation level and expression of these
genes in different samples. Analysis of the earliest stages
of tumor, such as stage-I, was in our focus since our pri-
mary goal was to find biomarkers for early detection of
CRC. In the Additional file 3: Fig. S5 we give the screen-
shot from the results of the correlation analysis in MGE
showing CpGs loci in the gene loci with the highest cor-
relation coefficient (r>0.4 or r< - 0.4) between the of
DNA methylation of these CpGs and expression of the
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genes in the stage-I tumor samples. One can see that the
correlated CpG sites are often located in 5'-regions, in-
trons or other regulatory regions of these genes. In total,
we found 449 CpG loci the methylation level of which
negatively correlated with gene expression (NEG - see
Additional file 2: Table S5, correlation coefficient < — 0.4)
and 339 CpG loci with methylation level positively cor-
related with gene expression (POS — see Additional file
2: Table S6, correlation coefficient > 0.4).

Identification of enriched TF binding sites around CpG
loci

In order to identify transcription factors that may be ac-
tivated during initiation and progression of CRC we ana-
lysed genomic regions that potentially regulate
expression of genes in CRC of various grades. It is
known that regulation of gene expression is controlled
not only through promoter sequences but also through
enhancers and silencers that can be localized in distal
upstream regions as well in introns and in downstream
regions of genes. In order to identify most probable en-
hancers and silencers acting in CRC we chose to study
genomic regions at CpG loci that demonstrate strong
correlation between the level of DNA methylation and
the level of expression of genes in their vicinity (located
in proximal 5’ and 3’ regions of the genes, in their in-
trons as well as in relatively distal regions, i.e. +/-2kb
upstream and downstream of the transcribed region). As
it was demonstrated recently DNA methylation can in-
fluence binding of various transcription factors to their
target sites overlapping the methylated regions [20]. In
turn, through protein-protein interactions such per-
turbed binding of one transcription factor can influence
binding of other TFs to their binding sites in close vicin-
ity (for references, see TRANSCompel database of TF
composite elements) [14]. Such changes, if they happen
at an enhancer or silencer of a particular gene, can influ-
ence the function of these regulatory regions and conse-
quently alter the gene regulation. In our analysis we
took regions of 200bp around the methylated CpG
markers correlated with gene expression in order to re-
veal potential enrichment of binding sites for transcrip-
tion factors. In the cases when two or more CpG loci
were overlapping within 200bp regions we combined
the overlapping regions.

We applied the F-Match algorithm, which computes
the frequency of TF binding sites in the target sequences
(YES set) and compares it with the frequency of TFBS in
the control sequences (NO set). As control sequences
we chose 200bp regions around the CpG loci in the
genome that demonstrate no significant DNA methyla-
tion in all our samples. F-Match finds those PWMs and
corresponding transcription factors whose sites are sta-
tistically significantly overrepresented in the YES set
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compared to the NO set (see Method section). The re-
sults of this analysis are presented in the Additional file
2: Table S7, and Additional file 2: Table S8 (for NEG and
POS). Among the most overrepresented TFBS were sites
for the factors NF1, HNF3, PAX9, E2F6, SOX9, GR and
PDX1..

As it was mentioned above, it is important to under-
stand the interactions between transcription factors dur-
ing their binding to specific enhancer or silencer region
in genome. We have therefore also applied the CMA al-
gorithm (Composite Module Analyst) [16] for searching
composite modules to the regions around CpG loci
whose methylation level is strongly correlated with the
level of gene expression. In the current work we applied
both, the classical CMA algorithm as well as the novel
modification of the algorithm called CMAcorrel (see
Method section) that is able to reveal compositions of
TF binding sites that correlate with the level of DNA
hyper- or hypomethylation in the target regions. First,
we applied CMA and as input we used the same NEG
and POS sets of 449 and 339 CpG loci respectively that
are characterized by high correlation coefficients (r < -
0.4 and r>04) of methylation and gene expression
levels. As above we took regions of 200 bp around CpG
sites. The algorithm identified models consisting of two
10 PWMs each. In the Additional file 3: Figs. S6 and S7,
we present a screenshot from the geneXplain platform
with detailed information about composite modules that
were found in the methylated regions of our interest and
also the statistical parameters of the constructed model.

Additionally, we applied the novel algorithm CMAcor-
rel to the full initial set of 5746 CpG loci with correl-
ation coefficients higher then 0.18 (and r<-0.18).
Moreover, we took a larger area around CpG sites of
500 bp, in order to check the bigger context of the DNA
methylation sites. The results are shown in Fig. 4.

Finally, we combined TFs identified by classical CMA
analysis (of NEG and POS sets versus control), by CMA-
correl as well as by F-Match of enriched single PWMs.
We obtained 71 genes encoding TFs linked to the ob-
tained PWMs in the results of all these enrichment ana-
lyses (see, Additional file 4: Table S9). After further
filtering these TFs according to their differential expres-
sion as well as differential DNA methylation and the
level of correlation with the methylation in the associ-
ated CpG loci we came up with the list of 19 TFs that
we used for further analysis (Table 1).

Search for master-regulators and reconstruction of
networks with positive feedback loops

On the next step of the analysis we applied the
master-regulator search algorithm that searches in the
network upstream of transcription factors found in the
previous step. As it is described in the Methods section,
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we applied the strategy of “walking pathways” when the
upstream search algorithm is bound to search for the
paths through the signal transduction network that are
associated with multiple positive feedback loops that
may cause the carcinogenic aberrations in gene expres-
sion. MGE started the search with the set of 19 TFs rev-
eled at the previous step (see Table 1) and has run the
master-regulator search through the TRANSPATH®
database with the maximum number of 10 upstream
steps with the “Context Analysis” option using all
up-regulated gene products as “context molecules” in
the algorithm. We used all genes that demonstrated sig-
nificant up-regulation (LogFC> 1.0 adj.p-value < 0.05) at
least in one of the above-mentioned comparisons of
tumor samples with control (all tumor samples versus
all normal samples, stage specific tumor samples versus
normal samples and metastatic samples compared to
non-metastatic). As a result we obtained a list of 273 po-
tential master-regulators fitting to all these criteria
representing 97 genes (several isoforms of the same pro-
tein were considered as independent potential master-
regulators by the algorithm) (see, Additional file 5: Table
S10). Further prioritization of this list according to the
level of differential gene expression in all cancer samples
and particularly in the I stage of cancer stages and also
according to the level of the differential DNA methyla-
tion in cancer versus control sets led us to select the
final list of 23 genes as most important master-regula-
tors (Table 2) in the system.

In Fig. 5 we show a fragment of a diagram of the signal
transduction network combined with the gene regulatory
network constructed by the workflow of My-Genome-
Enhancer. This network is predicted as playing one of
the key regulatory roles in different subtypes of CRC.
Red nodes represent master-regulators identified by the
network analysis algorithm. Blue nodes represent tran-
scription factors predicted by CMA in the gene regula-
tory regions of the differentially expressed genes. The
genes are represented as green arrows on a blue line at
the bottom of the diagram. Red stars represent methyl-
ated CpG loci identified in our work whose methylation
level correlates with the expression level of the genes.
This network helps us to identify the causative DNA
methylation biomarkers for early detection of CRC.

Selection of a target list of potential biomarkers

Taking into account all selected TFs and the connected
upstream master-regulators we looked downstream for
the identified binding sites of these TFs in the CpG loci
under study and compiled a list of related CpG loci as
potential biomarkers, which will be subject for further
prioritization and experimental validation. Such up-
stream search followed by downstream TFBS lookup
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identifies those particular CpG loci that are under the
direct control of the identified master-regulators.

As the result of the procedure described above we
have selected the following set of 47 DNA methylation
biomarkers (Table 3).

During next steps of biomarker prioritization we per-
formed comparison of correlation between pairs of
markers. It is clear that we need in order to select the
least correlated markers in order and to achieve the
highest classification power with the a minimal number
of markers. We computed the correlation coefficient in
for each pair of markers using the DNA methylation
values obtained in tumor as well as in control samples.
For instance, a high correlation of markers in the MYC
and AREG genes (corr =0.876) allowed us to exclude
the marker in the AREG gene from the set of potential
markers for further study, whereas relatively low correl-
ation of markers in the MYC and CALCA genes (corr =
0.308) prompted us to include both of these markers in
the final list of markers.

Hierarchical clustering of markers using the matrix
of pairwise correlations between them allowed us to
reveal clusters of mutually correlated markers.
(Additional file 6: Table S11).

It was interesting to see that several biomarkers from
the list demonstrate high combinatorial potential, so
combination of such biomarkers can have a very high

predictive power. In the Fig. 6 we demonstrate such po-
tential by comparing the DNA methylation values of two
biomarkers from the list in gene MYC (cg00163372) and
in gene NOS3 (cg08018731) (nitric oxide synthase 3
(endothelial cell)). One can see a clear separation of the
samples obtained from tumor (red) and normal samples
(green). This confirms a possible functional connection
between these two biomarkers and it demonstrates the
advantage of combining several biomarkers together to
achieve better classification power.

We feel that such combinatorial potential of our bio-
markers will play an important role for testing in clinical
samples.

Testing of the CpG-markers in independent clinical
samples

In order to validate the selected 47 CpG biomarkers we
tested the level of methylation of these markers in per-
ipheral blood of independent cohort of CRC patients
(case) as well as in blood samples of patients without di-
agnosed CRC (control - patients who had colonoscopy
for the diagnosis of inflammatory colon diseases). Test-
ing was done with the help of pyrosequencing of
cell-free DNA from blood samples after bisulfite conver-
sion of DNA to differentiate and detect unmethylated
versus methylated cytosines in CpG pairs.
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Table 2 Selected 23 genes as potential master-regulators prioritized according to the level of differential gene expression in
different cancer stages and in metastatic cancer and also according to the level of the differential DNA methylation in cancer versus

control sets

Master molecule name  Gene Meth probes:  correl logFC |_stage  Cancer_vs_Normal  Meth_logFC ~ Number of = Master-regulator
symbol  lllumina ID vs. Normal logFC target TFs®  Score
MKP-2 DUSP4 cg 13635007 -0018 1694 2.309 —-0.408 13 0.751
c-Myc myc €g00163372 -0498 2126 2442 -0.682 13 0.725
IL-17A IL17A cg11924517 -0.145 1.083 0.889 -0.747 13 0.649
MT1-MMP MMP14  cg05931439 -0212 0793 1439 —0.486 13 0.619
eNOS NOS3 €g08018731 -0.059 1460 1.958 —0.631 13 0.560
TGFbeta-2A TGFB2 cg06899755 -0.171 0.645 0.946 0.296 13 0.556
IGF-2 IGF2 cg02425416 -0.025 0760 1353 -0419 13 0517
collA1 COLIAT  cg18618815 -0.142 1340 2.085 -0428 13 0.502
Matrin MMP7 cg01813071 —0.055 4505 4814 -0.367 13 0.498
CTLA-4 CTLA4 cg08460026 -0.110 0892 1.022 -0.699 13 0496
amphiregulin-NTF AREG €g02334660 -0438 1649 1.711 -0.644 13 0494
alpha-enolase ENO1 €g06972019 -0405 0783 1.148 —-0.653 13 0480
CXCR2 CXCR2 cg06547715 0.005 1.156 1.036 -0.570 13 0479
calcitonin CALCA cg01421342 0.052 0.834 1.043 0309 13 0455
IRAK-2 IRAK2 cg09386682 -0419 1292 1.614 —0444 13 0446
WT1 WTT1 cg01952234 -0227 0412 1.004 0.346 13 0415
IL-11 L €g26367719 0.082 1.789 2.039 -0.568 13 0401
Wnt-2 WNT2 cg07697895 0.128 2171 2494 0.288 13 0.385
CD86? CD86 cg00697440 0.141 -0.153 0.105 -0.584 13 0.384
GROalpha cxcLn cg00419314  —0.145 3922 3.903 -0313 1 0378
trip6 TRIP6 cg00374672 -0.292 0949 1.356 -0.610 1 0.363
mgat5 MGATS €g20063095 -0209 0570 1.162 -0.459 13 0.343
Fcgamma RIIIB FCGR3B  cg04567009  0.048 1.709 1.727 -0.573 1 0.284

213 target TFs: AML1a, E2F-6, Fra-2, GR-alpha, HMGI-C, HMGIY, HNF-3beta, HNF-4gamma, ITF-2-A-, SEF2-1A, TGIF, c-Myc, IPF-1; 11 target TFs: AML1a, E2F-6, Fra-2,

GR-alpha, HMGI-C, HMGIY, HNF-3beta, HNF-4gamma, TGIF, c-Myc, IPF-1

b D89 did not achieve statistical significant levels of gene expression Fold Changes but was selected here due to its highly significant level of methylation

Fold Change

So, the testing of the differentially methylated CpGs in
clinical samples was done according to the following
protocol: (1) extraction of cell-free DNA; (2) bisulfite
conversion of DNA; (3) amplification of the tested re-
gion by PCR; (4) pyrosequencing and identification of
the sequence of the PCR products. The cell-free DNA
was extracted from the frozen blood samples as it is de-
scribed in the Method section.

For all selected 47 CpG loci we obtained the methyla-
tion level in ctDNA of peripheral blood of patients from
the validation sample diagnosed with CRC (90 samples)
and the control group of patients without cancer (88
samples). As it is described in the Method section we
randomly divided the case samples and control samples
into 6 subgroups of samples of equal sizes and pooled
the DNA in each subgroup. For each locus we computed
the average level of DNA methylation of the CpG pos-
ition in the group of CRC patients and in the control

group and also computed the standard deviation between
pooled subgroups. The statistical significance of the differ-
ence of methylation levels between case and control was
computed by t-test with p-value cut-off p < 0.05.

As a result, for 9 loci we confirmed statistically signifi-
cant differences between CRC patients and cancer-free
control patients. The identified CpG loci that are located
in the regulatory regions of the following genes: ENOI,
IGF2, CALCA, PDX1, ZNF43, FOSL2, TCF7, DUSP4,
MYC. 1t is interesting that in the locus ENOI, we identi-
fied a second CpG near the one that was tested
(cg06972019, the CG dinucleotide Ne3 in the sequence).
Both CpG showed significant difference in methylation
between cancer and control, but the new CpG showed
even higher significance than the initially identified one
(CG dinucleotide N2 in the sequence). A similar situ-
ation was observed for the CpG locus 29 (TCF?): here
the testing CpG dinucleotide was Ne2 (cg24093411),
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Fig. 5 A fragment of a diagram of the signal transduction network combined with the gene regulatory network predicted by MGE workflow as playing a
regulatory role in CRC. Red nodes represent master-regulators identified by the network analysis algorithm. Blue nodes represent transcription factors predicted
by CMA in the gene regulatory regions of the differently expressed genes (green arrows on a blue lines at the bottom). Red stars represent methylated CpG
loci identified in our work whose methylation level correlates with expression level of the genes. Red arrows show translation of the genes into proteins
making the multiple feedback loops in the system. The products of the differentially expressed genes play the master-regulatory role in the system. Brown and
violet shading around some nodes in the network shows the level of up-regulation or down-regulation of the genes encoding these proteins

whereas the other one (Nel in the sequence) showed a
higher significance in the comparison of cancer to con-
trol. Finally, for the locus 37 (DUSP4) the testing CpG
did not show any statistical difference, but we found a
different CpG located nearby (Nel in the sequence) that
showed a statistically significant increase in methylation
in the cancer group in the comparison to the control
group. The summary of all results of testing is shown in
Additional file 3: Table S12.

We use these 9 loci for further selection of perspective
biomarkers and creation of the combined signature for
CRC diagnostics.

Creating a diagnostic combination of biomarkers
Finally, selected biomarkers were used to build a min-
imal combination of biomarkers with a high diagnostic

potential. We used the support vector machine (SVM)
method to achieve such a goal. SVM was implemented
in the geneXplain platform by integrating the R library
el071 [7**]. The SVM method builds a classification
function on the basis of an input of the DNA methyla-
tion values of all markers measured on a training set of
samples. Once the classification function is ready it can
be used to classify any new samples. For each sample it
computes a classification score, and depending on the
level of the critical value of the score the sample is clas-
sified then as a tumor or non-tumor sample.

Here we used SVM tools also for selecting the best
minimal combination of biomarkers. We started from 9
biomarkers and gradually decreased their number to 6
still keeping reasonably high level of classification
accuracy.
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Table 3 Selected set of 47 potential DNA methylation biomarkers
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D CHR  Position (hg19)  Gene symbol ~ Methylation Caner_  Expression Cancer_vs_  Correlation  Enriched TF®  Master-
(gene) vs_Control LogFC Control logFC regulator”

€g02612618 19 22,018,605 ZNF43 0.296 -0.711 —0.743 +

907945582 7 26,206,579 NFE2L3 -0.534 2.858 -0.518 +

cg00163372 8 128,752,988 MYC -0.682 2442 —0.498 + +

€g02915837 12 3,069,243 TEAD4 —-0.306 2335 —0453 +

902334660 4 75,312,483 AREG -0.644 1.711 -0.438 +

€g09386682 3 10,207,069 IRAK2 —0.444 1.614 -0419 +

€g06972019 1 8,937,448 ENO1 —0.653 1.148 —0405 +

cg01777575 20 22,566,140 FOXA2 -0332 1312 —-0.307 +

€g19377250 7 100,463,206 TRIP6 -0.712 1.356 -0.292 +

cg01952234 11 32,457,130 WT1 0.346 1.004 -0.227 +

€g05931439 14 23,305,957 MMP14 —0486 1439 -0212 +

€g20063095 2 134,977,141 MGATS -0.459 1.162 -0.209 +

cgl17726575 2 11,606,945 E2F6 -0420 1.259 —-0.204 +

€g18696576 6 34,203,630 HMGAT -0.328 1.758 —-0.190 +

€g06899755 1 218,520,325 TGFB2 0.296 0.946 -0.171 +

cg01742897 18 53,257,019 TCF4 0.184 0.021 —-0.166 +

€g15555970 18 3,452,317 TGIF1 -0.294 1511 -0.161 +

cg00419314 4 74,735,092 CXClL1 -0313 3.903 -0.145 +

cg11924517 6 52,050,597 IL17A —0.747 0.889 —-0.145 +

cg18618815 17 48,275,324 COLTAT -0.428 2.085 -0.142 +

€g08460026 2 204,732,474 CTLA4 -0.699 1.022 -0.110 +

cg00425708 12 66,217,779 HMGA2 —-0.284 1.016 —-0.105 +

cg08018731 7 150,687,961 NOS3 -0.631 1.958 -0.059 +

€g01813071 1 102,401,616 MMP7 -0.367 4814 —0.055 +

cg02425416 11 2,163,808 IGF2 -0419 1.353 -0.025 +

€g13635007 8 29,210,154 DUSP4 —-0408 2309 -0.018 +

cg07330438 21 37,258,460 RUNX1 -0.556 1525 -0.011 +

€g06547715 2 218,990,976 CXCR2 —-0.570 1.036 0.005 +

cg08836542 2 28,618,831 FOSL2 —-0.386 —-0.027 0.006 +

€g02059626 8 76,319,264 HNF4G -0.365 -0.209 0.026 +

€g04567009 1 161,600,769 FCGR3B -0.573 1.727 0.048 +

cg01421342 11 14,995,754 CALCA 0309 1.043 0.052 +

€g26367719 19 55,875,605 ILT1 -0.568 2.039 0.082 +

cg01830294 7 116,963,492 WNT2 0.132 2494 0.128 +

cg01664670 20 39,316,308 MAFB 0.280 -0.226 0.140 +

€g01824511 14 38,064,456 FOXAT -0.430 —0.768 0.141 +

cg00697440 3 121,795,768 CD86 —-0.584 0.105 0.141 +

cg01589587 14 76,002,440 BATF -0416 1.028 0.222 +

€g24093411 5 133,449,651 TCF7 0.387 2022 0.321 +

€g02991571 13 28,501,126 PDX1 0541 2.869 0353 +

cg06613263 5 142,779,552 NR3C1 —-0.588 -0.931 0410 +

cg03130910 1 234,908,226 BMP3 -1.107 —2482 0.601

€g05259836 6 74,290,516 PYY -0.813 —5.604 0601
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Table 3 Selected set of 47 potential DNA methylation biomarkers (Continued)

D CHR  Position (hg19)  Gene symbol ~ Methylation Caner_  Expression Cancer_vs_  Correlation  Enriched TF®  Master-
(gene) vs_Control LogFC Control logFC regulator”

€g24032190 15 67,442,893 ADHI1B -1.071 —3.781 0.603

cg04786142 1 234,908,381 NR5A2 -1.075 —1.644 0.606

€g03800922 6 74,290,220 CAT —0.842 —6.934 0610

€g26541218 7 47,826,387 KLF4 -0.771 —1.938 0617

*The column “Enriched TF” marks genes that encode TFs whose sites found enriched around CpG loci
PThe column “Master regulator” marks genes that encode master-regulator molecules identified in the study

We used a set of 12 blood samples from patients of
stage I of CRC and 12 blood samples of patients without
any recorded oncological disease. Evaluation of the clas-
sification accuracy of the marker combinations was done
by the method of random division of the set into train-
ing and control sub-sets. Each time, we were splitting
our set of samples into 50% of training sub-set of sam-
ples and 50% of samples into the control sub-set. This
random splitting was done 100 times. Each time the pa-
rameters of SVM were fitted on the test sub-set and the
obtained classification function was tested on the test
sub-set. The number of misclassifications was computed
and the splitting was done again. After 100 of such ran-
dom iterations we computed an average accuracy of the
classification procedure.

Finally, with the set of 6 CpG markers shown in the
Table 4 we were able to construct the classification func-
tion that achieved the maximum average value of the

classification accuracy of 92.3% in the random permuta-
tion tests described above.

More detailed information about these genes (contain-
ing chosen DNA methylation markers) and their known
role in molecular pathways and diseases (retrieved from
HumanPSD database) is given in the Additional file 7:
Table S13. We can see that these genes play various
roles in different but functionally connected processes,
pathways and diseases, which gives a particular strength
to these sets of biomarkers.

In the Additional file 3: Fig. S8, we show the web
interface of the respective diagnostic tool that is con-
structed on the basis of the SVM classification model
using the combination of 6 selected biomarkers. User in-
puts DNA methylation values of 6 biomarkers for one or
more samples and the tool makes a classification of the
samples as CRC or non-CRC. It is accessible at the fol-
lowing URL: [21].
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Fig. 6 Diagram of DNA methylation values of two markers cg00163372 (in gene MYC) and cg08018731 (in gene NOS3). The red dots show values
obtained in tumor samples, the green dots show values for the normal samples
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Table 4 Six DNA methylation markers selected for building CRC diagnostic classification function using SVM method

Probe 1D Chromosome Gene Symbol Gene Name

cg01421342 11 CALCA calcitonin-related polypeptide alpha

cg06972019 1 ENO1 enolase 1, (alpha)

(CpG Ne3)

cg00163372 8 MYC v-myc avian myelocytomatosis viral oncogene homolog
€g02991571 13 PDX1 pancreatic and duodenal homeobox 1

€g24093411 5 TCF7 transcription factor 7 (T-cell specific, HMG-box)
902612618 19 ZNF43 zinc finger protein 43

Discussion changed (e.g. through DNA methylation or de-methyla-

In this paper we have applied a novel approach of de-
tecting causative biomarkers using a strategy that we
called analysis of “walking” pathways. This strategy is
using our previously developed approach of “upstream
analysis” [19, 22] to multi-omics data. We introduced an
important extension to the upstream analysis algorithm
by searching for positive feedback loops, which directs
the search in the gene regulatory and signal transduction
network towards potential master-regulators of a
self-inducing pathological state of the system. In the
current paper, we applied this new strategy to the
massive transcriptomics (RNA-seq) and epigenomics
(DNA methylation) data of a cohort of 300 patients with
CRC. All these experimental data for the biomarker
identification were taken from previously published
work of the SysCol consortium [8, 9]. An important
novel part of the approach is the application of the
search for enriched single TFBS and their combinations
(composite modules) to genomic regions around differ-
entially methylated CpG loci in early stages of CRC. TFs
revealed by this analysis are used then as input in the
network search algorithm that is performed with the op-
tion of “Context Algorithm” [19], where signal transduc-
tion proteins and their complexes encoded by genes
up-regulated in CRC tumor samples are used as the
“context” nodes. This allows the revelation of potential
positive feedback loops in the system, when particular
signaling proteins (receptors, their ligands, adaptor pro-
teins, kinases etc.) may exert a positive regulation of
their own genes through signal transduction network by
activating multiple TFs that in turn bind to their target
sites in regulatory regions of those genes and
up-regulate them. We call these signaling proteins “mas-
ter-regulators” of the system. They are often character-
ized by increased expression and changed DNA
methylation pattern in pathological states such as a
tumor. Revealing such master-regulators as well as the
components of the signaling cascade and consequently
activated TFs may help to come up with a good set of
biomarkers for the pathological state. We think that the
key component in such a discovery is the search for
small regions of DNA that get their epigenetic status

tion of CpG loci), leading to the altered pattern of TF
binding in gene regulatory regions throughout the gen-
ome. Our approach gives us the possibility to integrate
transcriptomics and epigenomics data in the search for
promising causative biomarkers. We applied it to CRC
and were able to identify a set of 47 potential DNA
methylation biomarkers. We were interested to find such
biomarkers that can be detected in DNA circulating in
the blood samples of early stages of CRC. We have per-
formed a thorough validation of the proposed CpG loci
in the blood samples of an independent cohort of 90
CRC patients comparing the level of the DNA methyla-
tion in these 47 loci to 88 of other patients with no de-
tected cancer. Finally, we selected six DNA methylation
biomarkers and by applying a robust machine learning
technique (SVM) we created a prognostic score com-
puted as a combination of six biomarkers, which
achieved sensitivity and specificity levels above 92%
(computed on a relatively small sub-set of samples -
12 tumor samples and 12 controls). A considerable
part of the biomarker discovery has been done with
the help of the automatic pipeline “My-Genome-En-
hancer” (my-genome-enhancer.com) of the geneXplain
platform. Therefore it can be easily reproduced and
can be applied to perform a search for causative bio-
markers for other types of cancer.

One potential limitation of the approach described
here comes from our still rather simple methods of find-
ing potential TFBS in DNA sequences. Although we use
the most comprehensive and up-to-date database,
TRANSFAC”, the site search method is based on PWMs,
which are quite simple models for TF binding motifs. It
has been reported recently [20, 23] that using more
advanced models, based on the application of Markov
models and being able to take into account possible
interactions between nucleotides in the motif, better re-
sults in TF site recognition may be achieved in compari-
son to applying simple PWMs. Still the reported
improvement is not very high - only about 36%. Also, it
is still not possible to build such more complex models
for the majority of known TF. On the other hand, the
PWM approach with available data can cover almost all
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known TFs, which was very important for our approach
where a comprehensive coverage of TF motifs plays an
important role in the analysis of the specific TF site
combinations.

Another important limitation is related to the fact that
our knowledge about TFs and their motifs as well as
about signal transduction network functioning in the
cancer cells is not complete. Thus the networks recon-
structed by our algorithms may miss important compo-
nents that are not known so far. Still, we think that the
number of known interactions in the network and
known TF motifs is big enough to get a quite robust
prediction of the most important master-regulators in
the system and the components of their regulatory
sub-network. Anyway, the final proof of these predic-
tions must come from experimental validation, which
was performed in our work and reported here. Indeed,
as we predicted, some of the revealed biomarkers were
confirmed in an independent, though still quite small,
cohort of CRC patients.

In the recent years, a number of methylated DNA loci
that distinguish between healthy and tumor tissues have
been identified [24], however, only a few of them have
been accepted as blood-based biomarkers for clinical test-
ing and have been integrated into CRC screening [24, 25].
One of the most successful DNA methylation biomarker,
SEPT9 has achieved an accuracy of CRC detection in
serum samples at 72% [26]. These studies demonstrate
that blood-based DNA tests have reasonable predictive
power and can be used in clinical screening procedures.
Still the accuracy of such methods based on single DNA
methylation locus (like SEPT9) is rather limited, especially
when applied to an independent and highly heterogeneous
cohort of the patients. Mechanism-based selection of bio-
marker combinations like the one proposed in our study
offers a solution for increasing accuracy of the CRC detec-
tion since it integrates signals from several biomarkers
reflecting potential heterogeneity of various aberrations in
cancer pathways. Continued effort is still needed to
optimize further the biomarker combinations that can be
in future incorporated into clinically available blood tests
to identify patients who are precancerous.

Conclusions

The proposed approach of the search for “Walking path-
ways” is indeed promising for biomarker discovery appli-
cations. In this paper, we analysed an extensive
collection of full genome gene-expression data (RNA-
seq) and DNA methylation data of genomic CpG islands
of about 300 patients with colorectal cancer and identi-
fied six potential epigenetic biomarkers of DNA methy-
lation using the approach of searching for “walking
pathways” that takes into account positive feedback
loops — self-activating circuits that, according to our
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modeling, may lead to rapid tumor development. The
selected markers include hypermethylated positions in
regulatory regions of the genes encoding transcription
factors as well as other components of signaling path-
ways: CALCA, ENO1, MYC, PDX1, TCF7, ZNF43. The
revealed biomarkers were experimentally validated in an
independent, though still quite small, cohort of CRC pa-
tients. This confirms the robustness of the revealed bio-
markers, which we expected because of their potential
causative role in the molecular mechanisms of the
considered pathological processes during early stages of
development of CRC.

Additional files

Additional file 1: The MS Office file (docx format) that gives additional
explanations of the methods and contains Table S1, Table S2 and
Figure S1. (DOCX 113 kb)

Additional file 2 The MS Excel file that contains Tables $3-S8. (XLSX
507 kb)

Additional file 3: An MS Office file (docx format) that contains Table
$12 and Figures $2-S8. (DOCX 1437 kb)

Additional file 4: Table S9. List of 71 genes encoding TFs linked to
PWMs that were found overrepresented in the genomic regions around
CpGs whose methylation was negatively of positively correlated with
gene expression. These TF genes were identified independently by three
independent algorithms: by classical CMA analysis (of NEG and POS sets
versus control), by CMAcorrel as well as by F-Match of enriched single
PWMs. (XLSX 76 kb)

Additional file 5: Table S10. The list of 273 potential master-regulators
(representing 97 genes - several isoforms of the same protein were
considered as independent potential master-regulators by the algorithm)
that may control activity of 19 TFs. (XLSX 101 kb)

Additional file 6: Table S11. Table of pairwise Pearson correlations
between CpG methylation values of pre-selected markers. (XLSX 63 kb)

Additional file 7: Table S13. Detailed information about genes that
contain chosen DNA methylation markers. We present information about
their known role in molecular pathways and diseases (retrieved from
HumanPSD database). These genes play various roles in different but
functionally connected processes, pathways and diseases related to
cancer. (XLSX 32 kb)

Abbreviations

cfDNA: Cell-free DNA; CMA: Composite module analyst; CRC: Colorectal
cancer; ctDNA: Circulating tumor DNA; PWM: Position weight matrix;
TF: Transcription factor; TFBS: Transcription factor binding site

Acknowledgements

We are very grateful to Dr. Holger Michael from geneXplain GmbH for critical
reading of the manuscript. We are also very grateful to Dr. Jesper Bertram
Bramsen, Mads Heilskov Rasmussen and Claus Lindbjerg Andersen from
Department for Molecular Medicine (MOMA), Aarhus University Hospital /
Skejby, Denmark for providing initial CRC samples and controls (as published
previously in [6, 7]). We are also very grateful to Ongen H and Dermitzakis ET
from Department of Genetic Medicine and Development, University of
Geneva Medical School, Geneva, Switzerland for initial RNA-seq profiling
(published previously in [6, 7]).

Funding

The study was supported partially under Russian State funded budget
project (2018-2020, 0309-2018-0007) “The development of personalized
medicine methods”. The primary data collection and molecular profiling that
was used in this paper and was done prior to this work was supported by
the grants of the EU FP7 program: “SYSCOL". Publication of this article was


https://doi.org/10.1186/s12859-019-2687-7
https://doi.org/10.1186/s12859-019-2687-7
https://doi.org/10.1186/s12859-019-2687-7
https://doi.org/10.1186/s12859-019-2687-7
https://doi.org/10.1186/s12859-019-2687-7
https://doi.org/10.1186/s12859-019-2687-7
https://doi.org/10.1186/s12859-019-2687-7

Kel et al. BMC Bioinformatics 2019, 20(Suppl 4):119

sponsored by Horizon 2020, COLOSSUS grant, contract number 754923, call
H2020-SC1-2017-Two-Stage-RTD.

Availability of data and materials

The datasets analysed during the current study are available from the
previous publication [6]. The results of the analysis performed with the
means of the pipeline My-Genome-Enhancer in geneXplain platform are
available at the following URL: [27]. Data are also available in the Additional
files provided in the Supplement to the publication. The software tools and
databases used are available on-line at URL [28].

About this supplement

This article has been published as part of BMC Bioinformatics Volume 20
Supplement 4, 2019: Methods, tools and platforms for Personalized Medicine in
the Big Data Era (NETTAB 2017). The full contents of the supplement are
available online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-20-supplement-4.

Authors’ contributions

AMC, SM and ME have done the DNA methylation profiling of the initial CRC
samples and controls. UB and MF were validating the selected biomarkers in
the blood samples from independent cohort collected by LSL and AVS. AK,
PS, OKM, JK, IY, NM, MK and EW were developing the algorithms and
analyzing the data. All authors read and approved the final manuscript.

Ethics approval and consent to participate

All procedures followed were in accordance with the ethical standards of
the responsible committee on human experimentation (institutional and
national) and with the Helsinki Declaration of 1975, as revised in 2008. The
study was approved by the ethical committee of the Center of novel
medical technologies in Novosibirsk (protocol N.18 from 24.10.2014).
Informed consent was obtained from all patients for being included in the
study.

Consent for publication
Not applicable.

Competing interests

AK, PS, JK, OK and EW are employees of geneXplain GmbH, which maintains
and distributes the geneXplain platform and My-Genome-Engancer.com
used in this study.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details

YInstitute of Chemical Biology and Fundamental Medicine, SBRAN,
Novosibirsk 630090, Russia. “Biosoft.ru, Ltd, Novosibirsk 630090, Russia.
geneXplain GmbH, 38302 Wolfenbiittel, Germany. “City Clinical Hospital Net,
Novosibirsk 630090, Russia. *Cancer Epigenetics and Biology Program (PEBC),
Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain.
Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029
Madrid, Spain. Physiological Sciences Department, School of Medicine and
Health Sciences, University of Barcelona (UB), 08010 Barcelona, Spain.
8Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona,
Spain. ‘Institute of Computational Technologies SB RAS, Novosibirsk 630090,
Russia. '%Institute of Bioinformatics, University Medical Center Géttingen
(UMG), Géttingen 37077, Germany.

Published: 18 April 2019

References

1. Levenson W. DNA methylation as a universal biomarker. Expert Rev Mol
Diagn. 2010;10:481-8.

2. Warton K, Mahon KL, Samimi G. Methylated circulating tumor DNA in
blood: power in cancer prognosis and response. Endocr Relat Cancer. 2016;
23R157-71.

3. Mikeska T, Craig JM. DNA methylation biomarkers: Cancer and beyond.
Genes (Basel). 2014;5:821-64.

10.

12.
13.

15.
16.

20.

22.

23.

24.

25.

Page 19 of 20

International Cancer Genome Consortium. http://icgc.org/. Accessed 30 Nov
2018.

Systems Biology of Colorectal cancer; http://syscol-project.eu/. Accessed 30
Nov 2018.

Ongen H, Andersen CL, Bramsen JB, Oster B, Rasmussen MH, Ferreira PG,
Sandoval J, Vidal E, Whiffin N, Planchon A, Padioleau |, Bielser D, Romano L,
Tomlinson |, Houlston RS, Esteller M, Orntoft TF, Dermitzakis ET. Putative cis-
regulatory drivers in colorectal cancer. Nature. 2014;512:87-90.

Li'Y, Song L, Gong Y, He B. Detection of colorectal cancer by DNA
methylation biomarker SEPT9: past, present and future. Biomark Med. 2014;
8:755-69.

Yin'Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK,
Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke
S, Yan J, Schiibeler D, Vinson C, Taipale J. Impact of cytosine methylation on
DNA binding specificities of human transcription factors. Science. 2017;356:
€aaj2239.

Bramsen JB, Rasmussen MH, Ongen H, Mattesen TB, @rntoft MW, Amadattir
SS, Sandoval J, Laguna T, Vang S, @ster B, Lamy P, Madsen MR, Laurberg S,
Esteller M, Dermitzakis ET, @rntoft TF, Andersen CL. Molecular-subtype-
specific biomarkers improve prediction of prognosis in colorectal Cancer.
Cell Rep. 2017;19:1268-80.

Bioconductor. www.bioconductor.org. Accessed 30 Nov 2018.

Galaxy. usegalaxy.org. Accessed 30 Nov 2018.

geneXplain platform. http://www.genexplain.com. Accessed 30 Nov 2018.
Kel A, Voss N, Jauregui R, Kel-Margoulis O, Wingender E. Beyond
microarrays: find key transcription factors controlling signal transduction
pathways. BMC Bioinformatics. 2006;7(Suppl 2):S13.

Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter |,
Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov
B, Saxel H, Kel AE, Wingender E. TRANSFAC and its module TRANSCompel:
transcriptional gene regulation in ukaryotes. Nucleic Acids Res. 2006;34:
D108-10.

TRANSFAC® database. http://genexplain.com/transfac. Accessed 30 Nov 2018.
Waleev T, Shtokalo D, Konovalova T, Voss N, Cheremushkin E, Stegmaier P,
Kel-Margoulis O, Wingender E, Kel A. Composite module analyst:
identification of transcription factor binding site combinations using genetic
algorithm. Nucleic Acids Res. 2006;34(Web Server issue):W541-5.

Boyarskikh U, Pintus S, Mandrik N, Stelmashenko D, Kiselev |, Evshin |,
Sharipov R, Stegmaier P, Kolpakov F, Filipenko M, Kel A. Computational
master-regulator search reveals mTOR and PI3K pathways responsible for
low sensitivity of NCI-H292 and A427 lung cancer cell lines to cytotoxic
action of p53 activator Nutlin-3. BMC Med Genet. 2018;11(Suppl 1):12.

Krull M, Pistor S, Voss N, Kel A, Reuter |, Kronenberg D, Michael H, Schwarzer
K, Potapov A, Choi C, Kel-Margoulis O, Wingender E. TRANSPATH: an
information resource for storing and visualizing signaling pathways and
their pathological aberrations. Nucleic Acids Res. 2006;34:D546-51.

Kel AE, Stegmaier P, Valeev T, Koschmann J, Poroikov V, Kel-Margoulis OV,
Wingender E. Multi-omics “upstream analysis” of regulatory genomic
regions helps identifying targets against methotrexate resistance of colon
cancer. EUPA Open Proteomics. 2016;13:1-13.

Medvedeva YA, Khamis AM, Kulakovskiy IV, Ba-Alawi W, Bhuyan MS, Kawaji
H, Lassmann T, Harbers M, Forrest AR, Bajic VB. FANTOM consortium. Effects
of cytosine methylation on transcription factor binding sites. BMC
Genomics. 2014;15:119.

User interface for classification of the samples as CRC or non-CRC using as
inputs the DNA methylation values of 6 biomarkers for one or more
samples. http://micro.biouml.org/bioumlweb/#anonymous=
true&perspective=DNA%20methylation%20signature%20for%20
the%20diagnosis%200f%20colon%20cancer. Accessed 30 Nov 2018.
Koschmann J, Bhar A, Stegmaier P, Kel AE, Wingender E. “Upstream
analysis”. an integrated promoter-pathway analysis approach to causal
interpretation of microarray data. Microarrays. 2015;4:270-86.

Siebert M, Soding J. Markov models consistently outperform PWMs
atpredicting regulatory motifs in nucleotide sequences. Nucleic Acids Res.
2016;44.6055-69.

Hashimoto Y, Zumwalt TJ, Goel A. DNA methylation patterns as noninvasive
biomarkers and targets of epigenetic therapies in colorectal cancer.
Epigenomics. 2016;8(5):685-703.

Nakayama H, Hibi K, Takase T, Yamazaki T, Kasai Y, Ito K, Akiyama S, Nakao A.
Molecular detection of p16 promoter methylation in the serum of
colorectal cancer patients. Cancer Lett. 2002;188:115-9.


https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-4
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-4
http://icgc.org/
http://syscol-project.eu/
http://www.bioconductor.org
http://usegalaxy.org
http://www.genexplain.com
http://genexplain.com/transfac
http://micro.biouml.org/bioumlweb/#anonymous=true&perspective=DNA%20methylation%20signature%20for%20the%20diagnosis%20of%20colon%20cancer
http://micro.biouml.org/bioumlweb/#anonymous=true&perspective=DNA%20methylation%20signature%20for%20the%20diagnosis%20of%20colon%20cancer
http://micro.biouml.org/bioumlweb/#anonymous=true&perspective=DNA%20methylation%20signature%20for%20the%20diagnosis%20of%20colon%20cancer

Kel et al. BMC Bioinformatics 2019, 20(Suppl 4):119 Page 20 of 20

26. deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Steiger KV,
Grltzmann R, Pilarsky C, Habermann JK, Fleshner PR, Oubre BM, Day R,
Sledziewski AZ, Lofton-Day C. Circulating methylated SEPT9 DNA in plasma
is a biomarker for colorectal cancer. Clin Chem. 2009;55:1337-46.

27. Results of the analysis using the pipeline My-Genome-Enhancer in
geneXplain platform. https://platform.genexplain.com/bioumlweb/
#anonymous=true&de=data/Projects/CRC_6_CpG_biomarkers/Data/
Table%20510_list%200f%206%20biomarker%20combination. Accessed 30
Nov 2018.

28.  The software tools and databases used are available on-line at URL.
my-genome-enhancer.com. Accessed 30 Nov 2018.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC



https://platform.genexplain.com/bioumlweb/#anonymous=true&de=data/Projects/CRC_6_CpG_biomarkers/Data/Table%20S10_list%20of%206%20biomarker%20combination
https://platform.genexplain.com/bioumlweb/#anonymous=true&de=data/Projects/CRC_6_CpG_biomarkers/Data/Table%20S10_list%20of%206%20biomarker%20combination
https://platform.genexplain.com/bioumlweb/#anonymous=true&de=data/Projects/CRC_6_CpG_biomarkers/Data/Table%20S10_list%20of%206%20biomarker%20combination
http://my-genome-enhancer.com

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Samples
	Sample preparation protocol
	Methylation microarray analysis
	RNA-sequencing
	Statistics
	Promoter analysis
	Composite module analyst with correlation analysis (CMAcorrel)
	Identification of master regulators
	Algorithm of identifying “walking pathways”
	Pipeline “My-Genome-Enhancer.com”

	Results
	Identification of differentially expressed genes
	Functional classification of target genes
	Comparison of samples with different tumor stages
	Analysis of DNA methylation data
	Analysis of correlation between DNA methylation and gene expression
	Identification of enriched TF binding sites around CpG loci
	Search for master-regulators and reconstruction of networks with positive feedback loops
	Selection of a target list of potential biomarkers
	Testing of the CpG-markers in independent clinical samples
	Creating a diagnostic combination of biomarkers

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

