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Abstract
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Background: The detection of weak signals and selection of single particles from low-contrast micrographs of
frozen hydrated biomolecules by cryo-electron microscopy (cryo-EM) represents a major practical bottleneck in
cryo-EM data analysis. Template-based particle picking by an objective function using fast local correlation (FLC)
allows computational extraction of a large number of candidate particles from micrographs. Another independent
objective function based on maximum likelihood estimates (MLE) can be used to align the images and verify the
presence of a signal in the selected particles. Despite the widespread applications of the two objective functions,
an optimal combination of their utilities has not been exploited. Here we propose a bi-objective function (BOF)
approach that combines both FLC and MLE and explore the potential advantages and limitations of BOF in signal

Results: The robustness of the BOF strategy in particle selection and verification was systematically examined with
both simulated and experimental cryo-EM data. We investigated how the performance of the BOF approach is
quantitatively affected by the signal-to-noise ratio (SNR) of cryo-EM data and by the choice of initialization for FLC
and MLE. We quantitatively pinpointed the critical SNR (~ 0.005), at which the BOF approach starts losing its ability
to select and verify particles reliably. We found that the use of a Gaussian model to initialize the MLE suppresses
the adverse effects of reference dependency in the FLC function used for template-matching.

Conclusion: The BOF approach, which combines two distinct objective functions, provides a sensitive way to verify
particles for downstream cryo-EM structure analysis. Importantly, reference dependency of the FLC does not
necessarily transfer to the MLE, enabling the robust detection of weak signals. Our insights into the numerical
behavior of the BOF approach can be used to improve automation efficiency in the cryo-EM data processing
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Background

Cryo-electron microscopy (cryo-EM) has recently emerged
as a mainstream approach for high-resolution structure
determination of biological macromolecules [1]. Image
formation in electron microscopy is understood as the
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weak-phase approximation of thin, electron-penetrable
objects [2]. The electron image formed after the objective
lens is a convolution of the exit wave function passing
through the object with the point spread function of the
objective lens [2]. The phase-contrast transfer function
(CTF), which is the Fourier transform of the point spread
function of the objective lens, gives rise to a tradeoff
between the resolution and the contrast of the image [3].
To image biomolecular structures in their native states by
cryo-EM, the molecules of interest are flash-frozen in a thin
layer of amorphous ice suspended over holes in a perfo-
rated carbon film. Thus, the biomolecular objects are
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surrounded by imaging noise from electrons scattered by
the amorphous ice. Another thin carbon film over the holes
may also be used as a support to enrich biomolecules for
cryo-EM; in this case, the carbon film adds further noise.
Moreover, additional noise may be introduced in the
process of electron signal transfer into the recording
medium, such as detection noise in a CCD camera and
electron-counting noise in a direct electron detector. The
strong background ice noise, together with weak-phase
approximation in image formation, results in extremely low
signal-to-noise ratios (SNR), which are often in the range of
0.005-0.05. Therefore, the determination of cryo-EM struc-
tures of biomolecules at high resolution requires that a
large number of single-particle images, often on the scale of
hundreds of thousands to a million, are acquired, aligned
and averaged to remove background image noise in signal
reconstruction.

Due to the required large number of images, the selec-
tion of single-particles from noisy cryo-EM micrographs
represents a major practical bottleneck. Since manual
selection can be very time-consuming and is prone to
errors resulting from subjective factors, a number of
automated approaches have been investigated. Comput-
erized procedures for signal detection in single-particle
cryo-EM involve two steps: particle picking and particle
verification [4—6]. A number of algorithms have been
developed to automate template-matching procedures
for particle picking. However, these procedures require
subsequent manual selection of particles, in some cases
with the help of data clustering to expedite the rejection
of false positives [7-22]. A popular implementation of
these template-matching methods is based on the
cross-correlation function, in which the fast local correl-
ation (FLC) is calculated between a template image and
an equally sized local area of the cryo-EM micrograph
[8, 12, 13]. A disadvantage of the FLC function lies in its
sensitivity to noise, which can create false correlation
peaks that do not result from real signals. Furthermore,
the outcome of cross-correlation algorithms may be in-
fluenced by the alignment of noise to the template used
as a reference, known as “reference bias” or “reference
dependency” [23].

Maximum likelihood estimation (MLE), which exhibits
reduced susceptibility to reference bias compared to the
cross-correlation algorithm [24, 25], has been used to
evaluate the homogeneity of the picked particles by
multi-reference image alignment [26, 27]. In principle,
the use of two mathematically distinct objective func-
tions in signal recognition can serve as a test of the
robustness of the image analysis and a verification of the
detected signals, since reference dependency is not
expected to be reproduced in the same way by two
different objective functions. The combination of one
objective function (FLC) for particle picking and another
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(MLE) for particle alignment may allow the reconstitution
of the true signal from the selected images. However,
despite the application of both FLC and MLE in
single-particle analysis of cryo-EM structures [22, 28-32],
it remains unknown how the bi-objective function (BOF)
scheme performs in terms of various control parameters,
such as signal-to-noise ratio (SNR) and initialization
inputs.

Beyond FLC and MLE, several machine-learning
approaches, such as deep learning based on convolutional
neural networks, have been applied to address the problem
of signal detection in cryo-EM data [20, 33-36]. These
approaches not only relieve the burden of post-picking
manual selection [20, 33], but also work in a template-free
fashion [34-36]. However, these advantages come at a
significant computational cost. Thus, except for a few cases
dealing with highly dynamic complex machineries that have
benefitted from the deep-learning-based particle selection
approach [37-39], most high-resolution cryo-EM struc-
tures published to date have relied heavily on FLC-based
particle picking [40—42].

In the present study, we systematically evaluated how
the performance of the BOF approach is affected by
three variables: (1) the SNR of the cryo-EM data, (2) the
choices of the template used for particle picking, and (3)
the initialization reference used in MLE alignment for
signal verification. We quantitatively characterized the
performance and robustness of the BOF approach with
simulated micrographs exhibiting a wide range of SNRs,
as well as with real-world cryo-EM data of a 173-kD glu-
cose isomerase. We performed comparative BOF studies
with different references to investigate how the adverse
effect of reference dependency incurred by the use of
the FLC may be suppressed by the application of the
MLE initialized using a Gaussian model.

Methods
A brief review on objective functions used for signal
alignment
Within a set of N single-particle images, each of which
is a noisy, translated and rotated copy of the underlying
2D projection structure A, the ith image can be repre-
sented by the equation.
Xi:R(qer)A—FO‘Gi, i= 1,2,...N, (1)
where X; is the observed ith image comprising J pixels
with values X;; R(¢)) denotes the in-plane transform-
ation depending on the parameter vector ¢, = (a; x; ;)
that comprises a rotation a; and two translations x; and
y; along two orthogonal directions; A is the underlying
signal with pixel values A; that is common to all images;
G; is the noise of a Gaussian distribution with a unity
standard deviation, further scaled by a scalar factor o.
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Because the parameter vector ¢; is experimentally un-
known, the problem of image alignment is to determine

the solution of a set of parameter vectors @ = { ¢§”); i=1,
2, ... N} that allows an optimal estimate of the underlying
true signal through averaging of these images.

1 N
(n4+1) _ — -
A N Zi:lR

in which R‘l(([)E")) is the reverse transformation that
brings the image X; to the common orientation and pos-
ition of A. This image alignment problem may be math-
ematically translated into different optimization
problems. Two main types of mathematical translations
have emerged in past studies [24, 43]. In the first type,
the image alignment problem was addressed by maxi-
mizing the squared magnitude of the summed images
[43], which can be described as

L(X,®) = ||ZA;R

The maximum of this function is equivalent to the
minimization of the least squares target

Ho")X; (2)

x| @

N 2
rx,0) =3 1X-R($)A| (4)
A local minimization of this function can be obtained
by iteratively maximizing the cross-correlation between
each image and the average.

"V = arg maxy[X; - R(@)A™],i=1,2..N (5

Here, the dot indicates an inner product between two
images X - A = Z,{lekak. An approximate solution may
be obtained by iteratively estimating the underlying sig-

nal A™ and the alignment parameter ¢>§"> according to
egs. (3) and (5).

In the second type, the image alignment problem is
interpreted as a maximum-likelihood estimate (MLE) of
the signal A, i.e. the maximization of the probability
function

=1I pxie) (6)

whereby P(X;| ©) is the probability density function ob-
served for the image X; given the set of model parameters
O= (A, g, £), where & characterizes the statistics of R(¢,).
In this case, the alignment parameters ® ={ ¢; i=1, 2, ...
N} are treated as latent variables. The maximization of the
probability function £(®) is more conveniently replaced
by its logarithm
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A local maximum of the log-likelihood function L(®)
can be obtained by finding the value of ® at which the
partial derivatives of L(®) are zero. The problem of finding
the maximum likelihood can be numerically tackled
through the expectation-maximization algorithm. This al-
gorithm is an iterative method that alternates between an
expectation (E) step, which computes the expectation of
the log-likelihood evaluated using the current estimate for
the model parameters, and a maximization (M) step,
which computes model parameters maximizing the ex-
pected log-likelihood found in the E-step [24]. These esti-
mates of parameters are then used to determine the
distribution of the latent variables in the next E-step. In
each E-step, the observed data X; and the current esti-
mates of model parameters ©” are used to calculate the
expectation of the log-likelihood function as

Q(©,6") = Earxe [ D1, InP(X;, l6)]

- Zz 1/ |Xl7®(n
In{P(Xi|¢, @)P(¢\@)}d¢
(8)

Under the assumption of a Gaussian distribution of

the latent variables ® ={ ¢; i=1, 2, ... N} and the ob-
served signal, this gives rise to
Q(e,0m)=>"", / P(¢lx;,0")
1 2
«{- pua 1X-R @A | ©)

In the M-step, Q(6, 0") is maximized with respect to
the model parameters
0" — arg max@Q(@, 6(”>) (10)
which corresponds to the minimization of a weighted
least-squares target with a weight of P(¢)| X;, ©") for each
image. Note that this is in marked contrast to eq. (4). The
estimate of the signal therefore is a weighted average in-
cluding contributions from all possible values of ¢ for every
image X, so that the class averages can be updated in a
probability-weighted manner

Zl 1/ |X“®

All other model parameters in @”*" are updated in
the M-step similarly as probability-weighted averages
[24].

n+1)

R (p)Xid¢ (11)
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It is also necessary to consider the mathematical rela-
tionships and differences between the image alignment
approaches. First, in recovering the signal A, the latter ap-
proach uses a probability-weighted average instead of the
deterministic average used in the former approach, as il-
lustrated by the differences between eqs. (2) and (11). Sec-
ond, if one assumes that the estimate of the hidden
variable @ is deterministic instead of probabilistic, P(¢;|
X, ©™) adopts the form of a Dirac 8-function. Under this
condition, the maximization of the log-likelihood function
shown in eq. (9) is simplified to the minimization of the
least-squares target shown in expression (5), instead of the
probability-weighted least-squares target in eq. (9). At the
same time, the estimate of the signal by eq. (11) can be re-
duced to eq. (2). Third, despite this conditional equiva-
lence in terms of numerical optimization, the two
approaches adopt essentially different objective functions
that include different variables and parameters, as evi-
denced by a comparison of egs. (5) and (8). Importantly,
all model parameters O = (4, g, ) are re-estimated during
each iteration of optimization in the latter approach,
whereas only one type of model parameter, A, is
re-estimated during the course of optimization in the
former approach.

Previously proposed solutions to the particle-picking
problem were mostly derived from the cross-correlation-
based approach. In a typical case, the locally normalized
correlation function is calculated between a search object S
(template) and target micrograph T under the footprint of a
mask M [8]:

=33,

where S and o are the average and standard deviation
of the search object Si; T, and g7 are the local average
and standard deviation of T within the footprint of mask
M; x is the position of the footprint of mask M, and P is
the total number of non-zero points inside the mask. If
S and o are set to zero and unity, respectively, eq. (12)
is reduced to

=S) My (Tisx-T)

os0pr (%)

(12)

1 J
=— SiMic T ki x
) PO-MT(x)Zk:I kWi £ ke

The local standard deviation of T can be calculated via

1 1/ 2
Shir) = 5 LM T [ T

(14)

This and other similar implementations of a
particle-picking strategy have been collectively referred
to as “template matching”. As the image size of § is
much smaller than that of T, the local cross-correlation
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is calculated with the mask M raster-scanning across the
entire micrograph to produce a cross-correlation map.
The local maximum in the correlation map is identified,
ranked, and used to indicate the position of the picked
candidate particle image. The FLC function expressed in
eq. (13) has led to a more efficient implementation of a
computational particle-picking procedure [8, 12, 13].

As explained above, the FLC function is notably differ-
ent from the MLE in signal recognition in their mathem-
atical forms. In the absence of noise, the
cross-correlation function and MLE should both lead to
the same solution for the image alignment problem [24].
However, in the presence of noise, the FLC and MLE be-
have differently [24]. The FLC is very fast and efficient
in computation. However, it demonstrates an increasing
propensity to identify false-positive particles or introduce
mis-alignment as the SNR decreases [8, 12, 13]. By con-
trast, at the expense of significantly more computational
power, the exhaustive probability search across parameter
space in the MLE substantially reduces the effect of false
positives over the iterations of the expectation-
maximization algorithm. The probability-weighted aver-
ages further limit the contribution of false positives and
mis-alignment to the estimation of the signal. Therefore,
the FLC and MLE are complementary to each other in
their responses to noise, as well as in their computational
efficiency.

Procedure of the BOF approach

Throughout this study, the following BOF-based proced-
ure was applied to 26 datasets of either pure noise or
simulated micrographs of the trimeric ectodomain of the
influenza hemagglutinin (HA) glycoprotein [44], as well
as an experimental dataset of focal-pair micrographs of
the 173-kDa glucose isomerase complex. The BOF strat-
egy and an implementation of the BOF procedure are
shown in Fig. 1, a and b, respectively.

Step 1: Particle picking by fast local cross-correlation

We used template matching by FLC implemented in
SPIDER to pick particles [45]. The SPIDER system is a
comprehensive software package for image processing
that supports rapid scripting to handle batch processing
of cryo-EM data [45]. The SPIDER script lfc_pick.spi has
already been applied to the ribosome [12] and has served
as a control for the recent development of a reference-free
particle-picking approach [35]. This procedure applies the
FLC function to particle recognition [8]. In this study, we
picked particles using single 2D templates, as described in
the specific experiments below. Note that previous studies
have shown that using the FLC function with a single tem-
plate can pick many views of particles [12]. Nonetheless, it
has been suggested that using more templates can
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Objective function A )

Automated particle picking

U

Objective function B :)

Particle verification

Automated particle picking

U

Manual selection and/or data clustering

U

Particle verification

Objective function B

Fig. 1 Strategy and implementation of the BOF approach. a The BOF approach involves the use of two different objective functions. The first
objective function deals with particle detection and the second one with particle verification. b The BOF approach used in this study combines
FLC and MLE objective functions, which are not mathematically equivalent or correlated. User-determined templates/references are shown in the
dashed boxes, designated with the nomenclature used throughout this manuscript

potentially reduce the number of false positives that are
picked [8, 12, 13].

Step 2: Candidate particle selection using a threshold in the
ranking of correlation peaks and manual rejection of
obvious artifacts

The SPIDER particle-picking program lfc_pick.spi sorts
and ranks the picked particles according to their correl-
ation peaks, from high to low peak values. Upon sorting
and ranking, the potential true particles often appear at
higher correlation peak values and the pure noise images
at lower correlation peaks. A threshold that approxi-
mately demarcates the boundary between the potential
true particles and pure noise can be used to select the
initial candidate particles, followed by manual inspection
of each particle and rejection of obvious artifacts. The
rejection of suspected artifacts and false positives can be
done in batch mode if the picked particles are grouped
into many 2D classes by multivariate statistical analysis
or unsupervised clustering [15, 19, 46, 47].

Step 3: Particle validation by a MLE alignment with multiple
classes

Image similarity measured via the MLE-based probabil-
ity, and the subsequently calculated class averages

obtained by integrating over all probabilities, are more
sensitive to the presence of true signals [24]. The parti-
cles belonging to the class averages that clearly exhibit
the expected signal features are chosen for further pro-
cessing; the particles in the class averages that are suspi-
cious or apparently artefactual may then be discarded.
This step provides an opportune checkpoint to effi-
ciently remove non-particles in batch mode.

BOF testing of simulated and experimental noise
micrographs

To conduct a baseline control, we first simulated 200
micrographs containing only Gaussian noise using the
SPIDER command MO (option R with Gaussian distri-
bution). Each micrograph had dimensions of 4096 x
4096 pixels. We then used one projection view of the ~
11-A human immunodeficiency virus (HIV-1) envelope
glycoprotein (Env) trimer [28] as a template for particle
picking from the simulated Gaussian-noise micrographs.
The box size was 256 x 256 pixels. Although the
micrographs can be binned twice or 4 times to speed up
the computational procedure of particle picking by FLC,
it is necessary to extract the particles from unbinned
original micrographs because they are required for
high-resolution 3D reconstruction in later steps in an
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actual scenario of structure determination [48]. In each
micrograph, about 20-25 boxed images of the highest
local correlation peaks were selected to assemble a par-
ticle stack of 4485 images. After particle picking and se-
lection, each particle image was scaled 4 times to 64 x 64
pixels using xmipp_scale, and normalized using xmipp_-
normalize [49]. Subsequent MLE alignment using
xmipp_ml_align2d was repeated with three different
starting references: (1) a noise image randomly chosen
from the entire image stack, which contains weak signal
that is likely to introduce some initiation bias; (2) a
Gaussian circle, which follows a Gaussian distribution in
radial intensity and does not introduce any prior bias to
the reference; and (3) an average of a random subset of
the unaligned images that replicates the template used
for particle picking, which can be used to test the refer-
ence dependency of the MLE alignment. Comparison
among these three cases would allow us to examine
whether and how the initial reference used for MLE im-
pacts the potential capability of MLE to suppress refer-
ence dependency introduced during FLC-based particle
picking.

To repeat the above BOF test on real-world experi-
mental ice noise, we imaged a cryo-grid that was
flash-frozen from a buffer containing no protein sample.
The composition of the buffer was 20 mM Tris-HCI, pH
7.4, 300 mM NaCl and 0.01% Cymal-6 (Anatrace, USA).
This was the same buffer used for vitrifying the HIV-1
Env trimer for its cryo-EM structural analysis [28, 32].
The cryo-grid was made from a C-flat holey carbon grid
using the FEI Vitrobot Mark IV (Thermo Fisher Scien-
tific, USA). The data were collected on an FEI Tecnai
G2 F20 microscope (Thermo Fisher Scientific, USA) op-
erating at 120kV, equipped with a Gatan Ultrascan
4096 x 4096-pixel CCD camera (Gatan, USA), at a nom-
inal magnification of 80,000x. We selected 218 mi-
crographs of pure ice noise collected in one
cryo-EM session. The same particle-picking proced-
ure performed with the simulated Gaussian noise
micrographs (see above) was applied to the experi-
mental ice noise micrographs, with the same HIV-1
Env trimer template. After particle picking, the ap-
parent ice-crystal contaminants were manually
rejected from the particle set, leaving only images of
amorphous ice noise. By selecting only about 10-25
boxed images with the highest local correlation
peaks from each micrograph, a particle stack of 4591
images was assembled, and was subjected to the
same MLE alignment as described above for the data
from the simulated Gaussian noise micrographs.
These BOF tests on both the simulated and experi-
mental pure noise micrographs (Fig. 2) served as
controls for the subsequent examination of the BOF
approach.
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BOF testing of simulated micrographs
Throughout this study, the SNR was defined as the ratio
of signal variance to noise variance [3, 50],
SNR = O%L’gnal/alz\[oise (15)
When the background noise has a mean value of zero,
its power Pyise €quals its variance 0%,,,- In single-particle
cryo-EM images, the particles are located at different posi-
tions in the micrographs and carry the signal. When the
mean value of the signal is normalized to zero, Pgjgna be-
comes equal to agignﬂl, and the power ratio of signal to

noise thus equals the variance ratio. The SNR of a micro-
graph was calculated as the power ratio of the signal from
all the particles to the background noise in this micro-
graph. For the SNR of a single-particle image, the noise
variance was calculated on a boxed background area with-
out any particle, and the signal variance was calculated on
the particle image of the same box size without back-
ground noise.

We simulated 120 micrographs of noiseless particles
corresponding to the crystal structure of the influenza A
virus hemagglutinin (HA) glycoprotein ectodomain
(PDB ID: 3HMG) using xmipp_phantom_create_micro-
graph [44]. The simulation assumed a pixel size of 1.0
Angstrom and micrograph dimensions of 4096 x 4096
pixels. To simulate the aberration effect of the objective
lens in electron microscopy, the contrast transfer func-
tion (CTF) was applied in the Fourier transform of the
simulated noiseless micrographs using a separate
SPIDER script. The CTF simulation assumed an acceler-
ation voltage of 200kV, a defocus of — 1 pm, a spherical
aberration Cs of 2.0 mm, an amplitude contrast ratio of
10%, and a Gaussian envelope half width of 0.333 A~ ",
In each simulated micrograph, there were 323 HA
molecules that assumed random orientations. To add
different levels of Gaussian noise to the noiseless micro-
graphs, the standard deviation of the background of each
micrograph was calculated and used as input to simulate
a background Gaussian noise image that was added to
the noiseless micrographs. The simulated micrographs
with Gaussian noise additively yielded SNRs of 0.1, 0.05,
0.02, 0.01, 0.005, 0.002, 0.001 or 0.0005. A typical series
comprising a simulated noiseless micrograph and the de-
rived noisy micrographs at different SNRs is shown in
Additional file 1: Figure S1. A comparison of the corre-
sponding behaviors of the power spectra in Fourier
space is shown in Fig. 3. Note that the SNR calculated
for an entire micrograph is often lower than the SNR
calculated from boxed single-particle images, since there
are more empty background areas in the micrograph
than in appropriately boxed single-particle images.

For the simulated micrographs at each SNR value, we
conducted BOF tests using three different templates for
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A FLC-based particle selection

MLE-based particle verification

I
Pure noise micrograph

Particle-picking

template

B Starting

Boxed pure-noise “particles”  Starting reference

Iteration of MLE optimization

MLE-aligned average

reference st 20th 50th

FLC-generated replica of the 2D template used for particle picking

Fig. 2 The BOF results for simulated and experimental pure noise data. a A schematic flow diagram showing that “particles” were picked by
FLC from pure-noise micrographs, using a single projection of the HIV-1 envelope glycoprotein (Env) trimer as a template. The picked particles
were subjected to MLE alignment, using different starting references. b-d The FLC-picked particle set, derived from the simulated Gaussian-noise
micrographs was aligned by MLE, starting from a noise image randomly chosen from the particle set (b), a Gaussian circle (c), or the average of
the picked particles (d). The starting reference for MLE optimization is shown in the first column. Each row shows the history of the MLE-aligned
class averages at the indicated iterations of optimization, ending with the respective converged class averages in the far-right column. e-g The
FLC-picked particle set derived from the experimental ice-noise micrographs and aligned using MLE, starting from a noise image randomly
chosen from the particle set (e), a Gaussian circle (f), or the average of the picked particles (g). The averages shown in (d) and (g) appear as an

100th 1000th 1 Converged

particle picking: a Gaussian circle, one projection view
of the influenza virus HA trimer filtered to 30 Ang-
stroms, and one projection view of the HIV-1 Env trimer
filtered to 30 Angstroms (Fig. 4). Each set of micro-
graphs with a given SNR and selected by a particular
particle-picking template was treated as a separate case.
Therefore, there were 8 x 3 =24 cases studied and com-
pared in our BOF tests. For each case, a stack of 38,760

particle images was assembled from 120 simulated mi-
crographs, based on a selection threshold of 323 parti-
cles per micrograph. The original box dimension for
particle picking was 180 x 180 pixels. After particle pick-
ing and selection, each particle image was first scaled 3
times to a dimension of 60 x 60 pixels, normalized for
background noise, and subjected to multi-reference
MLE classification into 5 classes, using two different
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Fig. 3 The Fourier behavior of the simulated micrographs. a The power spectra of the simulated micrographs with different SNRs. b The
rotational averages of the power spectrum of the noiseless micrograph before and after applying the CTF effect. ¢ The rotational averages
of the power spectra of the simulated noisy micrographs. d The spectral signal-to-noise ratios (SSNRs) of the simulated noisy micrographs
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initial references: (1) the average of a randomly selected
subset of particles (Fig. 5), and (2) a Gaussian circle,
which follows a Gaussian distribution in radial intensity
(Fig. 6). When extrapolating to the SNR of
single-particle images, the SNR of an entire micrograph
needs to be multiplied by a factor (> 1), which depends
on the particle density and the box size of particles, to
make it equivalent to the SNR of single-particle images.
Given the aforementioned parameters, the SNRs of the
simulated micrographs at 0.1, 0.05, 0.02, 0.01, 0.005,
0.002, 0.001 and 0.0005 correspond to the single-particle
SNRs of 0.16, 0.08, 0.032, 0.016, 0.008, 0.0032, 0.0016
and 0.0008, respectively. Throughout the rest of this
paper, unless stated explicitly, the “SNR” refers to that of
the simulated micrographs instead of the single-particle
SNRs.

BOF tests on experimental cryo-EM data

We collected an experimental cryo-EM dataset of the
173-kDa glucose isomerase complex (Hampton Re-
search, CA, USA). A 2.5-ul drop of a 3 mg/ml glucose
isomerase solution was applied to a glow-discharged
C-flat grid (R 1.2/1.3, 400 Mesh, Protochips, CA, USA),
and flash-frozen in liquid ethane using the FEI Vitrobot
Mark IV (Thermo Fisher Scientific, USA). The cryo-grid
was imaged in an FEI Tecnai Arctica microscope

(Thermo Fisher Scientific, USA) at a nominal magnifica-
tion of 21,000x and an acceleration voltage of 200 keV.
We selected 95 focal pairs of micrographs collected
using a Gatan K2 Summit direct detector camera (Gatan
Inc., CA, USA), with a defocus difference of 1.5 um and
a pixel size of 1.74 A. The actual defocus values of the
micrographs were determined through CTFFind3 [51].
The first exposure was taken at a defocus between - 1.0
and - 3.0 um. In this defocus range, the visibility of the
complexes was marginal, posing difficulties for manual
particle identification. The second exposure was taken at
a defocus between —3.0 and - 5.0 um. In this defocus
range, the particles were more visible. We then used
FLC to pick particles directly from the micrographs of
the first exposure, and used the second exposure to
manually verify the particle selection from the first
exposure. Using the first exposure at a lower defocus,
which gives lower single-particle SNRs, provides a more
stringent test of the robustness of the BOF approach
than using the second exposure at a higher defocus.

To perform BOF tests on these cryo-EM data, we
assembled three particle stacks (comprising 22,298,
20,632 and 22,828 particles, respectively) using three
different templates for particle picking, i.e., a Gaussian
circle, one projection view of the glucose isomerase crys-
tal structure (PDB ID: 10AD) filtered to 30 A, and one
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(b) one projection view of the influenza virus HA trimer, and (c) one projection view of the HIV-1 Env trimer. The particle-picking templates are
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projection view of the HIV-1 Env trimer filtered to 30 A.
Particle images of 90 x 90 pixels, picked by FLC, were
phase-flipped to partially correct the CTF effect. The
three stacks of particles were normalized for background
noise and subjected to multi-reference MLE classifica-
tion into 5 classes, using two different initial references:
(1) the average of a randomly selected subset of particles;
and (2) a Gaussian circle, which follows a Gaussian dis-
tribution in radial intensity.

Results

BOF tests on simulated and experimental noise

As a control experiment to investigate the ability of the
BOF approach to resist reference bias, we conducted
BOF tests on simulated micrographs that contain only
Gaussian noise. A single 2D projection of the HIV-1 Env
trimer was used as the template for picking “particles” by
FLC (Objective function A) (Fig. 2a). Images with the
highest local correlation peaks were selected and subjected
to MLE alignment, using three different starting refer-
ences for MLE optimization (Objective function B). In the

first BOF test, a raw pure noise image randomly chosen
from the particle stack was used as the starting reference
for MLE optimization (Fig. 2b). Over more than 3000 iter-
ations of MLE alignment, no 2D structure resembling the
particle-picking template was observed. The resulting
average image in each iteration was still a random noise
image. We then used a Gaussian circle as the starting
reference to repeat the MLE optimization (Fig. 2c). Again,
the resulting average image contained only random noise
but no observable 2D model. As the third starting reference
for MLE optimization, we used the average of
template-selected particle images without any further align-
ment. Notably, this average closely resembled the HIV-1
Env trimer template used for particle picking (Fig. 2d), and
apparently resulted from reference dependency in
template-based particle picking by the FLC. When this
average image was used as the starting reference for the
MLE alignment, the replica of the template faded away in
the average image and nearly disappeared upon the conver-
gence of MLE optimization. Thus, the BOF approach can
work against reference bias associated with the alignment
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of pure noise during the particle-picking process, particu-
larly when the MLE verification is conducted using a ran-
dom noise image or a Gaussian circle as the starting
reference. Note that in the above-mentioned test, we per-
formed up to 3000 iterations of MLE optimization. Such a
prolonged optimization provides the computation with a

greater opportunity to evade local optima and helps to
examine the robustness of the convergence [24].

Next, we wanted to know if the results observed with
the simulated micrographs of Gaussian noise would be
reproduced with images of actual cryo-EM noise resulting
from amorphous ice. We repeated the BOF tests on the
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100th, 500th) shown in a row. At an SNR of 0.002 and above, the particle-

dataset assembled from experimental ice noise micro-
graphs. When aligned using MLE, starting with pure noise
or a Gaussian circle as the starting reference, no structure
was observed after more than 3000 iterations of
optimization (Fig. 2e and f). Thus, images of experimental
ice noise taken by a CCD camera reproduced the results
observed with simulated Gaussian noise, supporting the
notion that the experimental cryo-EM noise from
amorphous ice basically exhibits Gaussian-like behavior

[3]. Particle verification by MLE with starting references
comprising random noise or a Gaussian circle effectively
removed reference bias arising from the alignment of
simulated or experimental noise. By contrast, when the
unaligned average of the template-selected images was
used as the starting reference for MLE alignment, the
structure of the particle-picking template in the class aver-
age faded over the iterations of MLE, but was not com-
pletely removed by the MLE alignment (Fig. 2g).
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FLC performance on simulated micrographs with different
SNRs

We further tested the FLC-based particle-picking pro-
gram on a number of simulated micrograph datasets
(Additional file 1: Figure S1). As expected, the visibility
of particles was drastically diminished in the images with
lower SNRs [52]. Figure 3 shows the power spectra of
the simulated micrographs and their corresponding
spectral SNRs (SSNRs). We applied a number of
contrast-enhancement techniques, including histogram
normalization, contrast stretching, low-pass filtering and
pixel binning, to the simulated micrographs with differ-
ent SNRs. We found that these approaches were insuffi-
cient to restore unambiguous visibility to particles when
the SNR approached 0.005 (Additional file 1: Figure S2).
Because the loss of visibility created difficulties with dir-
ectly verifying the true and false positives in the same
micrograph in our particle-picking test, the original noise-
less micrograph from which the low-contrast micrograph
was derived was used to verify the particle-picking per-
formance (Additional file 1: Figure S3).

Using the noisy micrographs containing the randomly
oriented influenza virus HA trimers, we picked particles
using three different templates -- a Gaussian circle, one
projection view of the influenza virus HA trimer, and
one projection view of the HIV-1 Env trimer. Fig-
ures 4a-c show the plots of the correlation peaks versus
the rank numbers of the picked particles. Notably, when
the Gaussian circle was used as a template (Fig. 4a), the
plots corresponding to SNRs of 0.1, 0.05, 0.02 and 0.01
showed a clear-cut drop-off in the value of the correl-
ation peak at a rank of 323, which was the number of ac-
tual simulated particles in each micrograph [4]. All of
these 323 particles with high correlation peak values
were confirmed to be true positives. When the Gaussian
circle was used to pick particles from micrographs with
an SNR of 0.005, the plot of the correlation peaks still
exhibited a discernible drop-off at N =323, but with a
much smoother edge (Fig. 4a). The drop-offs in correl-
ation peak values were smoother and less prominent at
lower SNR values (0.002, 0.001 and 0.0005). Using 323 as
the threshold for particle selection, the number of false
positives was less than 2% at an SNR of 0.005, and in-
creased to approximately 7% at an SNR of 0.002 (Fig. 4d).

We evaluated the specificity of particle picking when
using templates other than a Gaussian circle, i.e., one
projection view of the influenza virus HA trimer itself,
and one projection view of the HIV-1 Env trimer, which
bears little similarity to the HA trimer (Fig. 4b and c).
For both templates, clear drop-offs in the correlation
peak-ranking plots at N =323 were observed at SNR
values of 0.005 and higher. Notably, in all cases where
we used different templates in the particle-picking test,
the false-positive rate was below 2.5% at the SNR values
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of 0.005 and above; there were no false positives at SNR
values of 0.02 and greater (Fig. 4d). However, using the
Gaussian circle template allowed better centering of
picked particles than using the other two templates
(Additional file 1: Figures S3 and S4). Among the cases
compared here, the centering of picked particles was the
worst when a dissimilar 2D structure (the HIV-1 Env tri-
mer) was used as a template for micrographs with the
lowest SNRs (0.005—0.0005) (Additional file 1: Figure
S4). This implies that particle recognition is less sensitive
to the detailed shape of the particle-picking template
than are the specificity and particle-centering accuracy.
Thus, the use of a dissimilar template allowed overall
particle recognition, but resulted in a greater miscenter-
ing of the picked particles and more false positives at the
lowest SNRs (0.005-0.0005).

BOF tests on the simulated cryo-EM datasets

We evaluated the ability of the BOF approach to verify
the presence of genuine signals in the particles selected
from micrographs with different SNRs using different
particle-picking templates. Strikingly, for those datasets
derived from micrographs with SNRs higher than 0.002,
the class averages after the MLE alignment all recapitu-
lated the projection views of the influenza virus HA tri-
mer, no matter what type of initial reference was used
for both FLC and MLE (Figs. 5 and 6). The MLE align-
ment results using particles selected from micrographs
with SNR values of at least 0.002 were comparable for
those selected using the three distinct templates. Evi-
dently, the model used for the particle-picking template
does not govern the outcome of MLE optimization when
a sufficiently strong signal is present. Below the SNR
value of 0.002, the MLE reduced but did not completely
remove the reference dependency in the converged class
averages when the unaligned class average was used as
the starting reference for MLE alignment (Fig. 5i and I).
Nonetheless, this effect was substantially reduced in the
converged class averages when the Gaussian circle was
used as the starting reference for the MLE alignment
(Fig. 6i and 1).

BOF tests on experimental cryo-EM data of glucose
isomerase

To further examine the robustness of the BOF approach,
we applied BOF tests to an experimental cryo-EM
dataset of the 173-kDa glucose isomerase complex
(Additional file 1: Figure S5). The single-particle SNR
of this dataset is approximately 0.005-0.01. The BOF tests
successfully produced class averages that corresponded to
projection views of the glucose isomerase complex in all
six cases (Fig. 7 and Additional file 1: Figure S6). Consist-
ent with our observations with the simulated micrographs,
the use of a Gaussian circle as both the particle-picking
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template and the MLE alignment reference performed as
well or better than the other combinations in generating
class averages corresponding to glucose isomerase projec-
tions (Fig. 7b). When the HIV-1 Env trimer was used as
the particle-picking template and the unaligned average
used as the starting reference for MLE alignment, two
class averages showed structures that were strongly biased
by the particle-picking template (rows 3 and 4 in Fig. 7e).
By contrast, the other three class averages more closely
reflected the low-resolution projection views of glucose
isomerase (rows 1, 2 and 5 in Fig. 7e), although some
residual elements of the HIV-1 Env trimer persisted in the
background. However, when the Gaussian circle was used
as the starting reference for MLE alignment, the
particle-picking template of the HIV-1 Env trimer was no
longer recapitulated in any of the converged class averages
(Fig. 7f). Even when one of the class averages demon-
strated indistinct features, perhaps due to a clustering of
non-particle false positives, the aligned average did not
resemble the particle-picking template of the HIV-1 Env
trimer (second row in Fig. 7f). As discussed above, such
classes of particles can be discarded, which provides an
opportunity to cull non-particles in batch mode. These re-
sults therefore indicate that the BOF approach, when used
with Gaussian references, can be successfully applied to ex-
perimental cryo-EM data of a 173-kD protein complex.
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BOF robustness

The ability of BOF tests to suppress reference bias can
be quantitatively evaluated by assessing the Fourier ring
correlation (FRC) between the particle-picking template
and the class averages as they evolve during the process
of MLE optimization. We first analyzed the cases in
which the HIV-1 Env trimer was used to pick particles,
and unaligned class averages were used as starting refer-
ences for MLE optimization (solid curves in Fig. 8). In
these cases, the FRC curves showed a significant correl-
ation (> 0.5) in the low-resolution range (20-50 A) at the
beginning of the MLE optimization (black solid curves
in Fig. 8). However, as MLE optimization progressed to
convergence, the FRC values decreased and the image of
the particle-picking template diminished in significance
(red solid curves in Fig. 8). In the case of the simulated
data at an SNR of 0.005, the frequency of FRC-0.5
dropped to 0.015A™' upon convergence, indicating an
efficient removal of reference bias (Fig. 8a). Correspond-
ingly, the converged class averages efficiently recovered
the projection views of the influenza virus HA trimer
(Fig. 5¢). At SNRs of 0.002 and lower, the frequency of
FRC-0.5 was reduced to 0.02—-0.04 A™' upon conver-
gence, indicating a less efficient removal of reference
bias (Figs. 8b-e). By contrast, in all MLE alignments per-
formed using a Gaussian circle as the starting reference,
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isomerase complex. The templates used for particle picking were: a Gaussian circle (a, b), one projection view of the glucose isomerase complex (c, d),
and one projection view of the HIV-1 Env trimer (e, f). The approximate percentages of false-positive particles assembled in the three cases, estimated
through the manual examination of the larger-defocus micrographs in the focal pairs, were 6% (a, b), 4% (c, d) and 11% (e, f). In the MLE optimization
step, the unaligned averages of randomly classified particles were used as starting references in panels a, ¢ and e, and a Gaussian circle was used as
the starting reference in panels b, d and f. In each panel, the five rows of image series correspond to five particle orientation classes generated by
MLE, with the class averages of the milestone iterations (1st, 10th, 50th, 100th, 500th) shown in a row
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Fig. 8 Fourier ring correlation (FRC) between the class averages and the particle-picking template of the HIV-1 Env trimer. Panels A-D show the results
using the class averages of the simulated data of the HA trimer, with SNR=0.005 (a), 0.002 (b), 0.001 (c) and 0.0005 (d), corresponding to the results
shown in Fig. 5¢, f, i and | and Fig. 6¢, f, i and . @ shows the results using the pure ice noise data in the absence of any proteins, as demonstrated in
Fig. 2f and g. f shows the results obtained with real-world cryo-EM data of the 173-kDa glucose isomerase complex, corresponding to Fig. 7e and f.
The solid and dashed curves were computed from the class averages from MLE optimization using the unaligned averages and a Gaussian circle as
starting reference, respectively. The color indicates the iteration of MLE optimization at which the class average was computed. For each case, the
FRC analysis is shown for a single class average. The results were similar for other class averages in each case

the FRC curves showed no significant correlation (> 0.5)
between the particle-picking template and the converged
class averages at a spatial frequency higher than ~ 0.02
A~ (dashed curves in Fig. 8). Thus, when a Gaussian
model was used as the starting reference for MLE
optimization, the converged class averages did not re-
capitulate the structure of the particle-picking template.

Discussion

This study provides insights into the numerical perform-
ance of the BOF procedure in the detection of weak
signals. First, the FLC implementation in SPIDER suc-
cessfully picked particles from micrographs with SNRs

as low as 0.002-0.005, at least in our tests (Fig. 4); such
low SNRs are potentially relevant to small proteins
below 200 kD or certain views of larger proteins with
less ordered or dynamic structures. Together with previ-
ous studies [8, 12, 13], our results suggest that the FLC
function is sensitive to the presence of weak signals. A
Gaussian circle seems to be as effective at picking parti-
cles as a single projection view of the imaged molecule.
Second, the output parameters in the particle-picking
problem are the x-y coordinates of the particle box. The
choice of template in particle picking affects the coordi-
nates of the extracted boxes, probably through biases in
the correlation between the noise and the template.
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Consequently, the average image of the picked particles
after boxing and before alignment closely resembled the
particle-picking template. However, the template does
not change the true signal in the boxed particle images,
which allows objective signal validation by the MLE
function with proper initialization. Third, the adverse
effects of reference bias resulting from FLC-based particle
picking can be suppressed by MLE-based alignment using
a Gaussian circle as the starting reference. In other words,
the reference bias derived from the FLC function does not
necessarily translate into reference bias in the MLE
function initialized with a Gaussian model. Finally, at the
lowest SNRs (0.001 and below), the BOF procedure
became inefficient at verifying signals from our dataset of
38,760 particles. In this case, the MLE alignment
initialized with a Gaussian model mostly led to a blank or
blurred class average that was insufficient to reproduce the
particle-picking template. A similar lower bound of SNR
(0.001 and below) was also found for a deep-learning-based
particle-picking approach [34].

We found that the use of a dissimilar structure as the
particle-picking template slightly increased the number
of false positives in the examined cases. Thus, a Gauss-
ian circle could be a preferred picking template in the
initial stage of automated particle picking, since it can
help avoid any potential selection bias [6]. Notwithstand-
ing, although the Gaussian model works well for picking
particle images of globular proteins or similar macro-
molecules, it could be error-prone and potentially miss
particles with unique shapes and topologies, such as
ring-like and other centrally sparse structures [6]. In this
case, a validated initial model low-pass filtered at 30—-60
A, which follows the low-frequency features of the parti-
cles, could be used as a particle-picking template.

False-positive particles, such as ice contamination, can
hardly be avoided by the FLC function. Nevertheless, the
percentage of false positives in the candidate particle
pools can be reduced by manual curation [8, 12, 13, 19].
Moreover, recent advances in applying machine learning
to particle recognition can mostly remove these types of
false positives, with little manual intervention [34, 35].
Thus, the objective functions in the BOF approach could
be replaced with more advanced ones, such as those
based on deep learning or manifold learning [34, 47], to
further improve the performance of signal detection by
the BOF approach.

Importantly, the aforementioned technical insights can
be used to optimize and quality control the everyday
practice of cryo-EM data processing. First, all current
implementation of FLC-based template-matching proce-
dures, such as those in SPIDER [45] and RELION [22],
requires 2D templates derived either from 2D class aver-
aging of thousands of manually picked particles or from
2D projections of an initial 3D model, both of which are
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still time-consuming and laborious to achieve. The use
of a Gaussian circle as a default template for initial
FLC-based particle picking can improve the level of
automation and save significant labor in generating
initial 2D class averages or 3D models. This strategy has
already been successful in high-resolution cryo-EM
structure determination in a few cases [42].

Second, in our practice of cryo-EM data processing, we
have found that templates for FLC derived by averaging
manually selected particles can potentially generate bias in
particle picking toward the views with orientations similar
to those of the templates. This is particularly a concern
for smaller proteins below 200 kD or non-globular parti-
cles (plate-like, discoidal or rod-shaped, etc.) [30], of
which some views might have much lower contrast or
SNR than other views and could thus evade visual detec-
tion in initial manual picking. If certain views that have
projection structures or shapes significantly different from
the orthogonal views are missed or not included in the
particle-picking templates, the FLC procedures can poten-
tially result in more false negatives of these views, causing
artificial orientation preference in the selected particle
dataset. In this case, we have found that the use of a
Gaussian circle as an FLC template to thoroughly pick all
potential particles, followed by deeper 2D classification
using statistical manifold learning [47], can reduce or
avoid the artificially introduced orientation preference in
the particle selection, thus eventually improving the qual-
ity and resolution of the 3D reconstruction.

Third, it has been previously hypothesized that wrong
templates used for particle picking can be inadvertently
recapitulated in the final 3D reconstruction of these par-
ticles, resulting in the visualization of nonexistent
objects [53—-55]. The present study systematically dem-
onstrates that, given sufficient SNR in the images, such
an outcome is unlikely when a Gaussian circle is used to
initiate the image alignment by MLE, regardless of what
type of template is used for FLC. When the initiation ref-
erence for MLE is the same as the template used for FLC
on the data with lower SNRs (0.001 or lower), elements of
the particle-picking template can be recapitulated in some
2D class averages generated by MLE, and could potentially
bias the resulting 3D reconstruction. Thus, the use of a
Gaussian circle to initialize MLE-based image alignment
and refinement can be very useful for either validating the
authenticity of the reconstruction or safeguarding routine
cryo-EM data processing over a broad range of SNRs,
avoiding the reconstruction of nonexistent structures and
features out of noise [31].

Our study of the variables that affect BOF perform-
ance was limited to the combination of FLC and MLE.
There are other choices for the two distinct objective
functions in the BOF framework. For example, the FLC
can be replaced with a deep convolutional neural
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network [34]. With additional testing, these modifica-
tions may further improve the utility of the BOF frame-
work in real cryo-EM data processing pipelines.

Conclusions

In this work, we examined the effects of SNR and choice
of initialization on the ability of the BOF approach to se-
lect and verify particles from noisy cryo-EM micro-
graphs. We quantitatively characterized the critical SNR
at which BOF performance begins to degrade, and found
it to be surprisingly small, as low as 0.002-0.005, given
the size of the dataset (38,760 particles) tested in each
case. Importantly, reference dependency of the FLC does
not necessarily transfer to the MLE, making possible the
robust detection and validation of weak signals. When a
non-Gaussian template is used for particle picking by
the FLC, the use of a Gaussian model to initialize the
MLE optimization can largely suppress reference
dependency of the FLC on the particle-picking template.
Thus, given an SNR above the critical value, the combin-
ation of two distinct objective functions may provide a
sensitive and robust way to detect and verify weak
signals in cryo-EM micrographs. The essential insights
into the numerical behavior of the BOF approach provided
by our systematic study can guide optimization of weak
signal verification and improve automation efficiency in the
cryo-EM data processing pipeline for high-resolution struc-
tural determination.
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