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Background
In recent decades, the number of cancer patients has always been increasing. The 
elder people concerned more on cancers than neurodegenerative diseases. Although 
the rapid development of medical technology helps a lot, the death rate of patients 
and burden of the society are still very high. The traditional methods such as radiation 
therapy [1], targeted therapy [2] and chemotherapy [3] can help suppress cancers, but 
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apart from the expensive cost, the harm of these treatments to patients are unmeas-
ured [4]. Apparently, finding a unharmful treatment for cancers is critical.

In 1972, antimicrobial peptides’ primary structure have been found by Boman [5]. 
Following his research, many researchers found these peptides have antitumor activ-
ity [6, 7]. Therefore, these antimicrobial peptides were named as anticancer peptides 
(ACPs). ACPs not only have the advantages of high specificity and high tumor pen-
etration, but also easy to synthesis and unharmful to normal cells [8]. This significant 
advantage makes ACPs become the most potential treatment for cancers [9, 10].

Most of the ACPs are combined from 12–50 amino acid residues. Many of these 
ACPs’ structure are α-helical or β-sheet and some special ACPs have particular folds. 
They execute their function by interacting with the anionic cell membrane compo-
nents of cancer cells and then selectively kill cancer cells [11, 12]. Most of the ACPs 
are obtained from Antimicrobial peptides (AMPs) [13] since cationic AMPs destroy 
only bacteria but not the normal cells, which shows a broad spectrum cytotoxicity 
against various cancer cells [14]. Although the mechanism of ACPs is not fully clear 
at present [15, 16], the development of natural ACPs and artificially designed peptides 
are still important ways to against cancer.

Due to the high cost of money and time in finding ACPs, increasing number of 
researchers have focused on identifying the ACPs by computing method. Tyagi et al. 
[17] extracted amino acid composition and binary profiles as features to build a SVM 
model to identify ACPs. Later, Khosravian et al. [18] also used SVM to find the ACPs. 
Then, Hajisharifi et al. [19] used the same method to identify the ACPs, with Chou’s 
pseudo amino acid composition. Besides, Chen et  al. [20] purposed a new method 
named IACP to find ACPs, which has made a great progress. Recently, Manavalan 
et al. [21] used both Random Forest and SVM to identify the ACPs. Felício et al. [7] 
reviewed the development of ACPs in 2017 and pointed ACPs decreases the probabil-
ity of resistance and discussed the relationship between AMP and ACP. Grisoni et al. 
[22] used long short-term memory (LSTM) to identify ACPs based on sequence.

Although these methods play an important role in the development of this area, 
there still need more complex algorithm to achieve higher accuracy. Biological net-
works are common methods to identify biological molecule [23]. In recent years, deep 
learning algorithms have been widely used in bioinformatics field [24–27]. Deep belief 
network (DBN) has been proven to be a powerful tool to encode [28]. Therefore, we 
purposed a novel method named DRACP to identify ACPs. To verify the effectiveness 
of our method, we used the method on two different datasets. For each, we did cross-
validation to do the test to verify the stability.

Results
Data description

The datasets of ACPs was downloaded from Wei Chen et al. [20]. We obtained two 
datasets. One of them contains 138 real ACPs samples and 206 non-ACPs samples. 
The other one has 150 real ACPs samples and 150 non-ACPs samples. All the negative 
samples are randomly generated.
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In this paper, 10-cross validation was used to test our method, that is, dividing the 
whole dataset into 10 groups and one of the groups is used as testing dataset and the rest 
of groups are used as training dataset.

The performance of DRACP compared with previous method

In this study, the label of pseudo ACPs is 0, and the label of real ACPs is 1.
Firstly, we executed DRACP on the two datasets. The average accuracy of first dataset 

is 86.87% and the number is 85.17% for the second dataset.
Tyagi et al. [17] developed a method for identifying ACPs based on SVM. We com-

pared our method with their method.
Compared with Tyagi et al. method, we used different features and method. Although 

different features are used by Tyagi et al., their best performance one is dipeptide com-
position-based SVM model. However, they ignored the chemical characteristics of 
amino acids. To test the importance of our feature, we also built a SVM model by using 
our features. We called this method SVMNF.

The performance these three methods are shown in Table  1. As shown in Table  1, 
DRACP performed best among these method with the accuracy 0.96 and 0.95. SVMNF 
ranked second, which means our features are better than Tyagi et al.’s.

The necessity of using DBN

Without using DBN, we put 56-dimension features into Random Relevance Vector 
Machines (RRVMs) to built the model. Same testing method was used to compare the 
performance of DRACP and RRVMs. This time, AUC and AUPR are used to evaluate 
the accuracy of classification.

Figure  1 shows the ROC curves of DRACP and RRVMs. The blue lines denote the 
ROC curves of DRACP and the red lines denote the ROC curves of RRVMs. The results 
of dataset2 are represented by dotted lines and solid lines for the results of dataset1. As 
we can see, DRACP performed much better than RRVMs. Then, we tested the AUPR of 
these two methods.

Figure 2 shows the PR curves of DRACP and RRVMs. The blue bars denote PR curves 
of DRACP and red bars denote PR curves of RRVMs. DRACP performed better than 
RRVMs too.

These experiments showed that using DBN to encode could improve the accuracy of 
the model.

Table 1  The accuracy of three methods

a  The method we purposed
b  SVM with our feature
c  Available at https​://crdd.osdd.net/ragha​va/antic​p/multi​_pep.php

Dataset 1 Dataset 2

DRACPsa 0.96 0.95

SVMNF
b 0.92 0.91

Tyagi et alc 0.88 0.86

Naive Bayes 0.84 0.81

Random forest 0.89 0.85

https://crdd.osdd.net/raghava/anticp/multi_pep.php
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Discussion
Most of the previous methods for identifying ACPs are based on the traditional meth-
ods such as SVM. As the development of algorithms, more powerful methods should be 
applied into identifying ACPs.

In this paper, we used DBN to encode the feature of ACPs. DBN reduces dimension 
of ACP features through unsupervised learning. Then, we developed RRVMs which is 
a method based on RVM and RF to identify true ACPs. The experiments showed high 
precision of DRACP, which verified DRACP is an effective method for identifying ACPs. 
In addition, we also show the power of DBN by comparing the results of DRACP with 
RRVM’s. This experiment explained the necessity of reducing dimension of features by 

Fig. 1  The ROC curves of DRACP and RRVMs

Fig. 2  The PR curves of DRACP and RRVMs
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DBN. Finally, we compared our method with previous methods and some traditional 
methods to show the superiority of DRACP.

DRACP can prior the potential ACPs based on their sequence. This work will help 
biologist reduce the cost of money and time on finding ACPs.

Conclusions
With its harmless advantages to the human body, ACPs have a great potential for treat-
ing cancers. However, due to the high cost of finding ACPs, not many ACPs have been 
found and there is still long way to go to use ACPs as a treatment.

To reduce the cost of money and time for finding ACPs, in this study, we proposed a 
method named DRACP to identify ACPs based on sequence and chemical characteris-
tics of amino acids. Since the dimension of each ACP’s feature is high, DBN was used 
to encode the features in a unsupervised way. It can effectively reduce the dimension 
and keep the information of features. After obtaining the final features, we randomly 
selected features and samples to build RVM models. 101 RVM models were built to gen-
erate a final classifier. This building process draw the idea of RF.

To verify the performance of DRACP, we use two independent datasets with 10-cross 
validation to do the test. We not only proved the performance of DRACP was better 
than previous method, but also showed the power of our features. In addition, we also 
test the performance of using RRVM without DBN and found DBN is an essential part 
for improving accuracy.

Overall, we developed an effective method for identifying ACPs. Although our method 
performed well, larger datasets are still needed to further prove the power of DRACP.

Methods
Feature extraction

Compositional analysis

We conjectured the composition of real ACPs are different from other normal peptides. 
Therefore, the average percentage of each amino acid is shown in Fig. 3.

Fig. 3  Comparison of average whole amino acids composition of ACPs and non-ACPs. x-axis is the index of 
20 kinds of amino acids and y-axis is the ratio of the amino acid to the total sequence length
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As shown in Fig. 3, the blue bar denotes the composition of real ACP and the red one 
is the non-ACPs’. Among the 20 amino acids, only 3 amino acids almost share the same 
percentage. Most of the composition of amino acids have significant differences between 
ACPs and non-ACPs. Therefore, the composition of 20 amino acids could be the fea-
tures of ACPs.

The reduced amino acid composition

Protein structure is closely related to the patterns of hydrophobic and hydrophilic resi-
dues. The amino acids are divided into 6 groups based on the ranges of the hydropathy 
scale. Table 2 shows the six groups of the 20 amino acids.

Therefore, we can use six characters to represent the sequence of peptides. Since 
the dipeptides are consisted by two peptides, there would be 62 features to describe a 
sequence. Then we could extract the feature as following:

where fx is the absolute occurrence frequencies of the 36 hydropathy dipeptides. It can 
be calculated as following:

where ni is the occurrence number of the 36 hydropathy dipeptides of the protein, L is 
the length of peptide.

The Fig. 4 shows the flow chart of feature extraction. In total, we extracted 56 D fea-
tures to identify the ACPs.

Methods and framework

Firstly, DBN was used to encode the features we obtained above. Then RRVM was used 
to classify ACPs. The workflow of our method is shown in Fig. 5.

DBN

DBN is an efficient semi-supervised algorithm. A layer-by-layer greedy algorithm is used 
to train the parameters of the deep belief network, breaking the deadlock that has been 
difficult for deep networks for a long time.

(1)F = [f1, f2, f3 . . . f36]

(2)fi =
ni

L− 1

Table 2  The six groups of the 20 amino acids

Groups Amino acids

Strongly hydrophilic R, D, E, N, Q, K, H

Strongly hydrophobic L, I, A, V, M, F

Weakly hydrophilic
Weakly hydrophobic

S, T, Y, W

Proline P

Glycine G

Cysteine C



Page 7 of 11Zhao et al. BMC Bioinformatics 2020, 21(Suppl 16):559

Restricted Boltzmann Machine (RBM) is the basic unit of DBN. The variables in RBM 
are divided into hidden variables and observable variables. These two sets of variables 
are represented by observable and hidden layers, respectively. There is no connection 
between nodes in the same layer, and nodes in one layer are connected to all nodes in 
another layer, which is as same as the fully connected neural network structure.

An RBM is composed of m observable variables and n hidden variables, and its energy 
function is defined as:

Here, v is an observable variable v = [v1, v2, ...vm]T and h is a hidden random vector 
h = [h1, h2, ...hn]T . W is a weight matrix, its dimension is m * n, and each element is the 
weight of the edge between the observable variable and the hidden variable. Both a and 
b are biases, a is the bias of the observable variable v, and b is the bias of the hidden 
variables.

(3)E(v, h) = −
∑

i

aivi−
∑

j

bjhj−
∑

i

∑

j

viwijhj =− aTv − bTv − vTWh

Fig. 4  Flow chart of feature extraction. We extracted 56 D features to identify the ACPs and it includes 
20-dimensional composition and 36-dimensional reduced amino acid composition

Fig. 5  Frame of DRACP. The first step is to use DBN to reduce the dimension of features. Then RRVMs is used 
to do classification
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The joint probability distribution of RBM is p(v, h) which could be calculated by:

where Z =
∑

v,h

exp(−E(v, h)) is the partition function.

The essence of DBN is the stacking of RBMs. For a DBN containing L-level hidden vari-
ables, the lowest level is v = h(0) which is the observable variable. The top two layers are an 
undirected graph used to generate the prior distribution of p(h(L−1)) . Except for the top 
two layers, each layer can be calculated by the layer above it:

The joint probability of variables in DBN can be denoted by:

where p(h(l)|h(l+1)) is sigmoid conditional probability distribution.

RRVMs

We learnt the basic idea from random forest (RF) to propose a new method RRVMs. 
By randomly selecting features and samples, RVM was built as a weak classifier. We 
repeated this process 101 times to construct a strong classifier.

First, we randomly select 5 features and 100 samples to build up a RVM model. Then, 
we put these features and samples back and started another round of building model. 
This process could be repeated 101 times, so 101 RVM models would be obtained. In 
the end, the strong classifier could be obtained by getting votes from these 101 RVM 
models.

The construction of RVM classifier

Compared with Support vector machine (SVM), the kernel function of RVM is not lim-
ited by Mercer conditions. It could be more sparse and has less super-parameters, so it 
reduces the computational burden of kernel functions.

For a given dataset {xi, ti}Ni=1 , xi ∈ Rd , non-linear model is :

where N is the sample number, y() is the non-linear function, ε is the noise, ε ∼ N (0, σ 2).
The final function of RVM is:

where ω = (ω0, . . . ,ωN )
T is the weight, � is the matrix of the kernel function. K() is the 

kernel function.φi(xi) = [1,K (xi, x1), . . . ,K (xi, xN )], i = 1, 2, . . . ,N .
The distribution of p(t|x) meets N (t|y(x), σ 2) . Likelihood estimation of data is:

(4)p(v, h) =
1

Z
exp(−E(v, h)) =

1

Z
exp(aTv) exp(bTh) exp(vTWh)

(5)p(h(l)|h(l+1), ..., h(L)) = p(h(l)|h(l+1))

(6)p(v, h(1), ..., h(L)) = p(v|h(1))

(

L−2
∏

l=1

p(h(l)|h(l+1))

)

p(h(L−1), h(L))

(7)t = y(x)+ ε

(8)t = �ω + ε
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Tipping defines a zero mean Gauss type prior distribution on ω:

where α is the super-parameter, it is one-to-one correspondence to the weight.
α and the variance of noise σ 2 meet the Gamma distribution.

When there is a new set of observations, the prediction based on the sparse Bayesian 
learning framework can be expressed as:

where tN+1 is the target value of the new observation xN+1.
For a new set of inputs x∗ , the output t∗ should meet the distribution 

p(t∗|t) ∼ N (µT
�(x∗), σ 2

∗ ).

where σ 2
MP is the final variance of noise.

To accomplish the construction of classifier, we also need to set the various param-
eters as Table 3 shows.
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(9)p(t|ω, σ 2) = (2πσ 2)−N/2 exp{−�t −�ω�2/(2σ 2)}

(10)p(ω/α) =
N
∏

0

N (ωi|0,α−1
i ) =

N
∏

0

αi√
2π

exp

(

ω2
i αi

2

)

(11)

p(α) =
N
∏

i=0

Gamma(αi|a, b)

p(σ 2) =
N
∏

i=0

Gamma(β|c, d)

(12)p(tN+1|t) =
∫

p(tN+1|ω,α, σ 2)p(ω,α, σ 2|t)dωdαdσ 2

(13)t∗ = µT
�(x∗)

(14)σ 2
∗ = σ 2

MP +�(x∗)
T
∑

�(x∗)

Table 3  Parameters and functions of RVM

Setting items The value set

Max iterations 100

Kernel function Gaussian

Kernel function width 6

Sample number 50

Feature number 10
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