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Abstract

Background: The aberrant expression of microRNAs is closely connected to the occurrence and development of
a great deal of human diseases. To study human diseases, numerous effective computational models that are
valuable and meaningful have been presented by researchers.

Results: Here, we present a computational framework based on graph Laplacian regularized L2, 1-nonnegative
matrix factorization (GRL2, 1-NMF) for inferring possible human disease-connected miRNAs. First, manually validated
disease-connected microRNAs were integrated, and microRNA functional similarity information along with two
kinds of disease semantic similarities were calculated. Next, we measured Gaussian interaction profile (GIP) kernel
similarities for both diseases and microRNAs. Then, we adopted a preprocessing step, namely, weighted K nearest
known neighbours (WKNKN), to decrease the sparsity of the miRNA-disease association matrix network. Finally, the
GRL2,1-NMF framework was used to predict links between microRNAs and diseases.

Conclusions: The new method (GRL2, 1-NMF) achieved AUC values of 0.9280 and 0.9276 in global leave-one-out
cross validation (global LOOCV) and five-fold cross validation (5-CV), respectively, showing that GRL2, 1-NMF can
powerfully discover potential disease-related miRNAs, even if there is no known associated disease.
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Background
MicroRNAs (miRNAs), which play crucial roles in the
regulation of gene expression after transcription in
organisms and vegetation, are 17–24 nt noncoding en-
dogenous RNAs [1–3]. In 1993, Lee et al. [4] identified
the first microRNA (miRNA) called lin-4 in Caenorhab-
ditis elegans. Thereafter, a large number of miRNAs
have been identified from a wide variety of species, such
as plants, animals, and viruses [5, 6]. MiRNAs are
associated with key biological processes, including
development, differentiation, programmed cell death and
cell proliferation [7, 8]. Past studies have indicated that
abnormal miRNA expression participates in the
development process of a variety of human diseases [9–
11]. However, inferring microRNA-disease connections
through manual experiments is tremendously costly,
laborious, prone to failure and time consuming. Thus,

the development of computation-based methods to infer
disease-connected microRNAs is urgently needed, as
they could solve the above problems and greatly facili-
tate human disease diagnosis and treatment [12–15].
For the past few years, in order to explore the patho-

genic mechanism of human disease at the small mol-
ecule level and design specific molecular instruments for
diagnosis treatment and prevention, considerable efforts
have been made to develop computational algorithms
for inferring disease-associated microRNAs according to
the assumptions that microRNAs have similar functions
that are highly likely to be connected with similar
diseases, and vice versa. Numerous similarity
measurement-based approaches according to hetero-
geneous biological information have been proposed to
identify the interactions between microRNAs and dis-
eases. Jiang et al. [16] inferred disease-related miRNAs
by prioritizing the whole human miRNAome connected
with disease that we investigated based on miRNA
functional similarity information as well as the human
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phenome-microRNAome network. Li et al. [17] pro-
posed a computation-based model to infer the possible
disease–related miRNAs via calculations of FCS between
the disease-gene and the target-gene, which had verifica-
tion. There is an assumption that if two various diseases
have phenotypic connections, they have similar molecu-
lar machinery and similar molecular mechanisms. Xu
et al. [18] inferred human disease-connected microRNAs
by fusing experimentally verified human disease genes as
well as context-dependent miRNA-target interactions to
prioritize disease-connected microRNAs. In line with
weighted k nearest neighbours, HDMP was proposed by
Xuan et al. [19] for identifying potential miRNA-disease
associations. They presented a measurement method
including the details of the disease term along with
phenotypic similarities among diseases for the purpose
of measuring the miRNA functional similarities. In
addition, considering the miRNAs of the same miRNA
family or cluster and their relationship to a group of dis-
eases, they were given a higher weight. However, HDMP
is not appropriate for diseases that have sparse connec-
tions with miRNAs. Chen et al. [20] developed miRPD
in which experimentally verified or predicted inter-
actions between miRNAs and proteins as well as text-
extracted connections between protein and disease
associations were explicitly utilized to calculate the prob-
ability that a microRNA-disease association exists. Chen
et al. [21] developed WBSMDA according to the calcula-
tion of the within-scores and between-scores of every
miRNA-disease group to identify potential disease-
related miRNAs. Take a miRNA as an example, there is
a miRNA set A whose elements all have known connec-
tions with the investigated disease d. The propose of
within-scores is finding a miRNA in set A that has the
highest similarity score with the investigated miRNA.
There is a miRNA set B whose elements all have
unknown connections with the investigated disease d.
The proposed between-scores involves finding a miRNA
in set B that has the highest similarity score with the in-
vestigated miRNA. Chen et al. [22] developed HGIMDA
through an iteration approach in line with a graph that
consists of many different types of bioinformatics infor-
mation, such as the functional similarities of micro-
RNAs, semantic similarities of diseases, kernel similarity
of Gaussian interaction profiles and experimental verifi-
cation of microRNA-disease connections. Yu et al. [23]
proposed an assembled identification approach to infer
potential microRNA-disease associations by modifying
the existing maximizing information flow methods based
on integrated microRNA functional similarity informa-
tion, disease semantic information and phenotypic
similarity information; these potential associations along
with manually validated microRNA-disease interactions
were placed into a phenome-microRNAome network.

Chen et al. [24] presented a novel framework called
RKNNMDA that utilizes ranking and k nearest neigh-
bours. They integrated the functional similarity of
microRNAs, semantic similarity of diseases, kernel simi-
larity of Gaussian interaction profiles and experimental
verification of microRNA-disease association and ob-
tained miRNA’s (disease’s) k nearest neighbours via the
KNN model. Next, they implemented the SVM ranking
model to re-rank the above k nearest neighbours and
thus obtained the eventual rankings of all possible
microRNA-disease associations. In addition, RKNNMDA
could also predict possible microRNA-disease connec-
tions for human diseases that don’t have manually vali-
dated associated miRNAs. Chen et al. [25] introduced
Jaccard similarity among microRNAs and diseases in the
BLHARMDA model to identify potential miRNA-disease
interactions and then introduced an improved KNN
framework into the bipartite local model method. Chen
et al. [26] defined all paths between a given miRNA and
disease as prediction scores, based on the assumption
that if there are more paths between the miRNA and
disease, the two are more likely to be related.
In addition, a host of studies in accordance with ran-

dom walk with restart have been proposed for identify-
ing potential microRNA-disease connections and finally
obtained good predictive behaviour. A random walk with
restart was presented by Chen et al. [27], who also inte-
grated the manually verified microRNA-disease associ-
ation information and functional similarity information
of miRNAs. Considering the functional links among
microRNA targets and human disease genes in a protein
association network, Shi et al. [28] devised a computa-
tional model to infer likely microRNA-disease connec-
tions. This method utilized global network distance
measurement, random walk analysis, and the construc-
tion of a microRNA-disease network to investigate
microRNA-disease connections from a global perspec-
tive. Xuan et al. [29] designed a novel framework named
MIDP, which predicted disease-connected miRNAs for
diseases with known associated microRNAs in line with
random walks. They analysed the attributes of the la-
belled and unlabelled nodes of the miRNA network and
then established transition matrices, whose transition
weights between the nodes were proportionate to the
similarity between them. Furthermore, they presented an
extension method called MIDPE, especially for diseases
that don’t have manually verified connected microRNAs.
Liu et al. [30] proposed a method to identify possible
disease-connected microRNAs by utilizing a random
walk with restart in accordance with a heterogeneous
graph, which was established by combining disease se-
mantic similarities and disease functional similarities, as
well as the miRNA similarities that were obtained utiliz-
ing microRNA-target gene and microRNA-long noncoding
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RNA connections. Luo and Xiao [13] first established a
heterogeneous network containing microRNA and disease
information and then adopted a bi-random walk model to
identify possible microRNA-disease connections. Finally, all
microRNA candidates of an investigated disease were
ranked.
Furthermore, machine learning-based algorithms, such

as support vector machines, have been applied to
bioinformatics and computational biology and have
improved the prediction performance to some extent
[31]. Xu et al. [32] presented MTDN to infer potential
microRNA-disease associations. They identified positive
disease-related miRNAs from negative samples through
the SVM classifier in accordance with the characteristics
of microRNA target-dysregulated network topology
information. Chen et al. [33] identified miRNA-disease
links based on regularized least squares (RLS) for identi-
fying the miRNA-disease links. RLSMDA integrates
known disease-microRNA connections, a disease seman-
tic similarities dataset, and a miRNA functional similar-
ities network and is thus suitable for predicting novel
miRNAs for diseases without any manually validated
connections with microRNAs. Li et al. [34] utilized a
matrix completion model in line with manually validated
microRNA-disease connections to infer candidates for
diseases that did not have any experimentally proven
connected microRNAs. In addition, MCMDA does not
need negative associations. Chen et al. [35] proposed a
random forest-based framework (RFMDA) for
microRNA-disease connection prediction. RFMDA iden-
tifies possible disease-associated microRNAs by employ-
ing the random forest model to identify robust attributes
from the miRNA-disease attribute collection. Chen et al.
[36] predicted disease-associated miRNAs based on
heterogeneous label propagation (HLPMDA), in which
heterogeneous data were integrated into a heterogeneous
network. Chen et al. [37] inferred disease-associated
miRNAs with restricted Boltzmann machine (RBM); this
model can acquire both disease-connected miRNAs as
well as the corresponding forms of their links. However,
this method is not suitable for diseases that do not have
any known miRNA-disease associations, and selecting
the right parameter values remains a significant issue for
RBMMMDA. Chen et al. [38] first integrated a heteroge-
neous network, then put it into a stacked autoencoder
for the purpose of detecting the deep representation of
the heterogeneous information, finally utilizing an SVM
classifier to prioritize all the candidates. Chen et al. [39]
first constructed a feature vector according to the
statistics, graph theory and matrix decomposition of the
bioinformatics data and then put this vector into
EGBMMDA to obtain a regression tree. Chen et al. [40]
extracted three kinds of features, namely, statistical fea-
tures from similarity measurements, graph theoretical

features from similarity networks, and matrix
factorization results from miRNA-disease associations.
Then, disease-related miRNAs were discovered based on
a decision tree classifier. Chen et al. [41] predicted
disease-connected miRNAs by adopting sparse subspace
learning with Laplacian regularization and L1-norm.
Interestingly, they extracted features and constructed
objective functions from miRNA and disease perspec-
tives, separately. Chen et al. [42] used a decision tree as
a weak classifier and then integrated these weak classi-
fiers into a strong classifier according to weights. It is
worth noting that they implemented k-means to balance
positive samples and negative samples.
Moreover, many researchers have made promising

models with recommendation systems for microRNA-
disease connection prediction purposes. Zou et al. [43]
proposed two approaches, namely, KATZ and CATA-
PULT, for identifying miRNA-disease links. In line with
the manually verified microRNA-disease link network,
microRNA similarities network and disease similarities
network, KATZ integrates the social network analysis
approach with machine learning. Chen et al. [44] in-
ferred disease-related miRNAs based on ensemble learn-
ing and link prediction (ELLPMDA). According to global
similarity measures, ELLPMDA uses ensemble learning
for integrating ranking results, which were obtained via
three typical similarity-measurement approaches. Chen
et al. [45] constructed a heterogeneous network and pre-
dicted disease-connected miRNAs in line with the rating-
integrated bipartite network recommendation as well as
experimentally verified miRNA–disease connections.
In addition, a fair number of studies based on matrix

factorization have been presented for possible disease-
connected microRNA prediction purposes. Zhao et al.
[46] presented symmetric nonnegative matrix
factorization (SNMFMDA) to infer disease-connected
microRNAs with the NMF and Kronecker regularized
least square (KronRLS) approaches. Zhong et al. [47]
proposed a nonnegative matrix factorization (NMF)-
based algorithm to predict disease-related microRNA
candidates based on a bilayer network that was con-
structed with regard to the intricate links among micro-
RNAs, among human diseases and between microRNAs
and human diseases. Xiao et al. [48] introduced graph
Laplacian regularized into NMF (GRNMF) based on
heterogeneous data for inferring potential disease-
connected microRNAs, particularly for many diseases
without known associations. They introduced a pre-
processing step, weighted k nearest neighbour (WKNKN)
profiles, for both microRNAs and diseases, into GRNMF.
Chen et al. [49] designed an effective algorithm, MDHGI,
according to matrix decomposition as well as a hetero-
geneous graph inference method for inferring potential
miRNA-disease connections.
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However, these approaches based on matrix
factorization ignored the sparsity of the miRNA-disease
association matrix Y, so we utilized a pre-processing step
named weighted K nearest known neighbours
(WKNKN) [50] to convert the value of the miRNA-
disease associations matrix Y into a decimal between 0
and 1. In addition, unlike the traditional nonnegative
matrix factorization (NMF) methods, we added L2, 1-
norm as well as GIP (Gaussian interaction profile) ker-
nels into the NMF model. The L2, 1-norm was added to
increase the disease matrix sparsity and eliminate
unattached disease pairs [51–53]. Moreover, Tikhonov
regularization was added to penalize the non-
smoothness of W and H [48, 54, 55], and the graph
regularization was primarily intended to assure local-
based representation by leveraging the geometry of the
data [56].
In this study, we present a computational algorithm

based on graph regularized L2, 1-nonnegative matrix
factorization (GRL2, 1-NMF) to infer the possible con-
nections between microRNAs and diseases in hetero-
geneous omics data. First, we integrated manually
validated microRNA-disease connection information,
miRNA functional similarity information and two
kinds of disease semantic similarity information, and
then we calculated the GIP kernel similarities for the
diseases and miRNAs. Then, we utilized WKNKN to
decrease the sparsity of matrix Y. Furthermore, we
added Tikhonov (L2), graph Laplacian regularization
terms and the L2, 1-norm to the standard NMF model
for predicting disease-associated miRNAs. Finally,
five-fold cross validation and global leave-one-out
cross validation were implemented to evaluate the
effectiveness of our model, and we obtained AUCs of
0.9276 and 0.9280, respectively. Furthermore, we
performed case studies on three high-risk human di-
seases (prostate neoplasms, lung neoplasms and breast
neoplasms). As a result, 48, 45 and 45 out of the top
50 likely connected miRNAs of prostate neoplasms,
lung neoplasms and breast neoplasms, respectively,
were confirmed by HMDD [10] and dbDEMC [57].
Based on the experimental results, we can clearly see
that GRL2, 1-NMF is a valuable approach for inferring
possible miRNA-disease connections.

Results
Effect of parameters on the performance of GRL2, 1-NMF
In this work, we measured two disease semantic similar-
ities, miRNA functional similarity and GIP similarities
for miRNAs and diseases. These two disease semantic
similarities were integrated as Eq. (1), and the final dis-
ease similarity and miRNA similarity were measured as
Eq. (2) and Eq. (3), respectively. We defined six para-
meters, namely, α1, α2, γ1, γ2, θ1 and θ2, to balance the

items in Eq. (1), Eq. (2) and Eq. (3). The values of α1 and
α2 ranged from 0.1, 0.2, 0.3, ... to 0.9. γ1, γ2, θ1 and θ2
ranged from 0,0.1,0.2, ... 0.9, to 1. We conducted a series
of experiments on the above parameters to acquire the
effects of these parameters. The experimental results are
shown in Table 1 and Table 2.

SD1 di; d j
� � ¼ α1Sd1 di; d j

� �þ α2Sd2 di; d j
� � ð1Þ

SD di; d j
� � ¼

γ1SD1 di; d j
� �þ γ2GD di; d j

� �
di and d j have semantic similarity

GD di; d j
� �

otherwise

�

ð2Þ

SM mi;mj
� � ¼

θ1S
m mi;mj
� �þ θ2GM mi;mj

� �
mi and mj have functional similarity

GM mi;mj
� �

otherwise

�

ð3Þ

In Table 1, we can see that regardless of how α1 and
α2 change, the AUC of 5-CV remains 0.9276. Thus, for
convenience, we set α1 = α2 = 0.5. The experimental re-
sults of parameters θ1 and θ2 that balanced miRNA
functional similarity (Sm) and GIP similarity for miRNAs
(GM) are shown in Table 2 (a), and the results of param-
eters γ1 and γ2 that balanced disease semantic similarity
(SD1) and GIP similarity for diseases (GD) are shown in
Table 2 (b). Thus, we set θ1 = 1, θ2 = 0, γ1 = 1, and γ2 = 0.

Performance evaluation
To evaluate our model’s ability to predict disease-related
miRNAs, we compared it with three state-of-art
methods (ICFMDA [58], SACMDA [59] and IMCMDA
[60]) by implementing two validation frameworks: global
leave-one-out cross validation (global LOOCV) and five-
fold cross validation (5-CV) according to the experimen-
tally validated disease-related miRNAs in HMDD v2.0,

Table 1 The effects of parameters α1 and α2 on the results of
GRL2, 1-NMF γ1 = 1,γ2 = 0, θ1 = 1,and θ2 = 0

α1 α2 AUCs of 5-CV

SD12_1 0.1 0.9 0.9276

SD12_2 0.2 0.8 0.9276

SD12_3 0.3 0.7 0.9276

SD12_4 0.4 0.6 0.9276

SD12_5 0.5 0.5 0.9276

SD12_6 0.6 0.4 0.9276

SD12_7 0.7 0.3 0.9276

SD12_8 0.8 0.2 0.9276

SD12_9 0.9 0.1 0.9276
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which gathered plenty of the known miRNA-disease
associations [10].
For the global LOOCV, every known miRNA-

disease connection was selected in turn for testing,
and others that had also been experimentally verified
were considered as training sets for the purpose of
model training. In addition, all miRNA-disease associ-
ations without evidence were regarded as candidate
samples. Next, we calculated the prediction score of
all associations by implementing GRL2, 1-NMF and
thus obtained the ranking of each test sample com-
pared with that of the candidate samples. We hold
our model as efficient if the ranking of each test sam-
ple was higher than a certain threshold. We obtained
the corresponding true positive rate (TPR, sensitivity)

and false positive rate (FPR, 1-specificity) by setting
various thresholds. Sensitivity is the proportion of the
testing samples whose ranking was higher than the
threshold, while 1-specificity calculates the percentage
of the testing samples whose ranking was lower than
the threshold. Thus, the receiver operating character-
istic (ROC) curve can be plotted in line with TPRs
and FPRs obtained by different thresholds. Finally, to
evaluate the performance and compare it with that of
the other models, the areas under the ROC curve
(AUCs) were computed. The AUC value is between 0
and 1, and a model whose AUC value is higher has a
better performance. The results showed that GRL2, 1-
NMF, ICFMDA, SACMDA and IMCMDA achieved
AUC values of 0.9280, 0.9072, 0.8777 and 0.8384,
respectively (see Fig. 1). Clearly, GRL2, 1-NMF ob-
tained the best performance among the four explored
methods.
For 5-CV, all known connections between microRNAs

and diseases were randomly distributed into five parts,
where one part was selected in turn for testing, and the
other four parts were used in turn for training. Moreover,
all unknown samples were treated as candidate samples.
Like the global LOOCV, we finally calculated the ranking
of the test sample relative to the candidate set. Consider-
ing the possible bias caused by random sample partition-
ing for performance evaluation, we repeatedly divided the
known miRNA disease associations 100 times and ob-
tained the corresponding ROC curves and AUCs in a
similar manner to that for LOOCV. The results showed
that GRL2, 1-NMF had the best predictive performance
with an average AUC of 0.9276, and ICFMDA, SACMDA

Table 2 The effects of parameters θ1,θ2, γ1, and γ2 on the
results of GRL2, 1-NMF (a) α1 = 0.5, α2 = 0.5, γ1 = 1, and γ2 = 0
(b) α1 = 0.5,α2 = 0.5, θ1 = 1,and θ2 = 0

θ1 θ2 AUCs of 5-CV γ1 γ2 AUC of 5-CV

SMGM_1 0.1 0.9 0.9263 SDGD_1 0.1 0.9 0.9276

SMGM_2 0.2 0.8 0.9264 SDGD_2 0.2 0.8 0.9276

SMGM_3 0.3 0.7 0.9267 SDGD_3 0.3 0.7 0.9276

SMGM_4 0.4 0.6 0.9268 SDGD_4 0.4 0.6 0.9276

SMGM_5 0.5 0.5 0.9270 SDGD_5 0.5 0.5 0.9276

SMGM_6 0.6 0.4 0.9270 SDGD_6 0.6 0.4 0.9276

SMGM_7 0.7 0.3 0.9271 SDGD_7 0.7 0.3 0.9276

SMGM_8 0.8 0.2 0.9272 SDGD_8 0.8 0.2 0.9276

SMGM_9 0.9 0.1 0.9272 SDGD_9 0.9 0.1 0.9276

SMGM_10 1 0 0.9276 SDGD_10 1 0 0.9276

Fig. 1 AUC of global LOOCV compared with those of IMC, ICFMDA and SACMDA

Gao et al. BMC Bioinformatics           (2020) 21:61 Page 5 of 13



and IMCMDA achieved AUC values of 0.9046, 0.8773
and 0.8330, respectively (see Fig. 2).

Case studies
We constructed a simulation experiment to further
demonstrate the effectiveness of GRL2, 1-NMF for infer-
ring likely disease-connected miRNAs. Here, all manu-
ally validated miRNA-disease connections were utilized
for prediction, and other associations that did not have
evidence were regarded as candidate connections for
validation. For every disease, the candidate miRNAs
were ranked based on the prediction scores. We used
two miRNA-disease databases, namely, HMDD [10] and
dbDEMC [57], to verify the inferred possible microRNAs
for the investigated disease, including prostate neo-
plasms, breast neoplasms and lung neoplasms. Finally,
the top 50 disease-related miRNAs predicted via GRL2,
1-NMF are demonstrated in Table 3, Table 4 and
Table 5. There are 48,45 and 45 of 50 inferred miRNAs
confirmed to have associations with prostate neoplasms,
breast neoplasms and lung neoplasms, respectively, by
the dbDEMC database and HMDD v3.0 database.

Discussion
Our method, GRL2, 1-NMF, is an efficient tool for pre-
dicting miRNA-disease associations according to the ex-
perimental results. The main contributions of this study
are listed. First, we added GIP kernel similarities for
miRNA and disease associations into the similarity
measurement, which improved the dataset reliability.
Second, considering the sparsity of observed miRNA-
disease associations, we performed a pre-processing step

Fig. 2 AUC of 5-fold cross validation compared with those of IMC, ICFMDA and SACMDA

Table 3 The top 50 potential miRNAs associated with Prostate
Neoplasms

miRNA Evidence miRNA Evidence

hsa-mir-1 HMDD; dbDEMC hsa-mir-32 HMDD; dbDEMC

hsa-mir-21 HMDD; dbDEMC hsa-let-7i dbDEMC

hsa-mir-22 HMDD; dbDEMC hsa-mir-375 HMDD; dbDEMC

hsa-mir-155 HMDD; dbDEMC hsa-let-7c HMDD; dbDEMC

hsa-mir-9 HMDD hsa-mir-200c HMDD; dbDEMC

hsa-mir-221 HMDD; dbDEMC hsa-mir-214 HMDD; dbDEMC

hsa-let-7a dbDEMC hsa-mir-182 HMDD; dbDEMC

hsa-mir-133a HMDD; dbDEMC hsa-mir-106b HMDD; dbDEMC

hsa-mir-146a HMDD hsa-mir-23a HMDD; dbDEMC

hsa-mir-222 HMDD; dbDEMC hsa-mir-17 HMDD; dbDEMC

hsa-mir-34a HMDD; dbDEMC hsa-let-7e dbDEMC

hsa-mir-29a HMDD; dbDEMC hsa-mir-181 unconfirmed

hsa-mir-142 unconfirmed hsa-mir-200b HMDD; dbDEMC

hsa-mir-223 HMDD; dbDEMC hsa-mir-10b dbDEMC

hsa-mir-126 HMDD; dbDEMC hsa-mir-200a HMDD; dbDEMC

hsa-mir-31 HMDD; dbDEMC hsa-mir-34c HMDD

hsa-mir-146b HMDD; dbDEMC hsa-mir-205 HMDD; dbDEMC

hsa-mir-29b HMDD; dbDEMC hsa-let-7d HMDD; dbDEMC

hsa-mir-200 HMDD hsa-mir-210 HMDD; dbDEMC

hsa-mir-143 HMDD; dbDEMC hsa-mir-192 HMDD; dbDEMC

hsa-mir-16 HMDD; dbDEMC hsa-mir-196a HMDD; dbDEMC

hsa-mir-20a HMDD; dbDEMC hsa-mir-195 HMDD; dbDEMC

hsa-mir-30a HMDD hsa-let-7f dbDEMC

hsa-let-7b HMDD; dbDEMC hsa-mir-181b HMDD; dbDEMC

hsa-mir-199a HMDD; dbDEMC hsa-mir-34b HMDD
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(WKNKN) to solve this problem, thus enhancing the
prediction performance of our model. Third, as a com-
mon model of recommendation systems, NMF also plays
a crucial role in bioinformatics. However, standard NMF
did not achieve satisfactory performance. Therefore, we
added the Tikhonov (L2), graph Laplacian regularization
terms and the L2, 1-norm into the standard NMF, which
makes this model more reliable and robust. Finally, the
AUCs of GRL2, 1-NMF are higher than those of some
excellent models.
Note that DNSGRMF [53], which also predicts

miRNA-disease connections, is a graph regularized
method similar to GRL2, 1-NMF. Both methods decom-
pose the original matrix Y into two matrices W and H,
and then we can acquire a recovery matrix Y∗ =W ∗H. It
is worth noting that GRL2, 1-NMF is based on non-
negative factorization, while DNSGRMF is based on
graph regularized matrix factorization. DNSGRMF has
no constraints, while GRL2, 1-NMF has two constraints
of W ≥ 0 and H ≥ 0.

Nevertheless, our model still has room for improve-
ment. First, miRNA information and disease information
did not integrate perfectly, and we will improve this in
future studies. Second, there may be more appropriate
regularization terms that can improve the performance
for miRNA-disease association prediction.

Conclusions
It is meaningful and significant to predict disease-related
miRNAs in studying the intrinsic aetiological factors of
human diseases. A new model named GRL2, 1-NMF was
developed in this work for potential miRNA-disease as-
sociation prediction. First, we integrated experimentally
validated connections between miRNAs and disease as
well as miRNA functional similarities along with two
kinds of disease semantic similarities, and then we calcu-
lated the GIP kernel similarities of microRNAs and di-
seases. Moreover, we used WKNKN to convert the value
of matrix Y into a decimal between 0 and 1 and decrease
the sparsity of matrix Y. Furthermore, the Tikhonov

Table 4 The top 50 potential miRNAs associated with Lung
Neoplasms

miRNA Evidence miRNA Evidence

hsa-mir-1 HMDD hsa-mir-139 HMDD; dbDEMC

hsa-mir-181 unconfirmed hsa-mir-193b dbDEMC

hsa-mir-200 HMDD hsa-mir-204 dbDEMC

hsa-mir-26 HMDD hsa-mir-708 dbDEMC

hsa-mir-195 dbDEMC hsa-mir-378a unconfirmed

hsa-mir-92 dbDEMC hsa-mir-625 dbDEMC

hsa-mir-141 dbDEMC hsa-mir-367 dbDEMC

hsa-mir-122 HMDD; dbDEMC hsa-mir-149 HMDD; dbDEMC

hsa-mir-16 HMDD; dbDEMC hsa-mir-148b HMDD; dbDEMC

hsa-mir-99a HMDD; dbDEMC hsa-mir-328 HMDD; dbDEMC

hsa-mir-129 HMDD; dbDEMC hsa-mir-302b dbDEMC

hsa-mir-429 dbDEMC hsa-mir-302a dbDEMC

hsa-mir-130a HMDD; dbDEMC hsa-mir-373 HMDD; dbDEMC

hsa-mir-451 HMDD; dbDEMC hsa-mir-92b dbDEMC

hsa-mir-451a HMDD; dbDEMC hsa-mir-23b dbDEMC

hsa-mir-15b dbDEMC hsa-mir-152 HMDD; dbDEMC

hsa-mir-151 unconfirmed hsa-mir-196b HMDD; dbDEMC

hsa-mir-15a HMDD; dbDEMC hsa-mir-302c dbDEMC

hsa-mir-151a unconfirmed hsa-mir-452 dbDEMC

hsa-mir-296 unconfirmed hsa-mir-215 HMDD; dbDEMC

hsa-mir-320a dbDEMC hsa-mir-302d dbDEMC

hsa-mir-20b dbDEMC hsa-mir-28 dbDEMC

hsa-mir-342 HMDD; dbDEMC hsa-mir-520a dbDEMC

hsa-mir-194 HMDD; dbDEMC hsa-mir-130b HMDD; dbDEMC

hsa-mir-106b dbDEMC hsa-mir-372 HMDD; dbDEMC

Table 5 The top 50 potential miRNAs associated with Breast
Neoplasms

miRNA Evidence miRNA Evidence

hsa-mir-1 HMDD; dbDEMC hsa-mir-330 dbDEMC

hsa-mir-32 HMDD; dbDEMC hsa-mir-192 HMDD; dbDEMC

hsa-mir-106a HMDD; dbDEMC hsa-mir-28 dbDEMC

hsa-mir-26 unconfirmed hsa-mir-130b HMDD; dbDEMC

hsa-mir-99a HMDD; dbDEMC hsa-mir-211 dbDEMC

hsa-mir-151 HMDD; dbDEMC hsa-mir-181c HMDD; dbDEMC

hsa-mir-451 HMDD; dbDEMC hsa-mir-449a HMDD; dbDEMC

hsa-mir-92 HMDD; dbDEMC hsa-mir-449b dbDEMC

hsa-mir-130a HMDD; dbDEMC hsa-mir-99b dbDEMC

hsa-mir-15b HMDD; dbDEMC hsa-mir-208a HMDD; dbDEMC

hsa-mir-150 HMDD; dbDEMC hsa-mir-650 dbDEMC

hsa-mir-185 HMDD; dbDEMC hsa-mir-491 HMDD

hsa-mir-142 HMDD hsa-mir-532 unconfirmed

hsa-mir-378a HMDD hsa-mir-144 HMDD; dbDEMC

hsa-mir-186 dbDEMC hsa-mir-181d dbDEMC

hsa-mir-95 dbDEMC hsa-mir-494 HMDD; dbDEMC

hsa-mir-92b HMDD; dbDEMC hsa-mir-362 unconfirmed

hsa-mir-196b HMDD; dbDEMC hsa-mir-517a dbDEMC

hsa-mir-98 HMDD; dbDEMC hsa-mir-371 dbDEMC

hsa-mir-372 dbDEMC hsa-mir-371a unconfirmed

hsa-mir-574 HMDD hsa-mir-381 HMDD; dbDEMC

hsa-mir-542 unconfirmed hsa-mir-216a dbDEMC

hsa-mir-370 HMDD; dbDEMC hsa-mir-433 dbDEMC

hsa-mir-212 HMDD; dbDEMC hsa-mir-134 HMDD; dbDEMC

hsa-mir-30e HMDD hsa-mir-376a HMDD; dbDEMC
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(L2), graph Laplacian regularization terms and the L2, 1-
norm were added into the traditional NMF model for
predicting miRNA-disease connections. In addition, the
Tikhonov regularization was utilized to penalize the
non-smoothness of W and H, and the graph Laplacian
regularization was primarily intended to guarantee local-
based representation by leveraging the geometric struc-
ture of the data. The L2, 1-norm was added to increase
the disease matrix sparsity and eliminate unattached dis-
ease pairs.
Our method performs well in global LOOCV, 5-CV

and case studies in heterogeneous omics data. The ex-
perimental results indicate that GRL2, 1-NMF can effect-
ively and powerfully infer disease-related miRNAs, even
if there are no known miRNA-disease associations.
However, this method still has limitations that need
further research. First, our similarity measurement for
GRL2, 1-NMF might not be perfect, and other miRNA
information still needs to be taken into account. More-
over, there is still room for improvement in the predic-
tive performance of our method.

Methods
Human miRNA-disease associations
We collected information on all experimentally validated
human miRNA-disease associations stored in the
HMDD v2.0 database [10]. An adjacency matrix Y ∈ Rn ×

m was established to represent the manually verified hu-
man miRNA-disease associations, and the rows and col-
umns of matrix Y represent miRNA mi interactions and
diseases dj interactions, respectively. Therefore, in this
study, the number of rows and columns in Y was 495
and 383, respectively. If a miRNA mi has a known con-
nection with a disease dj, Yij = 1, else Yij = 0.

MiRNA functional similarity
There is a hypothesis that if two miRNAs are similar
functionally, they are more likely to have connections
with diseases that have high similarity, and vice versa
[61, 62]. Wang et al. [63] shared their investigation re-
sults, and researchers can download miRNA functional
similarity information at http://www.cuilab.cn/files/im-
ages/cuilab/misim.zip. Here, we established a matrix Sm

that was denoted as the microRNA functional similar-
ities. The item Sm(mi,mj) denotes the functional similar-
ities among microRNAs mi and mj.

Disease semantic similarity method 1
In this study, we take full advantage of the hierarchical
directed acyclic graphs (DAGs) for disease similarity
measurement based on the strategy of Wang et al. [63],
and the disease DAG could be downloaded from the
Medical Subject Headings (MeSH) database. DAGd = (d,

Td, Ed) denotes the hierarchical DAG of disease d, where
Td denotes the disease collection, and Ed denotes links
set in the DAG. According to the DAGs, the semantic
values of disease D can be computed as Eq. (4).

DV1 Dð Þ ¼
X

d∈T Dð ÞD1D dð Þ ð4Þ

where D1D(d) denotes the semantic contributions of
disease d’ to disease d, and Δ denotes the semantic con-
tribution factor (Δ = 0.5) [63].

D1D dð Þ ¼ 1 if d ¼ D

D1D dð Þ ¼ max Δ�D1D d
0� �
jd0

∈child of d
n o

if d≠D

(

ð5Þ

Therefore, two diseases would likely have greater simi-
larities if they share a larger part of their DAGs, and we
can calculate semantic similarities between disease di
and dj as follows:

Sd1 di; d j
� � ¼

P
t∈T dið Þ∩T d jð Þ D1di tð Þ þ D1d j tð Þ� �

DV1 dið Þ þ DV1 d j
� � ð6Þ

Disease semantic similarity method 2
In the strategy for calculating disease semantic similar-
ities above, diseases that shared one layer of DAGd

shared a common contribution value. However, if some
diseases merely exist in fewer DAGs, then these diseases
are called more specific diseases and should have a
higher semantic contribution to disease d. In view of the
algorithm presented by [19, 45], we can calculate the
semantic contributions of disease d to disease D and the
semantic values of disease D as Eq. (7) and Eq. (8),
respectively.

D2D dð Þ ¼ − log
the number of DAGs including d

the number of diseases

� �
ð7Þ

DV2 Dð Þ ¼
X

d∈T Dð ÞD2D dð Þ ð8Þ

where d denotes any investigated disease. Finally, we
could calculate the semantic similarities of diseases di
and dj as Eq. (9).

Sd2 di; d j
� � ¼

P
t∈T dið Þ∩T d jð Þ D2di tð Þ þ D2d j tð Þ� �

DV2 dið Þ þ DV2 d j
� � ð9Þ

where the numerator of Equation (9) represents the
common ancestor nodes of diseases di and dj, and the
denominator denotes the entire ancestor nodes of
diseases di and dj.
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Gaussian interaction profile kernel similarity for diseases
and MiRNAs
If two diseases are similar, they are likely to have associa-
tions with microRNAs that are functionally approximate,
and vice versa [61–64]. Gaussian interaction profile (GIP)
kernel similarities have been adopted to quantify disease
similarities and miRNA similarities [60, 65, 66]. We also
calculated GIP kernel similarities for diseases and miRNAs
in this work. First, based on whether disease di(mj) has a
known connection with each miRNA (disease) of the adja-
cency matrix Y, the interaction profiles IP(di) and IP(mj)
were constructed for disease di and miRNA mj, respect-
ively. Then, the GIP kernel similarity between a disease
pair and a miRNA pair is computed as Equation (10) and
Equation (11), respectively.

GD di; d j
� � ¼ exp −βd IP dið Þ−IP d j

� �		 		2� �
ð10Þ

GM mi;mj
� � ¼ exp −βm IP mið Þ−IP mj

� �		 		2� �
ð11Þ

Here, the kernel bandwidths βm and βd are described
as Equation (12) and Equation (13), respectively, where

β
0
m and β

0
m are both the original bandwidths.

βm ¼ β
0
m=

1
nm

Xnm

i¼1
IP mið Þk k2 ð12Þ

βd ¼ β
0
d=

1
nd

Xnd

i¼1
IP dið Þk k2 ð13Þ

In summary, the matrix GD and GM denote the
GIP kernel similarity for diseases and miRNAs,
respectively.

Integrated similarity for diseases and MiRNAs
According to the various similarity measurement
methods mentioned above, we combined the GIP ker-
nel similarities with two disease semantic similarities
as well as the miRNA functional similarities to obtain
integrated disease similarities and integrated miRNA
similarities, respectively. The weight setting problem
of the above similarities is described in detail in the
Results section, and we chose the following measure-
ment strategy according to the experimental results.
Specifically, if two miRNAs mi and mj had functional
similarities, then the final similarity was the functional
similarity. If two miRNAs mi and mj did not have
functional similarities, then the final similarity was
the GIP kernel similarity. Hence, the miRNA similar-
ities score matrix SM between miRNA mi and miRNA
mj is established as follows. Similarly, the disease
similarity matrix SD is computed as follows:

SM mi;mj
� � ¼

Sm mi;mj
� �

mi and mj have functional similarity
GM mi;mj

� �
otherwise

�
ð14Þ

SD di; d j
� � ¼

Sd1 di; d j
� �þ Sd2 di; d j

� �
2

di and d j have semantic similarity

GD di; d j
� �

otherwise

8<
:

ð15Þ

Weighted K nearest known Neighbours (WKNKN) for
MiRNAs and diseases
Let M = {m1,m2,…,mn} and D = {d1, d2,…, dm} represent
the collection of n microRNAs and m diseases, respect-
ively. We described the quantity of the investigated miR-
NAs and diseases as n and m, respectively, and then
established an association matrix Y ∈ Rn ×m to denote the
known human microRNA-disease connections according
to the HMDD v2.0 [10] database. If a miRNA mi had
been manually validated to be related to a disease dj,
then Yij is equal to 1; otherwise, it is equal to 0. Y(mi) = {
Yi1, Yi2,…, Yim}, namely, the ith row vector of matrix Y,
represents the interaction profile for miRNA mi. Simi-
larly, Y(dj) = {Y1j, Y2j,…, Ynj}, the jth column vector of
matrix Y, represents the interaction profile for disease dj.
In this study, we investigated 495(n) miRNAs and
383(m) diseases, yet the adjacency matrix Y ∈ Rn ×m has
merely 5430 known entries; thus, Y is a sparse matrix.
Here, we performed a pre-processing procedure named
weighted K nearest known neighbours (WKNKN) [50]
for miRNAs and diseases without any known associa-
tions to resolve the abovementioned sparse problem and
thus improve the prediction accuracy. After executing
WKNKN, the entry Yij was replaced with a continuous
value ranging from 0 to 1, and the specific steps are as
follows.
First, we acquired the interaction profile of each

miRNA mq according to the functional similarity be-
tween mq and its K nearest known miRNAs as follows:

Ym mq
� � ¼ 1

Qm

XK

i¼1
wiY mið Þ ð16Þ

where m1 to mK are the miRNAs sorted in descending
order based on their similarities to mq; wi is the weight
factor, and wi = αi − 1 ∗ Sm(mi,mq); in other words, the
higher the similarity between mi and mq is, the higher
the weight. α ∈ [0, 1] is a decay term, and Qm = ∑1 ≤ i ≤

KS
m(mi,mq) is the normalization coefficient.
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Second, we acquired the interaction profile of each
miRNA dp according to the semantic similarity between
dp and its K nearest known diseases as follows:

Yd dp
� � ¼ 1

Qd

XK

j¼1
wjY d j

� � ð17Þ

where d1 to dK are the diseases sorted in descending
order based on their similarities to dp; wj is the weight
factor, and wj = αj − 1 ∗ Sd(dj, dp); in other words, the
higher the similarity between dj and dp is, the higher
weight. Qd = ∑1 ≤ j ≤ KS

d(dj, dp) is the normalization term.
Finally, we took the average of the above two values

instead of Yij = 0, indicating the overall likelihood of the
interaction between mi and dj. Then, we integrated the
above two matrices Ym and Yd acquired from different
datasets, replaced Yij = 0 with the related likelihood
scores, and then updated the original adjacency matrix Y
as follows:

Ymd ¼ a1Ym þ a2Yd=
X

ai i ¼ 1; 2ð Þ ð18Þ

Y ¼ max Y ;Ymdð Þ ð19Þ
where ai is the weight coefficient and a1 = a2 = 1.

Standard NMF
In recent years, as one of the common methods of rec-
ommendation systems, nonnegative matrix factorization
(NMF) has been widely used as an effective prediction
algorithm in the field of bioinformatics [67, 68]. Two
non-negative matrices W and H, which are optimal

approximations to the original matrix Y, can be found
by NMF, where W and H satisfy Equation (20).

Y ≈ WHT ; s:t:W ≥0;H ≥0 ð20Þ
In this work, matrix Y ∈ Rn ×m was used to represent

the known miRNA-disease associations, and NMF can
decompose this matrix into two matrices, namely, W ∈
Rn × k and H ∈ Rm × k. Here, we express the question of
the miRNA-disease association identification problem as
the objective function (Equation (21)).

minW ;H Y−WHT
		 		2

F s:t:W≥0;H≥0 ð21Þ
where ‖∙‖F represents the Frobenius norm of a matrix.
Equation (21) can be optimized by taking advantage of
the iterative update algorithm presented by [69].
However, standard NMF does not ensure the sparsity

of decomposition; therefore, local-based representations
are not always generated [70, 71]. Some researchers have
developed sparse constraints on NMF [46–48].

GRL2, 1-NMF
Here, a new nonnegative matrix factorization method
was presented to identify underlying miRNA-disease
connections. The flow chart of GRL2, 1-NMF is shown in
Fig. 3. We incorporated Tikhonov (L2), graph Laplacian
regularization terms and the L2, 1-norm into the trad-
itional NMF model for predicting miRNA-disease con-
nections. The Tikhonov regularization is utilized to
penalize the non-smoothness of W and H [48, 54, 55],
and the graph Laplacian regularization is primarily
intended to ensure local-based representation by

Fig. 3 Flow chart of GRL2,1-NMF
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leveraging the geometric structure of the data [56]. The
L2, 1-norm was added to increase the disease matrix
sparsity and eliminate unattached disease pairs [30, 52,
53]. The optimization problem of GRL2, 1-NMF can be
formularized as follows:

minW ;H Y−WHT
		 		2

F þ λl Wk k2F þ Hk k2F
� �þ λl Hk k2;1

þλmTr WTLmW
� �þ λdTr HTLDH

� �
s:t:W ≥0;H ≥0

ð22Þ

where ‖∙‖F represents the Frobenius norm of a matrix;
‖·‖2, 1 represents the L2, 1-norm; Tr(∙) denotes the trace
of a matrix; and λl, λm and λd are regularization coeffi-
cients. Let Sm and Sd be miRNA and disease similarity
networks; and let Dm and Dd be the diagonal matrices
whose elements are row element or column element
sums of Sm and Sd respectively. We define Lm =Dm − Sm

and Ld =Dd − Sd as the graph Laplacian matrices for Sm

and Sd [72], respectively; the first item denotes the simi-
lar matrix of the model for the purpose of searching for
the matrices W and H. The next term is the Tikhonov
regularization. The third item introduces the L2, 1-norm
into matrix H. The last two items refer to the graph
regularization of microRNAs and diseases.

Optimization
Considering the two nonnegative constraints of the ob-
jective function, namely, W ≥ 0 and H ≥ 0, we utilized La-
grange multipliers to address the optimization problem
in Equation (22). First, the Lagrange function Lf is as
follows:

Lf ¼ Tr YYT
� �

−2Tr YHWT
� �þ Tr WHTHWT

� �
þλlTr WWT

� �þ λlTr HHT
� �þ λl Hk k2;1

þλmTr WTLmW
� �þ λdTr HTLdD

� �
H

þTr ∅WT
� �þ Tr φHT

� �
ð23Þ

The partial derivatives of the above functions Lf for W
and H are:

∂Lf

∂W
¼ −2YH þ 2WHTH þ 2λlW þ 2λmLmW

þ∅ ð24Þ

∂Lf

∂H
¼ −2YTW þ 2HWTW þ 2λlH þ 2λlAH

þ 2λdLdHþ φ ð25Þ

where A is a diagonal matrix, and the formula is as
follows:

A½ �i; j ¼ 1
.

Hsk k2
¼ 1

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

Hs; j

�� ��2
vuut ð26Þ

Therefore, we obtained the updating rules expressed
as Equations (27) and (28):

wik←wik
YH þ λmSmWð Þik

WHTH þ λlW þ λmDmW
� �

ik

ð27Þ

hik←hik
YTW þ λdSdH
� �

ik

HWTW þ λlH þ λlAH þ λdDdH
� �

ik

ð28Þ

According to Equation (27) and Equation (28), the
nonnegative matrices W and H are updated until con-
vergence. Eventually, we obtained a matrix of Y∗ =WHT,
which is based on interactions among microRNAs and
disease. We ranked predicted disease-connected miR-
NAs according to the elements in matrix Y∗. In theory,
the higher-ranking miRNAs in each column of Y∗ tend
to be connected with the matching disease.
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