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Abstract

Background: Circular RNA (circRNA) has been extensively identified in cells and
tissues, and plays crucial roles in human diseases and biological processes. circRNA
could act as dynamic scaffolding molecules that modulate protein-protein interactions.
The interactions between circRNA and RNA Binding Proteins (RBPs) are also deemed to
an essential element underlying the functions of circRNA. Considering cost-heavy and
labor-intensive aspects of these biological experimental technologies, instead, the high-
throughput experimental data has enabled the large-scale prediction and analysis of
circRNA-RBP interactions.

Results: A computational framework is constructed by employing Positive Unlabeled
learning (P-U learning) to predict unknown circRNA-RBP interaction pairs with kernel
model MFNN (Matrix Factorization with Neural Networks). The neural network is
employed to extract the latent factors of circRNA and RBP in the interaction matrix, the
P-U learning strategy is applied to alleviate the imbalanced characteristics of data
samples and predict unknown interaction pairs. For this purpose, the known circRNA-
RBP interaction data samples are collected from the circRNAs in cancer cell lines
database (CircRic), and the circRNA-RBP interaction matrix is constructed as the input of
the model. The experimental results show that kernel MFNN outperforms the other
deep kernel models. Interestingly, it is found that the deeper of hidden layers in neural
network framework does not mean the better in our model. Finally, the unlabeled
interactions are scored using P-U learning with MFNN kernel, and the predicted
interaction pairs are matched to the known interactions database. The results indicate
that our method is an effective model to analyze the circRNA-RBP interactions.

Conclusion: For a poorly studied circRNA-RBP interactions, we design a prediction
framework only based on interaction matrix by employing matrix factorization and
neural network. We demonstrate that MFNN achieves higher prediction accuracy, and it
is an effective method.

Keywords: circRNA, RNA binding protein, Matrix factorization, Neural networks, Positive
unlabeled learning
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Background
Circular RNA (circRNA) is a novel type of non-coding RNAs which has covalent and

closed loop structures. Compared to linear RNA, circRNA is more stable in cells [1]. It

is generated through a non-sequential back-splicing process, in which a downstream 5′

splice donor back-splices to an upstream splice acceptor, and this process is regulated

by both cis elements and trans protein factors [2]. For instance, some RNA Binding

Proteins (RBPs) can enhance the formation of circRNA such as QKI and MBL [3, 4].

Inversely, some RBPs (e.g., PTBP1) can reduce circRNA formation [5, 6]. In recent

years, with the development of high-throughput experimental for non-polyadenylated

RNA transcripts, abundance and diversity of circRNA have been successfully discovered

in various species [7], however, the biological functions of circRNA remain largely un-

known. Emerging evidence has shown that circRNA plays an important role in human

diseases, especially in cancers [8, 9]. Recent studies have reported that circRNA could

promote cell proliferation [10–12] and serve as biomarkers in cancer [13, 14]. Several

databases have been constructed to benefit the studies on links between circRNAs and

human diseases, such as the circRNAs in cancer cell lines database (CircRic) [15] and

the cancer-specific circRNA database (CSCD) [16]. CircR2Disease [17] curates a data-

base for associations which are experimentally supported between circRNAs and dis-

eases, and provides a platform for investigating mechanism of the disease-related

circRNAs.

Increased evidence indicates that many circRNAs are interacting with RBPs [18], for

instance, ciR-7/CDR1as is widely associated with Argonaute (AGO) proteins [19] and

the circRNA MBL/MBNL1 contains conserved muscleblind (MBL) proteins binding

sites [3]. Furthermore, the circRNA circPABPN1 could bind to HuR to prevent HuR

binding to PABPN1 mRNA and lower PABPN1 translation [20]. In addition, although

emerging evidence indicates that several circRNAs are translatable [21–23], the major-

ity of circRNAs are not translated as linear mRNAs are. Therefore, RBPs bound to cir-

cRNAs are not replaced by ribosomes [24, 25]. Some databases have been developed

for exploring the links between circRNAs and RBPs, such as CSCD provides miRNA

target sites, RBPs binding sites and potential open reading frames (ORFs) in cancer-

specific circRNAs. CircRic systematically characterizes circRNAs expression profile in

935 cancer cell lines across 22 cancer lineages, and analyzes the associations between

circRNAs with mRNA, protein and mutation. starBase [26] systematically identifies the

RNA-RNA and protein-RNA interaction networks from 108 CLIP-Seq data sets gener-

ated by 37 independent studies. Moreover, CircInteractome [27] provides bioinformatic

analyses of binding sites on circRNAs and additionally analyzes miRNA and RBP sites

on junction and junction-flanking sequences.

Thus, it is very meaningful to study the interaction between circRNAs and RBPs in

cancer. To this day, these interactions are mainly analyzed by RNA immunoprecipita-

tion (RIP) [28] or RNA pull-down assay [29]. The RNA is pulled-down by the probe for

analyzing associated proteins in the RNA pull-down assay. In the RIP assay, a protein is

immunoprecipitated for analyzing associated RNA. Although many significant discover-

ies have been made through these methods, it still faces some challenges such as cost-

heavy, labor-intensive and time-consuming. Therefore, it is necessary to design a

powerful computational method for predicting circRNA-RBP interactions, which fur-

ther provides an important assistance for revealing the biological functions of circRNA.
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Computational prediction of circRNA-RBP interaction relationship could be divided

into prediction of binding sites and interaction pairs. For example, CRIP [30] and

CSCRSites [31] identify the binding sites on circRNA employing different deep learning

methods, respectively. CircSLNN [32] identifies the specific location of RBP-binding

sites on circRNAs by modeling the prediction of binding sites on RNAs as a sequence

labeling problem. Several computational methods have been developed to predict

lncRNA-protein interaction relationships [33–35]. To our knowledge, computational

methods for predicting the circRNA-RBP interaction pairs have not been reported yet.

In this study, we will focus on the problem of interaction pair’s prediction.

In the fields of link prediction, matrix factorization (MF) is the most popular and ef-

fective method which characterizes interaction pairs by vectors of latent factors [36].

Thereby this problem is modelled to the inner product of their latent vectors. More re-

search effort has been devoted to extract latent vectors. Recently, neural network has

been employed for obtaining the latent factors. Neural network-based Collaborative Fil-

tering (NCF) leveraged a multi-layer perceptron to learn the interaction pairs function

[37]. Xue et al. proposed a matrix factorization model with neural network architecture

for top-N recommendation [38]. However, there is often a lack of reliable negative sam-

ples during training model. This problem is often referred as Positive-Unlabeled learn-

ing (P-U learning). Mordelet et al. designed a method which iteratively trains many

classifiers model to discriminate the known positive examples from random subsamples

of the unlabeled set, and averages their predictions [39].

Inspired by these research results, we designed a computational framework, matrix

factorization based on neural network (MFNN) kernel model, to predict unknown

circRNA-RBP interaction pairs with P-U learning. Here, neural network is employed to

extract the latent factors of circRNA and RBP, then the P-U learning strategy is applied

to predict unknown interaction pairs. In addition, there are still no unified public data-

sets on circRNA-RBP interaction, especially in human cancer. Therefore, we construct

the circRNA-RBP interaction matrix using the data in CircRic database [15]. The ex-

perimental results show that MFNN kernel outperforms the other deep kernel model.

Moreover, we score the unlabeled interactions pairs using P-U learning, and match the

predicted interactions to the known interactions database, which indicate that our

method is effective in analyzing the circRNA-RBP interactions.

Results
In this section, in order to assess the validity of the prediction results, various validation

methods are employed to evaluate the MFNN model. It is also compared with some

existing representative matrix factorization based on deep learning. Finally, we scored

the unlabeled interactions pairs, and matched the predicted interaction pairs to the

known interaction databases, indicating that our method is effective in analyzing the

circRNA-RBP interactions.

Experimental and hyper-parameters settings

The MFNN is implemented in python 3.7 by using TensorFlow 1.14.0 library. To deter-

mine parameters of the designed model, during the experiments, P-U learning strategy

is adopted to build the training set and the negative samples are sampled from

Wang and Lei BMC Bioinformatics          (2020) 21:229 Page 3 of 15



unlabeled samples each time, which has the same number as the positive samples. In

training phase, the batch size is set to 256, and learning rate is 0.0001. Finally, the

Adam optimizer is employed to optimize the model. In addition, to further evaluate the

prediction model, cross validation is applied to assess the performance of the prediction

model [40]. In this study, 10 times 10-fold cross validation and 10 times 5-fold cross

validation are employed to evaluate the prediction model. The training set is divided

into two groups with randomly sampling (90% for training and 10% for validating). This

process is repeated 10 times. Ten times 5-fold cross validation is similar. Inspired by

the idea of P-U learning algorithm, the 10 times CV-5 and CV-10 are different from

classical method in this study, in each time, the negative samples are selected from the

unlabeled sample set randomly, and generate the new training set. The different valid-

ation settings are analyzed for the CRI model as follows:

CV-10: During the model training, the training set are divided into 10 folds, in each

round, one-fold is regarded as validating data and the remaining data as training data.

This process is repeated 10 times.

CV-5: Like the CV-10-fold, the training set are divided into five folds, in each round,

one-fold is regarded as test data and the remaining data as training data. This process

is repeated 10 times.

Depth of layers in neural network

In the MFNN model, the low-dimensional latent factors of circRNA and RBP are ex-

tracted through neural network. Usually, the architecture of neural network has a sig-

nificant impact on its performance, especially the depth of network is a prominent

impact factor. In this section, we studied the different depths of network and the differ-

ent combinations of latent factors in each layer, and selected the parameters with the

best performance. Here, the area under the receiver operating characteristics curve

(AUC) and the area under the precision-recall curve (AUCPR) are used as metric for

model evaluation.

First, different number of hidden layers are investigated, the AUCs and AUCPRs are

compared with 10 times CV-10. The simulation results are shown in Fig. 1. Interest-

ingly, the 1-layer achieves the best performance. The deeper of hidden layers does not

mean the better, the 3-layers decreases the model performance. Finally, 1-layer network

is adopted in MFNN.

Moreover, the neuron numbers in each layer is possibly another sensitive parameter

in neural networks. In MFNN, the neuron numbers are the latent factors of circRNA

Fig. 1 AUCs and AUCPRs of different network depths
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and RBP on the final layer, the performance with different numbers of neurons on the

final layer are compared with 10 times CV-10, setting the numbers of neurons from 8

to 128. The average values of 10 times CV-10 in terms of AUC and AUCPR are shown

in Fig. 2.

As shown in Fig. 2, the latent factors with 32, 64 and 128 achieve the better perform-

ance, and the AUC and AUCPR with latent factors 128 have no significant increase. Fi-

nally, the latent factors are set to 64.

Performance evaluate

In this section, we introduce several evaluation metrics to comprehensively assess the

performance of MFNN, such as sensitivity (Sn), specificity (Sp), precision (Pr), accuracy

(Acc) and Matthew’s correlation coefficient (MCC). They are defined as follows:

Sn ¼ TP
TPþ FN

ð1Þ

Sp ¼ TN
TN þ FP

ð2Þ

Pr ¼ TP
TP þ FP

ð3Þ

Fig. 2 AUCs and AUCPRs of different latent factors

Fig. 3 Comparison for MFNN with different validation methods
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Acc ¼ TN þ TP
TN þ FP þ TP þ FN

ð4Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ � TN þ FNð Þ � TP þ FNð Þ � TN þ FPð Þp ð5Þ

where TP and TN indicate the numbers of correctly predicted circRNA-RBP interaction

pairs and non-interaction pairs, respectively. FP and FN are the numbers of incorrectly

predicted circRNA-RBP interaction pairs and non-interaction pairs, respectively. In

addition, various validation methods including CV-10 and CV-5 are employed to evalu-

ate MFNN.

The performance of MFNN on each evaluation metric is shown in Fig. 3 with 10

times CV-10 and CV-5 validation methods, respectively. There is no significant differ-

ence in the evaluation metrics of the two validation methods. MFNN achieves the

higher AUC and AUCPR values with two kinds of validation methods. The values of

the other evaluation metrics usually depend on threshold in binary classification prob-

lem. Here, the threshold is set to 0.5 which means that the circRNA and RBP may

interact when scores are more than 0.5, otherwise not.

Performance comparison

He et al. present a neural architecture NCF (Neural Collaborative Filtering) that can

learn arbitrary function from data by replacing the inner product [37]. Different from

MFNN, a deep neural architecture is used to achieve the score for an interaction pair

in NCF. Under NCF framework, they propose two instantiations: GMF (Generalized

Matrix Factorization) that applies a linear kernel to learn the interaction function, in

which the element-wise product of latent vector is projected to the output layer with a

linear activation function; Another instantiation is MLP (Multi-Layer Perceptron) that

employs a non-learner kernel to model the latent feature interactions, in which the

interaction feature is fed into a multi-layer perceptron to learn the latent features of

interaction pairs, and then is projected to the output layer. Finally, the last hidden layer

of GMF and MLP is concatenated to build a fused model NeuMF (Neural Matrix

Factorization). It is observed that MFNN is essentially also instantiation under NCF

framework with different kernel model.

In this section, we compare the MFNN method with GMF, MLP and NeuMF models

on the same dataset CRIM. The comparing results are shown in Fig. 4-5. Figure 4

Fig. 4 The ROC and Precision-Recall curves obtained for each model with 10 times CV-10
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shows that the ROC and Precision-Recall curves obtained for each model with 10 times

CV-10. MFNN achieves the highest AUC and AUCPR values under 10 times CV-10,

which is not obvious, only 0.02 higher than that of NeuMF. This may be because

MFNN is essentially also instantiation under NCF framework. MLP has the lowest

AUC and AUCPR values, like MFNN, its performance degrades as the network

deepens. In addition, the fused model NeuMF achieves the higher AUC and AUCPR

than CMF and MLP on dataset CRIM. The results of 10 times CV-5 are similar to CV-

10 for each model, as shown in Fig. 5.

To further assess the performance of MFNN and the other models on the CRIM, we

introduce the evaluation metrics including sensitivity (Sn), specificity (Sp), precision

(Pr), accuracy (Acc) and Matthew’s correlation coefficient (MCC). Analogously, two

cross-validation are adopted to test the model performance, and the final values of

these evaluation metrics are the average values with 10 times cross-validation results.

The results are shown in Table 1.

In Table 1, Sn and MCC values are relatively low compared to the other metrics,

however, MFNN is much higher than the other models in terms of Sn and MCC. Sn of

MFNN is 0.05 higher than that of NeuMF under 10 times CV-10, meanwhile, MFNN

also achieves 0.06 higher than NeuMF in term of MCC. Moreover, MFNN obtains the

higher value in terms of Sp, Pr, and Acc. In conclusion, these evaluation metrics indicate

that MFNN performs better than other models on circRNA-RBP dataset CRIM.

Fig. 5 The ROC and Precision-Recall curves obtained for each model with 10 times CV-5

Table 1 Assess results for each model with different validation methods

Validation methods Methods Sn Sp Pr Acc MCC

10 times CV-10 MFNN 0.7905 0.9050 0.8928 0.8477 0.7003

GMF 0.7262 0.9054 0.8849 0.8158 0.6422

MLP 0.7149 0.8151 0.7951 0.7650 0.5333

NeuMF 0.7327 0.9019 0.8821 0.8173 0.6441

10 times CV-5 MFNN 0.7905 0.9027 0.8906 0.8466 0.6978

GMF 0.7209 0.9031 0.8816 0.8120 0.6347

MLP 0.6968 0.8142 0.7899 0.7555 0.5150

NeuMF 0.7262 0.9002 0.8795 0.8132 0.6364
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Performance results

In this section, kernel model MFNN is used to score the unlabeled samples with P-U

learning. During the experiments, to ensure that any unlabeled sample is scored over 5

times by MFNN, the times of random sampling round is set to 10 according to For-

mula 11. Finally, the score of any unlabeled is calculated by averaging the results of

MFNNs scores, all unlabeled samples are scored by this way. In this study, an inter-

action pair with score greater than 0.7 has high credibility including 662 interaction

pairs. Then, to demonstrate the effectiveness of kernel MFNN, we apply the database

starBase and CircInteractome to compare the 662 interaction pairs, the search results

are shown in Table 2 and Fig. 6. The starBase and CircInteractome are marked S and

C, respectively.

Table 2 shows the results matching to the other databases with the interaction pairs

of predicted by kernel MFNN. The interaction pair is listed in the first column of the

table, the score of pair is given in the third column of the table. Then, the places of

interaction pair within predicted results is shown in the second column. In addition,

the fourth column is the matched database name. Due to the different RPBs are re-

corded in various database, intersection is less, only a few RBPs have been matched, es-

pecially in CircInteractome. Finally, 39 interaction pairs could be found in the other

database including 12 RBPs and 33 circRNAs.

Figure 6 shows the newly predicted interactions which are extracted from starBase

and CircInteractome. Blue and green lines indicate the interactions extracted from star-

Base and CircInteractome, respectively. Red lines represent the interactions recorded in

the two databases, simultaneously. Moreover, Fig. 6 also exhibits that more RBPs are

matched from starBase, this is probably because the RBP included in starBase has more

overlap with our dataset. The network shows that SRSF7, SRSF1, SRSF9, PTBP1 and

TRA2A sponge more circRNAs in predicted results. For example, SRSF7 interacts with

8 circRNAs in newly predicted interactions which is matched with the known interac-

tions in starBase. LIN28A sponges 7 circRNAs as well, they are matched with the

known interactions in CircInteractome. The hsa_circ_0000256 interacts with multiple

RBPs. Moreover, the pair between LIN28A and hsa_circ_0000826 is matched with the

known interaction in starBase and CircInteractome, simultaneously.

Discussion
Increased evidence has shown that the interactions between circRNAs and RBPs are

significant for many biological processes and human diseases, which are also deemed to

an essential element underlying the functions of circRNA. Biological experimental re-

mains some challenges such as cost-heavy, labor-intensive and time-consuming, design-

ing an accurately computational method for predicting the circRNA-RBP interaction

pairs could provide valuable supports for revealing the molecular mechanism within

various biological processes.

In this study, we construct a matrix factorization framework based on neural net-

works to predict the circRNA-RBP interactions. The circRNA-RBP interactions are col-

lected from CircRic database, Then, these data are transformed to interaction matrix as

the input of our model. Due to lack of negative samples, the P-U learning strategy is

employed to score the unlabeled samples. During the experiments, the best model is se-

lected through analyzing the architecture and parameters of the MFNN model.
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Compared to the different deep kernel models, MFNN has an advantage in the predic-

tion accuracy. Finally, the predicted interaction pairs are matched to the known inter-

actions in the other databases. Results of the experiments show that MFNN is an

effective model for analyzing the circRNA-RBP interactions. The better performance of

MFNN is mainly attributed to the following aspects. Firstly, there is no need for add-

itional circRNA and RBP biochemical characteristics in the prediction process, which

not only simplifies the complexity of the model but also avoids the prediction bias

caused by feature selection. Secondly, the hypothesis that similar circRNAs have similar

interactions was discarded. Instead, latent interaction factors are mined by neural net-

work acting on circRNA-RBP interactions.

Table 2 The predicted interactions pairs recorded by other databases with score more than 0.7

pair rank score database pair rank score database

SRSF9
hsa_circ_0001851

4 0.856 S SRSF9
hsa_circ_0000256

362 0.735 S

SRSF7
hsa_circ_0000471

19 0.829 S RBM5
hsa_circ_0000119

364 0.734 S

SRSF7
hsa_circ_0001168

45 0.809 S TRA2A
hsa_circ_0000826

404 0.729 S

SRSF9
hsa_circ_0000441

59 0.803 S SRSF7
hsa_circ_0000638

408 0.728 S

TRA2A
hsa_circ_0000164

63 0.802 S LIN28A
hsa_circ_0045948

411 0.727 C

SRSF7
hsa_circ_0000271

67 0.798 S PTBP1
hsa_circ_0000847

462 0.721 S

SRSF10
hsa_circ_0001355

97 0.786 S SRSF7
hsa_circ_0001550

472 0.720 S

SRSF1
hsa_circ_0000615

102 0.785 S KHDRBS1
hsa_circ_0001922

480 0.719 S

SRSF9
hsa_circ_0001699

150 0.771 S PTBP1
hsa_circ_0000615

492 0.719 S

PTBP1
hsa_circ_0001756

152 0.771 S SRSF3
hsa_circ_0000256

511 0.717 S

SRSF7
hsa_circ_0000847

192 0.762 S IGF2BP2
hsa_circ_0008934

519 0.716 C

SRSF10
hsa_circ_0001165

207 0.759 S LIN28A
hsa_circ_0003846

543 0.713 C

KHDRBS1
hsa_circ_0001445

259 0.750 S LIN28A
hsa_circ_0003951

559 0.711 C

IGF2BP2
hsa_circ_0024085

266 0.749 C SRSF1
hsa_circ_0001882

566 0.710 S

LIN28A
hsa_circ_0075796

291 0.744 C HNRNPA2B1
hsa_circ_0000118

577 0.709 S

SRSF1
hsa_circ_0001361

294 0.743 S TRA2A
hsa_circ_0001932

592 0.708 S

SRSF7
hsa_circ_0001882

302 0.742 S LIN28A hsa_circ_0000256 637 0.702 S

LIN28A
hsa_circ_0000826

328 0.738 S, C PTBP1
hsa_circ_0001543

654 0.701 S

LIN28A
hsa_circ_0000002

337 0.737 C SRSF9
hsa_circ_0001326

655 0.701 S

SRSF7
hsa_circ_0005455

359 0.735 S
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Despite the effectiveness of the MFNN, it should be noted that MFNN still has some

limitations. It is powerless for new circRNA or RBP which is the common shortcoming of

matrix factorization method, and it is also a problem that we need to solve in the future.

In addition, the prediction effect of our designed model is poor for circRNA or RBP with

few known relationships, which is also a common fault of the recommendation system.

We will make up for this by collecting more reliable interaction pairs in the future.

Conclusion
For a poorly studied circRNA-RBP interactions, we constructed a prediction framework

only based on interaction matrix employing matrix factorization and neural network.

We demonstrate that MFNN achieves higher prediction accuracy, and it is an effective

method. It can be further extended to predict other biological interaction links, such as

circRNA and diseases, circRNA and miRNA, etc. We hope that our prediction model

can contribute to further understanding of the functions of circRNA.

Methods
In this study, we construct a matrix factorization-based prediction framework, namely,

matrix factorization method with neural network architecture, to predict unknown

circRNA-RBP interaction pairs by employing P-U learning. Here, neural network is

employed to extract the latent factors of circRNA and RBP, and the P-U learning strategy

is applied to predict unknown interaction pairs. For this purpose, the known circRNA-

RBP interaction data are collected from CircRic [15], which form the dataset for training

and testing the model, respectively. The Schematic diagram of model is shown as Fig. 7.

Dataset

In recent years, although the studies of circRNA-RBP interaction are various, unfortu-

nately, there are still no unified public datasets on circRNA-RBP interactions so far, es-

pecially in cancers. In this study, we construct a circRNA-RBP interactions matrix by

using the public databases. Ruan et al. analyzed the association between circRNAs and

Fig. 6 The predicted interaction networks with matching the other databases
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proteins in 935 cancer cell lines across 22 cancer lineages from Cancer Cell line

Encyclopedia (CCLE), and provides a data portal (CircRic, https://hanlab.uth.edu/cRic/)

[15]. We download circRNA and RBP binding data from CircRic, to build the circRNA-

RBP interaction matrix. To obtain a credible interaction matrix, the interaction pairs are

preserved whose circRNA is saved by circRNA database circBase [41]. Finally, the inter-

action matrix contains 8473 interaction pairs with 94 circRNAs and 673 RBPs, namely,

CRIM (circRNA-RBP Interaction Matrix) and serves as the input of our model.

Notation

Consider a set of known circRNAs C ¼ fc1; c2;…; cNcg and known RBPs R ¼ fr1; r2;…;

rNrg, where Nc is the number of circRNAs and Nr is the number of RBPs, respectively. Let Y

be an Nr×Nc adjacency matrix, which is an interaction matrix between circRNAs and RBPs.

If a circRNA cj interacts with a RBP ri , yi, j= 1 , otherwise yi, j= 0. F is objective matrix, which

is an Nr×Nc score matrix. The score fi, j of F indicates the probability of interaction between

RBP ri and circRNA cj. In addition, in the P-U learning algorithm, the positive example set is

noted as P, in which the score of interaction pairs yi, j in adjacency matrix Y is 1, U indicates

the unlabeled examples set and the score of interaction pairs yi, j is 0.

Fig. 7 Schematic diagram of matrix factorization with neural network. 1) The circRNA-RBP interaction data is
downloaded from the CircRic database, and the interaction matrix Y could be obtained by matching with
the circRNA IDs in circBase database. 2) According to the P-U learning mechanism, negative samples with
the same number of positive samples are randomly selected from the unlabeled relationships to obtain the
training data set. 3) Based on the matrix classical factorization method, the neural network algorithm is
used to obtain the latent factors of circRNAs and RBPs, and the scores of circRNA-RBP interactions are
obtained by calculating the cosine of the latent factors. 4) The unlabeled relationships are scored using the
trained model
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Model formulation

In this section, we construct a prediction model employing P-U learning with a matrix

factorization framework based on neural networks (MFNN) for predicting unknown

circRNA-RBP interaction pairs by using the interaction matrix Y. As shown in Fig. 7.

Matrix factorization methods are commonly used to solve the problem of estimating

the scoring of each unknown entry in an interaction matrix Y, namely, the objective

matrix F. Koren et al. [42] estimates the score fi, j of F by calculating the dot product of

interaction pairs (e.g. pri, qcj ) in Latent Factor Model (LFM). In this study, pri and qcj is

the latent representations of RBP ri and circRNA cj, respectively. It can be described as

follows:

f i; j ¼ qcj
Tpri ð6Þ

where fi, j is the score of RBP ri and circRNA cj interaction, obviously, latent representa-

tion of circRNA and RBP is the key idea of this approach.

Hand-crafted features of interaction pairs may change the intrinsic feature distribu-

tion of the data and need rich professional theory knowledge. With the development of

machine learning method, neural networks algorithms are often used to learn the latent

features automatically. Xue et al. use a neural network to obtain the latent representa-

tions for a given interaction pair [38]. Inspired by this, neural network is employed to

represent the circRNAs and RBPs in a latent low-dimensional space in this study. The

latent representation of RBP ri and circRNA cj are given as follows:

pri ¼ f layer n map … f layer 1map yi�;wr 1ð Þ…;wr n
� �� � ð7Þ

qcj ¼ f layer n map … f layer 1map y� j;wc 1

� �
…;wc n

� �� �
ð8Þ

here, yi∗ is the i-th row of matrix Y, denotes the i-th the RBP scoring across all cir-

cRNAs. wr _ i is the weighting parameters in the neural network map. f(x) is a non-

linear activation function such as the Rectified Linear Unit (ReLU). qcj is obtained

through the similar formula. Finally, the score of an interaction pair is calculated using

cosine distance between pri and qcj:

f i; j ¼ cosine pri; qcj
� �

¼ qcj
Tpri

‖pri‖ ‖qcj‖
ð9Þ

where ‖pri‖ and ‖qcj‖ is the norm of pri and qcj, respectively.

In the model training phase, the binary cross-entropy loss is adopted as loss function:

L ¼ −
X

i; jð Þ∈Y train

yij log f ij þ 1−yij
� �

log 1− f ij
� �

ð10Þ

where yij is the real label. Need not point out that fi, j can be negative, in this study, the

score is converted to a very small number such as 1.0e−6 if it is negative. The detail

training and evaluating algorithm is described in Table 3.

Due to the lack of negative samples in CRIM, only positive and unlabeled samples,

the standard supervised learning method is no longer applicable. Generally, the prob-

lem of learning a binary classifier from a training set of positive and unlabeled samples

refers as P-U learning [39]. It turns the problem into discriminating P from random

subsamples of U by creating a series of classifiers, then, each of these classifiers assigns
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a prediction score to any unlabeled sample, the final prediction score for any unlabeled

sample is the average score of the individual classifiers, Inspired by this, the P-U learn-

ing is applied to solve the problem of CRIM data imbalance.

In this study, the classifiers are a set of MFNN trained with the dataset CRIM. The

detail procedure is described in Table 4. In each round, Ut which has the same size as P

is random subsamples of U, the model MFNN is trained with the training set by Ut

and P composition, then it is used to score the unlabeled samples in UUt. In this way,

no sample of U is used simultaneously to train and test the model MFNN. Finally, the

score of any sample u in U is voted by averaging the predictions of the MFNNs which

is trained on subsamples without sample u. To obtain the final score of unlabeled sam-

ple u, the counter t(u) is introduced to count the times of unlabeled sample u predicted

by the classifier MFNN. In particular, according to experimental experiences of Morde-

let et [39]., to ensure that any unlabeled sample u is scored over n times by MFNN, the

times of sampling round T is chosen as Formula 11.

Table 3 Procedure of the General MFNN algorithm

Algorithm 1: The General MFNN Algorithm

Input: Y: the known interaction matrix
Set: Epoch: e, Batch size: b, Learning rate: l

Output: W: model parameters

1: Randomly sample the train set Ytrain and validation set Yvali from Y.

2: Initialize the model parameters wc _ n and wr _ n with a Gaussian distribution

3: while not model is converged and epoch > e do

sample a mini batch from Ytrain in size b

set pri and qcj using Eq. 2 and 3 with mini batch

set fi, j using Equation 4 with pri and qcj

set L using Equation 5 with fi, j and yij

use Adam optimizer to optimize model parameters

end while

4: using the Yvali evaluate the model

Table 4 Procedure of the MFNN with P-U learning algorithm

Algorithm 2: The MFNN with P-U learning Algorithm

Input: Y: the known interaction matrix, T: the times of sampling round
Set: Obtain set P and U from Y, K: the size of P in each sampling round

Output: Fu: unlabeled sample score

Step 1: Initialize ∀u ∈ U, t(u)← 0, MFNN(u)← 0

Step 2: For t from 1 to T do

Randomly sample the set Ut of size K in U.

Train a model MFNNt to discriminate P against Ut

For ∀u ∈ U\Ut, update:

MFNN(u)←MFNN(u) +MFNNt(u)

t (u)← t(u) + 1

end For

Step 3: Return Fu =MFNN(u)/t(u) for u ∈ U
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T 1−
K
Uj j

� �
≥n ð11Þ

where K is the sampling-size. |U| is the number of unlabeled samples. In this study, ac-

cording to the size of CRIM and unlabeled set U, T is set to 10.
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