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Abstract 

Background:  Microsatellite instability (MSI) is a common genomic alteration in colo-
rectal cancer, endometrial carcinoma, and other solid tumors. MSI is characterized by a 
high degree of polymorphism in microsatellite lengths owing to the deficiency in the 
mismatch repair system. Based on the degree, MSI can be classified as microsatellite 
instability-high (MSI-H) and microsatellite stable (MSS). MSI is a predictive biomarker for 
immunotherapy efficacy in advanced/metastatic solid tumors, especially in colorectal 
cancer patients. Several computational approaches based on target panel sequencing 
data have been used to detect MSI; however, they are considerably affected by the 
sequencing depth and panel size.

Results:  We developed MSIFinder, a python package for automatic MSI classification, 
using random forest classifier (RFC)-based genome sequencing, which is a machine 
learning technology. We included 19 MSI-H and 25 MSS samples as training sets. 
First, we selected 54 feature markers from the training sets, built an RFC model, and 
validated the classifier using a test set comprising 21 MSI-H and 379 MSS samples. 
With this test set, MSIFinder achieved a sensitivity (recall) of 1.0, a specificity of 0.997, 
an accuracy of 0.998, a positive predictive value of 0.954, an F1 score of 0.977, and 
an area under the curve of 0.999. To further verify the robustness and effectiveness 
of the model, we used a prospective cohort consisting of 18 MSI-H samples and 122 
MSS samples. MSIFinder achieved a sensitivity (recall) of 1.0 and a specificity of 1.0. We 
discovered that MSIFinder is less affected by a low sequencing depth and can achieve 
a concordance of 0.993 while exhibiting a sequencing depth of 100×. Furthermore, 
we realized that MSIFinder is less affected by the panel size and can achieve a concord-
ance of 0.99 when the panel size is 0.5 M (million bases).

Conclusion:  These results indicate that MSIFinder is a robust and effective MSI classifi-
cation tool that can provide reliable MSI detection for scientific and clinical purposes.

Keywords:  Microsatellite instability, Genome sequencing, Machine learning 
technology, Random forest classifier, Immunotherapy
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Background
Microsatellites (MS), also known as short tandem repeats, are tandemly repeated 
sequences with typical repeat unit lengths ranging from 1 to 6 bases in genome 
sequences. When the mismatch repair (MMR) system has a deficiency, these spon-
taneous mutations in microsatellites cannot be corrected. Therefore, they accumu-
late, causing the microsatellite sequence length or the base composition to change 
with the increase in tumor mutation burden. We define this process as microsatellite 
instability (MSI) [1]. MSI can promote carcinogenesis and play a major role in the 
mechanism of malignant transformation by favoring the accumulation of thousands 
of mutations in a broad spectrum of different anatomic sites such as colon, stomach, 
prostate, esophagus, endometrium, lung, and head and neck [2]. In addition, it has 
been demonstrated that MSI-H cancers are biologically marked by genomic instabil-
ity, high mutation burden, and numbers of neoantigens and tumor-infiltrating lym-
phocytes (TILs), which makes MSI contribute to cancer immunology and useful for 
predicting the response to immunotherapy [3].

MSI was first discovered in colorectal cancer (CRC) in 1993 [4]. The detection of 
MSI has been proposed as a screening method for Lynch syndrome, stage II CRC 
prognostic factor, stage II CRC predictor factor of adjuvant chemotherapy, and 
advanced solid tumor predictive factor for immunotherapy efficacy [5, 6]. With the 
vigorous development of clinical research on immunotherapy, the listing of immu-
nological checkpoint inhibitors, and the expansion of indications in the field of can-
cer, MSI is a predictive biomarker for the efficacy of immunotherapy in advanced/
metastatic solid tumors, especially its detection is becoming increasingly important 
in colorectal cancer (CRC) patients.

Current MSI detection methods are as follows: (1) Analysis of MMR protein 
expression by IHC. Because MSI is generally caused by MMR protein deficiency, it 
can reflect the MSI status. The MMR system contains four MMR proteins, namely 
MLH1, MSH2, MSH6, and PMS2 [7]. Therefore, when there is a loss of one or more 
MMR protein expression, it is judged as dMMR. This loss of MMR protein expres-
sion observed via IHC has proven to be highly concordant with DNA-based MSI test-
ing with good sensitivity (> 90%) and excellent specificity (100%) [8], with the premise 
being that the IHC detection platform is reliable and certified. However, many IHC 
detection platforms are unreliable, and the results of IHC detection platforms are not 
certified.

(2) Fluorescent multiplex polymerase chain reaction (PCR) assay for the identification 
of MSI [9–11]. The clinical diagnosis of MSI is usually achieved by examining the lengths 
of the PCR products of five informative microsatellite loci, which is the “gold standard” 
for detecting MSI. The National Cancer Institute (NCI) proposed the Bethesda/NCI 
panel for detecting MSI via two mononucleotide (BAT-25 and BAT-26) and three dinu-
cleotide (D2S123, D5S346, and D17S250) repeat microsatellites [12]. Subsequently, a set 
of five quasi-monomorphic mononucleotide repeat microsatellites (BAT-25, BAT-26, 
NR-21, NR-22, and NR-24) were recommended [13], based on which tumors that pre-
sent two or more unstable markers (or ≥ 30–40% if more markers are tested) should be 
defined as MSI/MSI-H. The other tumors are classified as microsatellite stable (MSS) 
or MSI-low (MSI-L) if no markers or only one marker is unstable (if more markers are 
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tested, < 30–40% are unstable). However, this method has a low-throughput and needs to 
match the normal sample, making it less cost-effective.

(3) Computational methods for detecting MSI status in cancer. Since 2015, with the 
large-scale development of precision medicine, next-generation sequencing (NGS) 
has increased rapidly and has been widely used in clinical practice. Further, MSI algo-
rithms are continuously being developed, and thus far, several software packages, such 
as mSINGS [13], MSIsensor [14], MSIseq [15], and MSIpred [16], have been able to 
accurately detect MSI. These software packages are mainly based on the changes in 
the length, mutation type, and mutation burden of microsatellite locus repeats during 
the detection of MSI. During the analysis phase, the software packages select markers 
that can distinguish between MSI-H and MSS and subsequently select a valid classifica-
tion model to maximize the discrimination between MSI-H and MSS states. However, 
there are varying degrees of disadvantages with these software packages. For instance, 
mSINGS cannot select all the effective sites according to different panels; MSIsensor 
requires matched normal samples, thereby increasing costs; and MSIseq and MSIpred 
require a large panel size suitable for whole-exon sequencing.

We propose a software package that can detect the MSI status across multiple tumor 
types with high accuracy, sensitivity, and specificity and is not affected by the panel size 
and sequencing depth.

Implementation
Material

The training set included 19 MSI-H and 25 MSS samples. The test set included 21 
MSI-H and 379 MSS samples. The prospective cohort included 18 MSI-H and 122 MSS 
samples. We collected 30 white blood samples from 30 patients, for selecting markers. 
Informed consent was obtained from all participants, and the study was approved by 
the Ethical Committee of the Second Affiliated Hospital of Zhejiang University School 
of Medicine. The libraries of all the samples were enriched using Xiangyi™ 808 cancer-
gene panel (Acornmed Biotechnology Co., Ltd.), which encompassed 808 cancer-related 
genes and targeted genomes > 2.0 Mb. The PCR and fragment analysis of the paired nor-
mal and tumor tissue of the training set and the test set determined microsatellite insta-
bility (MSI) at the standard five NCI-recommended sites.

Implementation

MSIFinder was written and tested using Python 3.51 and is freely available as a Python 
package. It requires pandas (version 0.23.4), pysam (version 0.15.1), and sklearn (version 
0.20.0) packages to function properly. It also requires two external programs, MSIsen-
sor (version 0.6) and bedtools (version 2.28.0). The workflow for developing MSIFinder 
is presented in Fig. 1. Step A: use MSIsensor and bedtools to scan microsatellites from 
a human reference genome (hg19/GRCh37) and then obtain all microsatellite sites in 
the panel bed (see “Select markers” section); Step B: calculate the average depth for all 
microsatellite sites and select the sites with high capture efficiencies using control sam-
ples (see “Select markers” section); Step C: obtain the final microsatellite sites by using 
the test set to determine the microsatellites with high capture efficiencies (see “Select 
markers” and “Definition of peak data” sections); Step D: use a random forest classifier 
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(RFC) to build a machine learning classifier using the final microsatellite sites and peak 
data (see “Built and applied machine learning classifier” section).

Data preprocessing

To obtain clean reads, quality control and preprocessing of FASTQ files from tumor 
tissue and white blood samples were done by fastp (version 0.19.3). Next, the Bur-
rows–Wheeler aligner (BWA) (version 0.7.12-r1039) and SAMtools (version 
0.1.19-96b5f2294a) were used to map the clean reads against the human reference 
genome (hg19/GRCh37) and perform alignment processing. Subsequently, sample-level, 
fully local indel realignment was performed using the genomic analysis toolkit (GATK) 
(version 4.1.0.0) and duplicate reads removed using Picard (version 1.72). The quality 
score was recalibrated using GATK to generate the final binary SAM (BAM) files used 
for subsequent analyses.

Select markers

Here, MSIsensor (version 0.6) was used to scan microsatellites from the reference 
genome, with the minimal homopolymer size set to 10 and the reference genome 
sequence file set at hg19. Next, using the intersect mode of bedtools, the intersection 
with the panel bed was obtained. The sites with more than three repeats were chosen as 
candidate microsatellite sites.

(1) The depth of 30 normal control samples of the candidate microsatellite sites and 
the average depth was calculated. (2) The training set was analyzed, which comprised 
19 MSI-H and 25 MSS samples with an average depth file to obtain the training data 

Fig. 1  Flowchart for developing MSIFinder using random forest classifier
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results. (3) The training data results from the sites with “Average_Total_Reads” greater 
than 30 were analyzed, and “Average_Number_Peak” greater than 1.5 were chosen as 
new candidate microsatellite sites. The Wilcoxon rank-sum test was used to compare the 
peak between the 19 MSI-H and 25 MSS samples, and the sites with a p value lesser than 
0.01 were chosen as the final microsatellite sites.

Built and applied machine learning classifier

We then developed two pan-tumor models, the RFC model and Support Vector 
Machines (SVM) model, with sklearn (version 0.20.0) for MSI classification using the 
aforementioned 54 markers of all the tumors from the training set. The random forest 
algorithm is not significantly affected by data with various dimensions and can handle 
a large number of dimensions, and it is more suitable for biological data [17]. SVMs are 
one of the most widely used and robust classifiers. We chose RFC by comparing its per-
formance with that of SVM on the test set, including sensitivity, specificity, accuracy, 
PPV, and F1 score. For detailed results, see Additional file 1: Tables S1. For a new tumor 
tissue sample, MSIFinder identifies its peak data and offers the prediction score. If the 
score is greater than or equal to 0.6, the sample is termed MSI-H; otherwise, it is termed 
MSS.

Comparison of MSIFinder with other software

Among previously published software tools, mSINGS and MSIsensor are similar to MSI-
Finder because they also use the number of repeats of different lengths present within 
each of the identified microsatellite sites as markers. Therefore, in this study, we com-
pared the performances of mSINGS and MSIsensor with that of MSIFinder. The testing 
set of 400 samples utilized to validate the performance of MSIFinder was also used to 
evaluate mSINGS and MSIsensor. In this study, the parameters used for mSINGS and 
MSIsensor are the same as those used in [14, 18].

Definition of peak data

Peak data are the number of repeats of different lengths present within each of the 
identified microsatellite markers. To be more specific, if the corrected support reads 
are greater than 3, then the repeats are valid. For instance, if an identified microsatel-
lite marker is 24 base A, the raw support reads of all the repeats are 2 support reads for 
15 base A, 10 support reads for 20 base A, 20 support reads for 21 base A, 40 support 
reads for 22 base A, and 100 support reads for 23 base A. Because the sequencing depth 
affects the number of repeats of different lengths, we used the average depth of the iden-
tified microsatellite markers of 30 normal control samples to correct the support reads 
of all repeats. From the example above, the average depth of this identified microsatellite 
marker is 100×, and the sample sequence depth is 200×; therefore, the correct ratio is 
2. The support reads of all repeats transformed are 1 support reads for 15 A, 5 support 
reads for 20 A, 10 support reads for 21 A, 20 support reads for 22 A, and 50 support 
reads for 23 A. Therefore, the number of repeats of different lengths of the identified 
microsatellite marker is 4 (Fig. 2), which is called the peak, and all the number of repeats 
of different lengths of identified microsatellite markers of one sample are called peak 
data.
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Computing resources

We used the rank sums function of scipy (version 1.1.0) in Python (version 3.5) to per-
form a Wilcoxon rank-sum test. We also used the chi-square function of scipy (version 
1.1.0) to execute a chi-square test. The figures were generated using Matplotlib (version 
3.03) and Seaborn (version 0.9.0) in Python (version 3.5).

Results
Built machine learning classifier

MSIFinder uses machine learning to perform MSI detection. The number of repeats 
of different lengths present within each of the identified microsatellite markers, 
defined as the peak data, is used as the feature data. Before classifying the MSI sta-
tus of the tumor samples, a classifier that can distinguish between MSS and MSI-H 
needs to be constructed. First, we need to determine the microsatellite loci features 
in the classifier. This step is to maximize the discrimination between the positive 
and negative samples, i.e., feature selection. Based on the reference genome hg19, all 
1435 microsatellite loci of the panel were obtained, and their sequencing depths were 
analyzed based on the white blood samples of 30 patients. 1328 loci with sequencing 
depth greater than 30 and average peak greater than 1.5 were selected as captured 
high-efficiency sites. The peak data for the high-capacity sites were calculated based 
on a training set comprising 19 MSI-H and 25 MSS samples. Finally, we obtained 54 
loci with p value < 0.01, derived with a Wilcoxon rank-sum test, which included BAT-
25, BAT-26, NR-21, NR-22, and NR-24 from NCI [13]. Table  1 shows detailed loci 
information of 54 microsatellites. Using these 54 microsatellite loci, we chose RFC to 
develop the classifier in the training set to perform a 10-time cross-validation receiver 
operating curve (ROC) analysis. When the predicted score is ≥ 0.6, the sample is 
MSI-H; otherwise, it is MSS. We referred to this classifier and the python pipeline 

Fig. 2  Peak calculation. a Obtaining the corrected support reads of an identified microsatellite marker 
consisting of 24 bases A. b The vertical coordinate shows the number of raw support reads. c The vertical 
coordinate shows the number of corrected support reads and the calculated peak



Page 7 of 14Zhou et al. BMC Bioinformatics          (2021) 22:185 	

calculating the peak data as MSIFinder. Additional file  2: Fig. S1 shows the perfor-
mance of MSIFinder in the training set with an AUC of 1.0. For detailed results, see 
Additional file 1: Table S1.

MSIFinder performs microsatellite locus screening on different sequencing panels; 
therefore, there will be variations in the microsatellite sites for different sequencing pan-
els. For this study, most of the sites were single-nucleotide repeat microsatellite sites. 
The mononucleotide repeats are believed to be more sensitive and specific for detecting 
MSI [11, 19]. The repeat length of these loci ranged from 10 to 34 bp, which is consistent 
with the repeat length of the gold standard loci recommended by the NCI.

Evaluated performance of MSIFinder

We applied MSIFinder to a test set comprising 21 MSI-H and 379 MSS samples and 
evaluated its performance by finding the concordances between the status of MSI-
Finder predicted MSI and MSI-PCR determined MSI. MSIFinder achieved a sensitiv-
ity of 1.0, a specificity of 0.997, an accuracy of 0.998, a PPV of 0.954, an F1 score of 
0.977, and an AUC of 0.999 (Fig. 3), with only one of the classification errors yield-
ing a false-positive result. These results indicate that MSIFinder can accurately detect 
MSI status from sample peak data.

Table 1  Composition of the 54 microsatellite loci

MSID Chr Start End MS[repeat] MSID Chr Start End MS[repeat]

MS95 chr2 29,523,421 29,523,440 A[20] MS583 chr7 140,482,264 140,482,279 A[16]

MS101 chr2 29,527,360 29,527,377 A[18] MS598 chr7 140,496,149 140,496,164 A[16]

MS125 chr2 42,481,758 42,481,772 T[15] MS603 chr7 140,498,360 140,498,380 T[21]

MS154 chr2 42,557,760 42,557,775 T[16] MS701 chr8 38,281,181 38,281,201 A[21]

MS165 chr2 47,641,560 47,641,586 A[27] MS752 chr9 133,712,212 133,712,233 A[22]

MS171 chr2 48,033,891 48,033,908 T[18] MS766 chr9 133,721,247 133,721,259 A[13]

MS177 chr2 95,849,362 95,849,384 T[23] MS767 chr9 133,721,469 133,721,496 TG[14]

MS210 chr2 215,593,006 215,593,025 A[20] MS780 chr9 133,728,558 133,728,580 T[23]

MS211 chr2 215,593,262 215,593,276 T[15] MS790 chr10 8,115,669 8,115,686 A[18]

MS228 chr3 12,633,425 12,633,440 T[16] MS793 chr10 32,315,464 32,315,475 T[12]

MS230 chr3 12,634,231 12,634,252 T[22] MS798 chr10 43,595,837 43,595,850 T[14]

MS233 chr3 12,635,286 12,635,304 T[19] MS875 chr10 89,728,672 89,728,692 A[21]

MS237 chr3 12,639,510 12,639,524 T[15] MS913 chr10 123,336,649 123,336,673 A[25]

MS245 chr3 12,656,094 12,656,105 T[12] MS921 chr10 123,341,276 123,341,300 A[25]

MS309 chr3 185,787,291 185,787,309 T[19] MS974 chr11 102,193,509 102,193,534 A[26]

MS311 chr3 185,787,763 185,787,772 T[10] MS976 chr11 108,114,662 108,114,676 T[15]

MS331 chr4 25,680,310 25,680,328 T[19] MS983 chr11 108,195,977 108,195,995 T[19]

MS340 chr4 55,598,212 55,598,236 T[25] MS990 chr11 118,353,038 118,353,053 T[16]

MS470 chr6 117,718,360 117,718,370 T[11] MS997 chr11 125,490,766 125,490,786 T[21]

MS478 chr6 117,895,423 117,895,436 A[14] MS1008 chr12 12,024,132 12,024,149 T[18]

MS487 chr6 152,421,908 152,421,922 A[15] MS1030 chr12 12,032,967 12,032,985 A[19]

MS489 chr6 152,422,170 152,422,186 T[17] MS1033 chr12 12,036,212 12,036,245 T[34]

MS525 chr7 13,935,862 13,935,873 A[12] MS1121 chr14 23,652,347 23,652,367 A[21]

MS549 chr7 74,608,741 74,608,753 T[13] MS1285 chr17 41,256,088 41,256,097 A[10]

MS558 chr7 92,235,952 92,235,963 T[12] MS1320 chr18 61,873,522 61,873,573 TG[26]

MS569 chr7 116,381,122 116,381,137 T[16] MS1396 chr22 23,617,095 23,617,118 A[24]

MS581 chr7 140,480,045 140,480,062 T[18] MS1398 chr22 23,618,595 23,618,609 A[15]
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Influence of sequencing depth on the performances of MSIFinder

The performance of software packages that analyze NGS data is affected by the 
sequencing depth [20]. We processed the peak data to detect whether the sequencing 
depth affects the performance of MSIFinder. For example, there are two ways to limit 
the depth of the MSI region to 500× by randomly selecting 500 reads. The first is that 
if the original depth of the site is greater than 500×, we randomly select 500 reads 
from this site and then calculate the site peak. The second is that if the original depth 
of the site is less than 500×, no processing is required.

We observed that when the sequencing depth was reduced to 100×, the concord-
ance was 0.993, and the status of the three samples transformed from MSI-H to MSS. 
When the sequencing depth was reduced to 200×, the concordance was 0.991, and 
the status of the two samples transformed from MSS to MSI-H. When the sequenc-
ing depth was reduced to 500× and 1000×, the concordance was 1, and the status 
of the two samples transformed from MSI-H to MSS. (Fig. 4a). For detailed results, 
see Additional file 1: Table S2. When the sequencing depth was reduced to 1000× or 
500×, no false positives or false negatives appeared. With the increase in depth, the 
sequencing accuracy steadily increases, and even if the sequencing depth is as low as 
100× or 200×, the detection accuracy can be maintained above 99%.

Fig. 3  Performance of MSIFinder in the test set. a The scatter diagram shows the scores calculated by 
MSIFinder with 54 microsatellite loci in the test set. Dotted lines represent the threshold. b Receiver operating 
curve (ROC) analysis was used to compare sensitivity and specificity achieved for MSIFinder in the test set
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The influence of panel size on the performances of MSIFinder

The inclusion of microsatellite loci that can distinguish between MSI-H and MSS 
in the sequencing data is influenced by the size of the sequencing panel. To detect 
the effect of sequencing panel size on MSI detection for MSIFinder, we used random 
sampling to obtain 100 times 0.5 M panel, 100 times 1 M panel, and 100 times 1.5 M 
panel, and analyzed the verification samples for each panel.

Notably, the concordance for the 0.5 M, 1 M, and 1.5 M panel was 99%, 99.8%, and 
99.9% (Fig. 4b), respectively. For detailed results, see Additional file 1: Table S3. MSI-
Finder is more robust in terms of the sequencing panel size; even if the sequencing 
panel is as little as 0.5 M, the error rate is guaranteed to be below 1%.

Comparison with mSINGS and MSIsensor

We compared MSIFinder with two other commonly used MSI detection software 
packages, mSINGS and MSIsensor. As observed in Fig. 5, for mSINGS, we chose 0.09 
as the best cutoff and obtained the highest AUC (0.985). For MSIsensor, we chose 
26.58 as the best cutoff and derived the highest AUC (0.985). However, the perfor-
mance of the software may not be comprehensively evaluated from a single indicator 
such as the AUC. As a result, we compared other indicators such as sensitivity, speci-
ficity, accuracy, and PPV (Table 2). All the indicators of MSIFinder were higher than 
those of mSINGS and MSIsensor. For detailed results, see Additional file  1: Tables 
S4–S6.

Prospective cohort to verify the robustness and effectiveness of MSIFinder

As the MSI-H sample number of the testing set was 25, the performance of MSI-
Finder on the testing set mentioned above might be over-optimistic. To further verify 
the robustness and effectiveness of MSIFinder, we applied MSIFinder to a prospec-
tive cohort consisting of 140 samples. Of 140 tumors, 18 were determined as MSI-H, 

Fig. 4  MSIFinder was less affected by the sequencing depth and panel size. a The vertical coordinate shows 
the concordance with different sequencing depths. b The y-axis represents the concordance of different 
panel sizes with a resulting panel size of 2 M. Blue represents the concordance rate, and red represents the 
non-concordance rate
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and the remaining 122 were determined as MSS using MSI-PCR. With this prospec-
tive cohort, MSIFinder achieved a sensitivity (recall) of 1.0, a specificity of 1.0, and an 
AUC of 1.0 (Fig. 6). For detailed results, see Additional file 1: Tables S9. These results 
indicated that MSIFinder is a robust and effective tool for MSI classification.

Discussion
We built an RFC classifier based on a training set consisting of 19 MSI-H and 25 MSS 
samples. The classification performance of MSIFinder was tested by a validation set that 
included multiple tumor types comprising 21 MSI-H and 379 MSS samples and a pro-
spective cohort consisting of 18 MSI-H samples and 122 MSS samples. MSIFinder was 

Fig. 5  The performance of mSINGS and MSIsensor in the test set. a, c The scatter diagram shows the scores 
calculated using mSINGS (a) and MSIsensor (c) in the test set. Dotted lines represent the threshold. b, d 
Receiver Operating Curve (ROC) analysis compares sensitivity and specificity achieved for mSINGS (b) and 
MSIsensor (d) in the test set

Table 2  Summary of classification performance of MSIFinder, mSINGS and MSIsensor

Sen: sensitivity; Spe: specificity; Acc: accuracy; PPV: positive predictive value; F1: F1 score; AUC: area under curve

Tools Sen Spe Acc PPV F1 AUC​

MSIFinder 0.997 1.000 0.998 0.954 0.977 0.9999

msings 0.983 0.950 0.981 0.730 0.826 0.985

MSIsensor 0.959 0.944 0.958 0.586 0.723 0.985
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less affected by panel size and sequencing depth. These results suggest that MSIFinder is 
a robust classification tool with high accuracy, sensitivity, and specificity.

MSIFinder targets only specific sequencing panels that are greater than 0.5  M to 
ensure that the correct rate is greater than 99%; this expands the application range of 
MSIFinder. When the sequencing depth was reduced to 500×, only one false negative 
sample was in the validation set. When the sequencing depth was reduced to 1000×, 
no false-positive or false negative samples appeared. When the sequencing depth was 
reduced to 100×, the detection accuracy could be maintained above 99%.

There was a false-positive sample in the validation set. The predicted score of this sam-
ple was 0.67, which is greater than the cutoff of MSIFinder (0.6); thus, it was judged to 
be positive. From Fig. 7a, we observed that the tumor mutation burden (TMB) of MSI-H 
samples was significantly higher than that of MSS samples. The TMB of this sample was 
27.13, which belongs to TMB-H (TMB High); for detailed results, see Additional file  1: 
Table S7. Some studies have reported that using fewer microsatellite sites in PCR may lead 
to a missed detection [21–23]. Further, MSIFinder uses 54 sites with specific differences 
between MSI-H and MSS samples; thus, it is more comprehensive in assessing the micros-
atellite status of the sample. In this study, we cannot use raw fastq of TCGA or other pack-
ages to evaluate the performance of MSIFinder because the downloads need authorization. 
Therefore, more MSI-H samples will be used for verification in the future, to ensure the 
accuracy of MSIFinder.

The MSI status of the sample can be inferred from the MMR status. In our sample sets, 
419 samples have been MMR tested; thus, we have calculated the correlation between 
MMR and PCR (Fig. 7b). We used the chi-square test to analyze the consistency of MMR 
and PCR-MSI (p < 0.001). The test revealed a strong correlation between MMR status and 
MSI status, consistent with existing reports. However, the rate of consistency between the 
states of MMR and MSI did not reach 80%, indicating that the state of MSI state cannot be 
completely determined based on the state of MMR.

Fig. 6  Prospective cohort to verify the robustness and effectiveness of MSIFinder. a The scatter diagram 
shows the scores calculated by MSIFinder with 54 microsatellite loci in a prospective cohort. Dotted lines 
represent the threshold. b Receiver Operating Curve (ROC) analysis was used to compare sensitivity and 
specificity achieved for MSIFinder in the prospective cohort
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We compared MSIFinder with two other commonly used MSI detection software 
packages, MSIsensor and mSINGS. The mechanism of MSIFinder is similar to that of 
MSIsensor and mSINGS; however, MSIFinder differs in the methods used to select micros-
atellite sites and determine the MSI status of samples. MSIFinder has two requirements for 
a selected site. One is that the capture efficiency of the site must be high, and the other is 
that the site must have high discrimination between MSI-H and MSS samples. To discrimi-
nate the sample microsatellite status, MSIFinder uses an RFC classifier. From the results, 
many indicators of MSIFinder were the highest among three software packages. Apart from 
MSIFinder, the other software packages are MSIpred [16] and MSIseq [15], which are rep-
resentative packages obtained via insertions and deletions from the MAF file to predict the 
state of the sample’s MSI status. The MSI status of samples with no loss of function of the 
mismatch repair gene will be unstable [24].

Fig. 7  Consistency of TMB and MMR status compared to MSI status
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Conclusion
In summarize, we propose a software package that detects MSI status in multiple tumor 
types and is not affected by the panel size and sequencing depth; its accuracy is currently 
its most important feature.

Availability and requirements
Project name: MSIFinder.

Project home page: https://​github.​com/​86193​4367/​MSIFi​nder.
Operating system(s): Platform independent.
Programming language: Python.
Other requirements: Python 3 (version 3.51): pandas (version 0.23.4), pysam (version 

0.15.1), matplotlib (version 3.03), seaborn (version 0.9.0) and sklearn (version 0.20.0) 
packages; external programs: MSIsensor (version 0.6), bedtools (version 2.28.0); BWA 
(version 0.7.12-r1039), SAMtools (version 0.1.19-96b5f2294a), GATK (version 4.1.0.0), 
Picard (version 1.72); fastp (version 0.19.3) for reading FASTQ files.

License: GNU GPL, FreeBSD etc.
Any restrictions to use by non-academics: license needed.

Abbreviations
AUC​: Area under the curve; BAM: Binary SAM files; BWA: Burrows–Wheeler aligner; CRC​: Colorectal cancer; GATK: 
Genomic analysis toolkit; IHC: ImmunoHistoChemistry; MMR: Mismatch repair; MS: Microsatellites; MSI: Microsatel-
lite instability; MSI-H: Microsatellite instability-high; MSI-L: Microsatellite instability-low; MSS: Microsatellite stable; NCI: 
National Cancer Institute; NGS: Next-generation sequencing; PCR: Polymerase chain reaction; PPV: Positive predictive 
value; RFC: Random forest classifier; TMB: Tumor mutation burden; TMB-H: Tumor mutation burden high.
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