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Abstract 

Background:  Recent studies have confirmed that N7-methylguanosine (m7G) modi-
fication plays an important role in regulating various biological processes and has 
associations with multiple diseases. Wet-lab experiments are cost and time ineffective 
for the identification of disease-associated m7G sites. To date, tens of thousands of 
m7G sites have been identified by high-throughput sequencing approaches and the 
information is publicly available in bioinformatics databases, which can be leveraged to 
predict potential disease-associated m7G sites using a computational perspective. Thus, 
computational methods for m7G-disease association prediction are urgently needed, 
but none are currently available at present.

Results:  To fill this gap, we collected association information between m7G sites and 
diseases, genomic information of m7G sites, and phenotypic information of diseases 
from different databases to build an m7G-disease association dataset. To infer poten-
tial disease-associated m7G sites, we then proposed a heterogeneous network-based 
model, m7G Sites and Diseases Associations Inference (m7GDisAI) model. m7GDisAI 
predicts the potential disease-associated m7G sites by applying a matrix decomposi-
tion method on heterogeneous networks which integrate comprehensive similarity 
information of m7G sites and diseases. To evaluate the prediction performance, 10 
runs of tenfold cross validation were first conducted, and m7GDisAI got the highest 
AUC of 0.740(± 0.0024). Then global and local leave-one-out cross validation (LOOCV) 
experiments were implemented to evaluate the model’s accuracy in global and local 
situations respectively. AUC of 0.769 was achieved in global LOOCV, while 0.635 in local 
LOOCV. A case study was finally conducted to identify the most promising ovarian 
cancer-related m7G sites for further functional analysis. Gene Ontology (GO) enrich-
ment analysis was performed to explore the complex associations between host gene 
of m7G sites and GO terms. The results showed that m7GDisAI identified disease-asso-
ciated m7G sites and their host genes are consistently related to the pathogenesis of 
ovarian cancer, which may provide some clues for pathogenesis of diseases.

Conclusion:  The m7GDisAI web server can be accessed at http://​180.​208.​58.​66/​m7GDi​
sAI/, which provides a user-friendly interface to query disease associated m7G. The list 
of top 20 m7G sites predicted to be associted with 177 diseases can be achieved. Fur-
thermore, detailed information about specific m7G sites and diseases are also shown.
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Introduction
Over 150 types of RNA modifications have been identified in RNA molecules [1, 2], and 
N7-methylguanosine (m7G), which refers to methylation of guanosine(G) on position 
N7 is a typical positively charged modification present in tRNA [3], rRNA [4], mRNA 
5′cap [5] and internal mRNA regions [6], playing a critical role in regulating RNA pro-
cessing, metabolism,and function. As a positively charged RNA modification, m7G could 
tune RNA secondary structures or protein-RNA interactions through a combination 
of electrostatic and steric effects [7]. m7G sites in several tRNAs variable loops, which 
are installed by the heterodimers METTL1-WDR4 in mammals [3], have been reported 
to stabilize tRNA tertiary fold [8, 9]. m7G sites that install at 5′cap stabilize transcripts 
against exonucleolytic degradation [10], and modulate nearly every stage of the mRNA 
life cycle, including transcription elongation [11], pre-mRNA splicing [12], polyadenyla-
tion [13], nuclear export [14], and translation [15].

Mutations in m7G methyltransferase are associated with various diseases. To be more 
specific, a mutation in the methyltransferase complex WDR4 (WD Repeat Domain 4) in 
humans has been reported to cause primordial dwarfism characterized by facial dysmor-
phism, brain malformation, and severe encephalopathy with seizures [16, 17]. Lin et al. 
[18] reported that knockout of the m7G46 tRNA WDR4 in embryonic stem cells impairs 
neural lineage differentiation and affects translation on a global scale. Besides, overex-
pression of WDR4 has been discovered to influence learning and memory in Down syn-
drome [19]. Moreover, the m7G tRNA methyltransferase METTL1 (Methyltransferase 
like 1) was reported to influence cancer cell viability [20]. Therefore, identification of 
disease-associated m7G sites will accelerate the understanding of disease pathogenesis 
at the molecular level, and will further benefit the prognosis, diagnosis, evaluation, treat-
ment, and prevention of human complex diseases. However, it is time-consuming and 
expensive to explore the association between m7G sites and various diseases by only 
conducting wet experiments. Fortunately, m7G-MeRIP-Seq [21], m7G-miCLIP-seq [6], 
and m7G-Seq [21] have generated vast amounts of biological data about m7G, so com-
putational methods are urgently needed to uncover potential disease-associated m7G 
sites effectively. Researchers can then select the most probable m7G sites and the host 
genes of these sites for further analysis, streamlining their wet-lab experiments. To our 
knowledge, no computational models for finding disease-associated m7G sites have been 
developed.

In this study, we extracted 768 validated associations among 741 m7G sites and 177 
diseases from m7GHub to construct the m7G disease association dataset [22]. Then we 
proposed a heterogeneous network-based m7G-disease associations inference method 
m7GDisAI to prioritize candidate m7G sites for a disease of interest. Furthermore, 
experiments of cross validation and case study on ovarian cancer have been carried out 
to prove the effectiveness and stability of our method. To facilitate the exploration and 
direct query of our predicted results, we developed an online database m7GDisAI. The 
website hosts the top 20 m7G sites predicted to be associated with 177 diseases with 
high prediction scores and supports queries with diseases which you are interested. The 
m7GDisAI website is freely available at http://​180.​208.​58.​66/​m7GDi​sAI/.

http://180.208.58.66/m7GDisAI/
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Implementation
Datasets

Source of datasets

m7GHub is a comprehensive m7G online platform, which deciphers the location, reg-
ulation, and pathogenesis of m7G modification [22]. It consists of four parts, including 
m7GDB, m7GFinder, m7GSNPer, and m7GdiseaseDB. It provides 69,159 m7G sites 
which are classified into three confidence levels: high confidence level sites reported 
by m7G-seq, medium confidence level sites reported by m7G-MeRIP-Seq as well as 
m7G-miCLIP-Seq, and low confidence level sites predicted by m7GFinder. As a sub-
part of m7GHub, m7GDiseaseDB collects 1218 disease-associated genetic variants 
that may lead to gain/loss of m7G sites, with implications for disease pathogenesis 
involving m7G RNA methylation. It provides us sufficient information to construct 
the m7G-variant dataset and further build the m7G-disease association dataset.

m7G‑variant dataset

In the m7G-variant dataset, m7G-associated variants refer to those mutated at or 
close to G sites and cause gain/loss of m7G sites simultaneously. For each m7G site-
variant pair, the association of them was measured by the association levels as well as 
the confidence levels. The association level qualifies the influence that variants exert 
on m7G sites into the range [0,1]. The closer the association level is to 1, the stronger 
influence that variant exerts on the exact site. Initially, 812 m7G site-variant pairs 
with high confidence level were first extracted, then ranked according to the associa-
tion level. Then 741 m7G site-disease pairs were further picked out with association 
levels higher than 0.8. Meanwhile, the sequence and genomic location information of 
m7G-variant pairs were collected correspondingly in this dataset. Specifically, it con-
tains the genomic locations, host genes of m7G sites, site-centered 41  bp reference 
sequences as well as site-centered 41 bp alternative sequences.

m7G‑disease association dataset

In the m7G-disease association dataset, 741 m7G sites were associated with 177 dis-
eases via 741 variants in the m7G-variant dataset. Specifically, these variants are both 
m7G-associated and disease-associated. In other words, they cause the gain/loss of 
the m7G site and involve in various disease pathogenesis. Taking these variants as 
linkages, 177 diseases in ClinVar and GWAS were found to be associated with 741 
variants, with implications for disease pathogenesis in m7G RNA methylation.

Methods

m7G-disease association network reconstruction can be transformed into predicting the 
unknown entries in the m7G-disease association matrix, which can be solved by tradi-
tional matrix decomposition methods. However, the number of known associations is 
so small that matrix decomposition methods cannot achieve satisfactory performance 
in this case. Thus, we proposed a heterogeneous network-based m7G-disease associa-
tion prediction method m7GDisAI which will be detailed in the next. The framework of 
m7GDisAI is shown in Fig. 1.
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m7G‑Disease Association Network

Based on the m7G-disease association dataset, the m7G-disease adjacency network 
was constructed to record their associations. To be more specific, let S = {s1, s2, …, sm} 
and D = {d1, d2, … dn} denote m m7G sites and n diseases respectively. Let ASD ∈ Rm×n 
indicate the adjacency network, ASDij

 is 1 if there exists a validated association between 
m7G-disease pair (si, dj) . The m7G-disease association matrix ASD was provided in Addi-
tional file 4: Table S4.

m7G similarity networks

As a kind of auxiliary information, m7G similarity information plays a critical role in 
m7G-disease association prediction. To make full advantages of the information of m7G 
sites, a series of m7G similarity networks were constructed for further use in the hetero-
geneous network.

m7G chemical similarity network  m7G chemical similarity network (CSN) depicts the 
m7G similarities in terms of the chemical properties extracted from m7G site-centered 
sequences [23, 24]. Specifically, either sequence is a combination of four nucleotides A, 

Fig. 1  The framework of m7GDisAI. m7GDisAI mainly consists of four steps. The first step is to extract m7G 
sequence-derived features with m7G-variant data to construct m7G chemical similarity network (CSN) 
and CNF similarity network (CNFSN). The second step is to fuse CSN and CNFSN together by taking linear 
combinations of chemical similarities and CNF similarities, and then form a series of m7G integrated similarity 
networks. The third step is to build heterogeneous networks with m7G-similarity networks, m7G-disease 
association network, and disease semantic network. The fourth step is to predict associations between 
unknown m7G site-disease pairs
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T, C, G. Each nucleotide can be characterized by three distinct structural chemical prop-
erties, such as ring structures, hydrogen bonds, and functional groups. In terms of ring 
structures, A and G have two benzene rings, while C and T have only one. As for the num-
ber of hydrogen bonds formed during hybridization, A and T have two, while G and C 
have three. Regarding the functional groups they contain, A and C contain amino groups, 
whereas G and T contain keto groups. Therefore, the i-th nucleotide in sequence N can 
be encoded by a vector (xi, yi, zi).

Therefore, A, C, G, T can be encoded as (1,1,1), (0,0,1), (1,0,0) and (0,1,0) respectively. 
Thus, the chemical feature of site si, denoted as CF (si), is the combination of these four 
vectors, in the form of a sequence consisting of {0,1}. Considering the binary numerical 
properties of the m7G chemical features, the Jaccard coefficient was applied to them. To 
be specific, for two sites si and sj, their pairwise chemical similarity is defined as (1)

Then in the m7G CSN, s1, s2, …, sm are nodes, and the edges between them are weighted 
by the pairwise chemical similarity above. For convenience, the adjacency matrix was 
indicated as ACSN (Additional file 5: Table S5).

m7G Cumulative Nucleotide Frequency Similarity Network  Similar to the construction 
of CSN, m7G cumulative nucleotide frequency (CNF) features were extracted for further 
similarity calculation. To be specific, CNF of the i-th nucleotide in a sequence is defined 
as the sum of all the instances of this nucleotide before the i + 1 position dividing i. Taking 
the sequence ‘TAA​GTC​CA’ as an example, the CNF for A is 0.5(1/2),0.667(2/3),0.375(3/8) 
at the 2nd, 3rd and 8th positions respectively. Thus, the CNF features of site si are denoted 
as CNF (si). Comparing with the m7G chemical features, CNF features pay more attention 
to the sequence context around the m7G site. Then the Cosine coefficient was adopted to 
calculate similarities of CNF since it reflects the similarity in trend rather than absolute 
values. For sites si and sj, the pairwise CNF similarity is defined as (2).

Then m7G CNF similarity network (CNFSN) was obtained with the weights between 
nodes si and sj, (i = 1,2…m, j = 1,2…m), and the adjacency matrix was indicated as 
ACNFSN (Additional file 6: Table S6).

m7G integrated similarity network  Since m7G chemical similarity and CNF similarity 
measure m7G similarities from their own views, we took a linear combination of those 
two similarities to form an integrated similarity, and the contribution of m7G chemical 
similarity and CNF similarity is weighted by α. For sites si and sj, the integrated similarity 
is defined as (3).

xi =

{

1 if Ni ∈ {A,G}

0 if Ni ∈ {C ,T }

}

, yi =

{

1 if Ni ∈ {A,T }

0 if Ni ∈ {G,C}

}

, zi =

{

1 if Ni ∈ {A,C}
0 if Ni ∈ {G,T }

}

(1)che_simij =
|CF(si) ∩ CF(sj)|

|CF(si) ∪ CF(sj)|

(2)CNF_simij =
|CNF(si) · CNF(sj)|

||CNF(si)||2||CNF(sj)||2
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The value of α was chosen from 0 to 1 with step 0.1, and was determined by tenfold 
cross validation experiments. Then a series of m7G integrated similarity networks were 
obtained via taking (3) as weights between nodes si and sj, (i = 1,2…m, j = 1,2…m), and 
its adjacency matrix was indicated as ASS. In addition, if α is 0, then ASS is ACSN, while if 
α is 1, then ASS is ACNFSN.

Disease semantic similarity network

Disease semantic similarity network (DSSN), indicated by adjacency matrix ADD, was 
also constructed by calculating pairwise disease semantic similarities. Generally speak-
ing, functional similarity between molecules results in similar phenotypes, such as dis-
eases. Based on this fact, many researchers [15, 25–27] utilized functional similarities of 
the disease-associated molecules for semantic disease similarities. We followed Wang’s 
PBPA method, which was implemented to calculate pairwise disease semantic similari-
ties [28, 29]. Additionally, the “DisSetSim” web server can be accessed from http://​www.​
bio-​annot​ation.​cn:​18080/​DincR​NACli​ent. By calculating all pairwise semantic similari-
ties in D, a disease semantic similarity network was obtained and the adjacency matrix 
was indicated as ADD (Additional file 7: Table S7).

m7G‑disease heterogeneous network

The m7G-disease heterogeneous network and its adjacency matrix are shown in Fig. 2. 
The m7G-disease heterogeneous network was constructed by incorporating m7G-disease 
adjacency network, disease semantic similarity network DSSN, and m7G integrated sim-
ilarity networks. It was represented by adjacency matrix A and mask matrix W, as (4).

where WSS and WDD are all one’s matrix. For WSD, Wij = 1 if the association of the i-th 
site to the j-th disease is known, 0, vice versa.

(3)int_simij = (1− α) · che_simij + α · CNF_simij

(4)A =

(

ASS ASD

A
T
SD ADD

)

,W =

(

W SS W SD

W
T
SD WDD

)

Fig. 2  m7G-disease heterogeneous network and its adjacency matrix

http://www.bio-annotation.cn:18080/DincRNAClient
http://www.bio-annotation.cn:18080/DincRNAClient
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By incorporating DSSN and m7G integrated similarity networks into the m7G-disease 
adjacency network, cold start issue is avoided, while information of sites and diseases is 
fully be used.

m7G‑disease association inference based on heterogeneous network

Based on the m7G-disease heterogeneous network constructed above, the goal of recov-
ering ASD is transformed into completing A. Underpinned by the fact that similar sites 
have similar molecular pathways for similar diseases, the matrix completion model 
assumes that the underlying latent factors determining m7G-disease associations are 
highly correlated. In addition, if two sites are similar, then they would have similar pat-
terns with any other sites, and it is true for diseases. The number of independent factors 
that govern the pattern of A is much smaller than that of sites and diseases. In a math-
ematical view, the number of independent factors is the rank, here we used k to denote 
it. Thus, the goal of completing A can be achieved by the classical matrix decomposition 
method, which achieved positive results in many cases and is easy to realize. The primary 
idea of matrix decomposition is to map the adjacency matrix A into a k dimensional 
space, where k <  < m + n, so dimension reduction is achieved and a lower-dimensional 
representation of A in a k-dimensional space is given by two matrices U ∈ R

(m+n)×k and 
V ∈ R

(m+n)×k . Then A can be approximated by (5).

The fundamental idea of finding suitable factor matrices U, V is to minimize the objec-
tive function defined as (6):

where || ∗ ||F is the Frobenius norm, W ⊙ (A−UV
T) denotes the Hadamard product 

of two matrices W and A-UVT.
Furthermore, regularization terms should be considered, and the loss function is 

defined as (7), while the objective function is (8).

where �1||U ||2F + �2||V ||2F is the regularization term to avoid overfitting, with λ1 and 
λ2 being the regularization parameters.

λ1 and λ2, which were optimized by cross validation, help to achieve the trade-off 
between fitting and generalization. The Alternating Least Square method [30, 31] was 
then followed to reach the global minimum concerning to U and V. Finally, unknown 
entries in ASD were predicted. The implementation process of m7GDisAI is given below.

(5)A ≈ UV
T

(6)min
U ,V

||W ⊙ (A−UV
T)||2F

(7)L = ||W ⊙

(

A−UV
T
)

||2F + �1||U ||2F + �2||V ||2F

(8)min
U ,V

L
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Results
Experimental design

To systematically evaluate the prediction performance of m7GDisAI on the m7G-disease 
association dataset, tenfold cross validation and LOOCV strategies were adopted for the 
experiments.

As for tenfold cross validation, in the m7G-disease association dataset, there are 768 
validated known associations, and the others that haven’t been validated are considered 
as candidate associations. All known associations are randomly divided into 10 sets that 
are roughly equal size. Each set is taken as test set in turn, in other words, pretends to 
be unknown ones, while the remaining nine sets serve as the training set. After per-
forming m7GDisAI on training set, the test associations were ranked together with the 
candidate associations in descending order according to the predicted value obtained 
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by m7GDisAI. Additionally, two types of LOOCV, global LOOCV and local LOOCV, 
were further carried out on the m7G-disease association dataset. At each iteration, each 
validated known m7G-disease association was treated as the test data and all the remain-
ing associations as the training data. The only difference between them is the selection 
of candidate samples. To be specific, in global LOOCV, the candidate samples are all 
unknown m7G-disease associations, while in local LOOCV, candidate samples are only 
those associations under the disease of interest. In each scheme of LOOCV, the test 
sample was ranked with candidate samples in descending order.

Regardless of tenfold cross validation, global LOOCV and local LOOCV, for a given 
threshold τ, a test association is regarded as true positive (TP) if it ranks above the 
threshold, false negative (FN) otherwise. Similarly, a candidate sample is considered as 
false position (FP) if it ranks above the threshold, true negative (TN) otherwise. By vary-
ing τ, true positive rate (TPR), false positive rate (FPR) can be calculated for Receiver 
Operating Characteristic (ROC) curve. It depicts the relative tradeoffs of prediction per-
formance between TP and FP [32]. The area under ROC curve (AUC), ranging from 0 to 
1, can be used to evaluate the overall performance [32, 33].

Parameter setting

There are four parameters, rank k, linear combination coefficient α, regularization 
parameters λ1 and λ2, that are required to be optimized to enhance the performance of 
m7GDisAI. To be specific, k is the number of independent factors that govern the pat-
tern of the heterogeneous matrix A, and if k is too large, then the algorithm would be 
time-consuming. Then k is chosen from {70,90,110}. The linear combination coefficient 
α weights the contribution of m7G chemical similarity and m7G CNF similarity in m7G 
integrated similarity network, and it was taken from 0 to 1.0 with the step 0.1. In addi-
tion, regularization parameters λ1 and λ2 control the relative penalty extent of the factor 
matrices U and V respectively, and they were chosen from {2–2,2–1,20,21,22}. It is appar-
ent that k, λ1 and λ2 directly influence the optimal solution of the two factor matrices U 
and V, while α only has an impact on the m7G similarity matrix ASS. Thus, α was first 
fixed to 0.5 or any other specific value between 0 to 1, and a grid search strategy was 
performed on k, λ1 and λ2. tenfold cross validation experiments were performed with all 
combination of k, λ1 and λ2 on the training set. m7GDisAI performed best when k is 90, 
λ1 is -2 and λ2 is -2 with AUC of 0. 728. For fairness, the impact of α on m7GDisAI was 
measured via tenfold cross validation experiments with fixed k, λ1 and λ2. To be specific, 
α is 0 means that ASS is ACHN, and m7GDisAI only utilizes m7G chemical similarities, 
while α is 1 indicates that ASS is ACNFHN, and m7GDisAI only utilizes m7G CNF similari-
ties. Table 1 reports the AUC scores with all α, and the highest AUC score is marked in 
bold.

Table 1  AUC scores of different α inthe10-fold cross validation experiments

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AUC​ 0.700 0.703 0.706 0.722 0.705 0.728 0.731 0.733 0.737 0.740 0.742
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In Table 1, As α increases, AUC scores generally show an increased tendency except 
when α is 0.4, and reaches its maximum at 0.742 when α is 1. In other words, the more 
CNF similarities contribute, the higher the AUC scores achieved, and m7GDisAI has 
the best performance when only utilizes CNFHN. Table 1 validates the effectiveness of 
the CNF features and Cosine coefficient to some extent. Specifically, chemical features 
decode the nucleotides of m7G site-centered sequence individually, while CNF features 
pay more attention to the context of site-centered sequence. Meanwhile, the Cosine 
coefficient reflects the similarity in trend instead of absolute value as the Jaccard coef-
ficient calculates.

Performance evaluation

To further evaluate the robustness of m7GDisAI, we conducted 10 runs of tenfold 
cross validation experiments by taking α as 1, which has the best performance in the 
Table  1. The mean value of AUC scores is 0.740 with standard variance at 0.0024, 
showing the effectiveness and stability of m7GDisAI. Figure  3a clearly displays the 
ROC curves with respect to the best performance in tenfold cross validation experi-
ments. Additionally, LOOCV experiments were further conducted to comprehen-
sively evaluate the performance of m7GDisAI. The AUC of global LOOCV was 0.769 
while that of local LOOCV was 0.635. The ROC curves of LOOCV experiments are 
illustrated in the Fig. 3b.

As we can see from Fig. 3b, local LOOCV experiment performs worse than global 
LOOCV. The key factor contributing to this phenomenon is the number of candidate 
samples that the test sample were ranked with. To be specific, the number of candi-
date samples participating in global LOOCV is much larger than those involved in 
the local LOOCV. In other words, the local LOOCV experiments have more rigorous 
requirements for positive results.

Fig. 3  The best performance of m7GDisAI for tenfold cross validation and LOOCV experiments. a. ROC curves 
generated by tenfold cross validation. b. ROC curves generated by global LOOCV and local LOOCV
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Case study

Ovarian cancer is the most common cause of gynecological cancer-associated death 
[34]. Over the past decades, the overall cure rate remains approximately 30% [35]. The 
reason for low cure rate is the late presentation in most cases. 80% of patients have 
symptoms, however, these symptoms are shared with many more common gynecologi-
cal conditions [35]. Given the heterogeneity of this disease, it is necessary to explore the 
disease pathogenesis at molecular and cellular levels. Then taking all known associations 
as training samples, while other unknown ones as candidate samples. Since CNFHN has 
the best performance in the tenfold cross validation experiments, then we performed 
it on the training samples to score the candidate samples, especially those under ovar-
ian cancer. Furthermore, all the m7G sites were ranked in descending order according 
to their association scores with ovarian cancer, and the top 100 m7G sites were selected 
as potential ovarian cancer-associated sites. 98 host genes of these sites were further 
mapped out. To predict potential cellular processes and molecular functions that involve 
m7G methylation, we used the R package “clusterProfiler” to analyze and visualize the 
functional profiles of m7G host genes.

GO terms include three subontologies, cellular component (CC), biological process 
(BP) and molecular function (MF), and they can be conducted via enrichGO function. 
In the parameter setting of the enrichGO function, we set the parameter “ont” to “ALL”, 
aiming at performing CC, BP and MF together. Additionally, the p-value cutoff was set 
as 0.05, q-value cutoff 0.2, indicating statistical significance of associations between host 
genes and GO terms. Furthermore, “BH” method was used to adjust the p-value to con-
trol the false discovery rate, which was considered to be statistically significant. Con-
sidering the potentially biological complexities in which a gene may belong to multiple 
annotation categories, we utilized a gene-concept network to depict the linkages of gene 
and GO terms as a network. Figure 4 provides a visualization of the gene-concept net-
work by cnetplot function.

In Fig. 4, ten most significantly enriched terms including CC, BP and MF were shown 
to be associated with 26 genes. The enrichment analysis results have been verified by 

Fig. 4  The gene-concept network of functional GO enrichment results. The connection between a gene and 
a term means that the gene is involved in this GO term
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published literature. Specifically, TP53 is the most widely studied tumor suppressor gene 
[36], and it is the host gene of m7G_ID_194615, m7G_ID_203640, m7G_ID_202781 
m7G_ID_194736 and m7G_ID_280795 as Additional file 1: Table S1 shows. TP53 func-
tions in ovarian cancer by arresting the cell cycle at G1 phase and by triggering apoptosis 
[37]. In addition, Lang et al. [38] found that UV radiation leads to base-pair changes of 
p53, the protein product of the TP53 gene, and further leads to tumor formation. Fur-
thermore, Jeremy et al. [39] experimentally showed that the dynamic patterns of TP53 
vary depending on the stimulus. For example, the levels of p53 exhibit a series of pulses 
with fixed amplitude and frequency in response to DNA breaks caused by γ-irradiation. 
These discoveries prove that TP53 is enriched into “negative regulation of mitotic cell 
cycle”, “response to UV” and “cellular response to environmental stimulus” terms [40].

To data, hereditary nonpolyposis colorectal cancer (HNPCC) is the third major 
cause of hereditary ovarian cancer, and HNPCC is caused by mutations in genes 
involved in DNA mismatch repair [41]. MLH1 [42] (host gene of m7G_ID_137019, 
m7G_ID_137020, m7G_ID_151088, m7G_ID_220822), MSH2 [43] (host gene of 
m7G_ID_161433, m7G_ID_192868, m7G_ID_253317), MSH6 [44] (host gene of m7G_
ID_200227, m7G_ID_317794) and PMS2 [45] (host gene of m7G_ID_155289) are all 
reported to be mismatch repair genes. To be specific, the MLH1 and MSH2 genes are the 
most common genes for HNPCC-associated ovarian cancer, and account for 80%-90% of 
observed mutations [46]. What’s more, Cederquist et al. [47] reported that ovarian can-
cer is in the MSH6 tumor spectrums. Besides, PIK3CA was also known to be oncogenes 
of ovarian cancer [48], and they are the host genes of m7G_ID_2249, m7G_ID_9238 in 
Additional file 1: Table S1 respectively. Notably, PIK3CA activated mutation participates 
in the PI3K pathway which is activated in approximately 70% of ovarian cancer [49], and 
is enriched in regulation of protein kinase B signaling, which is activated by autocrine or 
paracrine signaling through protein kinase signaling in many kinds of cancers [49].

Numerical cases [50–52] have suggested that ERBB family of receptor tyrosine kinases 
has a significant contribution to the initiation and progression of ovarian cancer. EGFR 
and ERBB2 in Fig. 4 are members of the ERBB family of receptor tyrosine kinases. EGFR 
is the host gene of m7G_ID_149119 and its overexpression has been observed in 30%-
98% of epithelial ovarian cancer in all histologic subtypes, and enhanced expression of 
EGFR is correlated with advanced-stage disease as well as poor response to chemothera-
pies. Additionally, Ginath et.al reported [53] that ERBB2 (host gene of m7G_ID_268139) 
activates multiple downstream signaling pathways, and then promotes the proliferation, 
invasion, and metastasis of tumor cells.

Discussion
This research into identifying potential m7G-disease association prediction will help 
us understand the pathogenesis of diseases and promote the treatment of diseases. In 
this paper, we extracted 768 associations between 741 m7G sites and 177 diseases to 
construct the m7G-disease association dataset. To predict the m7G-disease associa-
tion based on the m7G-disease dataset, we proposed a heterogeneous network-based 
association inference method m7GDisAI. For m7GDisAI, we performed m7G-disease 
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association inference on a series of heterogeneous networks which contain m7G-disease 
adjacency network and disease semantic similarity network, but different m7G similar-
ity networks, CHN, CNFHN and their combinations.10-fold cross validation, global and 
local LOOCV were performed with m7GDisAI. CNFHN outperforms the CHN and 
other heterogeneous networks, which proves the effectiveness of CNF features. Then a 
case study of ovarian cancer was later conducted by CNFHN. It is worth mentioning 
that the constructed m7G-variant pair dataset and m7G-disease association dataset may 
play important role in further investigation of disease-associated m7G sites discovery. 
To our knowledge, m7GDisAI is the first algorithm that connects m7G sites, variants as 
well as diseases together to uncover potential cancer-related functions of m7G, which 
may provide some valuable hints for wet experiments guidance. However, there remains 
limitations in this study. Firstly, the research of m7G and diseases is an ongoing topic and 
the m7G-disease dataset is far from completed. Secondly, more feature selection meth-
ods could be taken into consideration to construct m7G similarity networks and further 
improve the accuracy of m7GDisAI.

Conclusions
m7GDisAI is a heterogeneous network-based m7G-disease association inference method 
and is freely acessible at http://​180.​208.​58.​66/​m7GDi​sAI/. m7GDisAI uncovers disease-
associated m7G sites by applying matrix decomposition method on a heterogeneous 
network-based m7G-disease association matrix. m7GDisAI provides users a function to 
query related m7G sites of disease which the users are interested in. The website hosts 
the top 20 m7G sites predicted to be associted with 177 diseases with high prediction 
scores,which may provide some clues for pathogenesis of diseases. The front-end is 
implemented in JavaScript while the back-end is implemented in Python as well as R. 
We will continue updating m7GDisAI by adding additional information, improving the 
implementation, and incorporating new measures for infering disease-associated m7G 
sites. The user can always access the latest version of m7GDisAI.

Availability and requirements
Project name:  m7GDisAI. Project home page: http://​180.​208.​58.​66/​m7GDi​sAI/. Oper-
ating system(s): Linux, Windows. Programming language: Python, R, JavaScript. Other 
requirements: Not specified. Python version 3.8.0 or higher, R version 4.0.3 or higher. 
License: GNU GPL. Any restrictions to use by non-academics: None.
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