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Background
The latest developments in natural language processing (NLP) have made notable pro-
gress in automating classification and information extraction from clinical texts. The 
current state-of-the-art techniques are generally deep learning (DL) architectures such 
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Background:  Automated text classification has many important applications in the 
clinical setting; however, obtaining labelled data for training machine learning and 
deep learning models is often difficult and expensive. Active learning techniques may 
mitigate this challenge by reducing the amount of labelled data required to effec‑
tively train a model. In this study, we analyze the effectiveness of 11 active learning 
algorithms on classifying subsite and histology from cancer pathology reports using a 
Convolutional Neural Network as the text classification model.

Results:  We compare the performance of each active learning strategy using two dif‑
ferently sized datasets and two different classification tasks. Our results show that on all 
tasks and dataset sizes, all active learning strategies except diversity-sampling strate‑
gies outperformed random sampling, i.e., no active learning. On our large dataset (15K 
initial labelled samples, adding 15K additional labelled samples each iteration of active 
learning), there was no clear winner between the different active learning strategies. 
On our small dataset (1K initial labelled samples, adding 1K additional labelled samples 
each iteration of active learning), marginal and ratio uncertainty sampling performed 
better than all other active learning techniques. We found that compared to random 
sampling, active learning strongly helps performance on rare classes by focusing on 
underrepresented classes.

Conclusions:  Active learning can save annotation cost by helping human annota‑
tors efficiently and intelligently select which samples to label. Our results show that a 
dataset constructed using effective active learning techniques requires less than half 
the amount of labelled data to achieve the same performance as a dataset constructed 
using random sampling.
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as Convolutional Neural Networks (CNNs), which have been shown to outperform tra-
ditional machine learning techniques and rule-based approaches in clinical text applica-
tions [1–3]. However, a common drawback of DL models is that they tend to require a 
large amount of training data to achieve high performance. This is a significant problem 
particularly in clinical applications where obtaining gold-standard labels is difficult and 
subject to constraints.

A key goal of active learning is to maximize the effectiveness of obtaining additional 
labelled training data for a given machine learning model. This is achieved by using the 
model itself to actively select the set of unlabelled data that will be most informative to 
the model if it were labelled. For example, data associated with common classes that the 
model is already familiar with may be less informative than data from unseen classes 
or data on which the model has low confidence. Compared to randomly labelling addi-
tional data, active learning enables the model to reach higher performance using fewer 
additional labelled samples, thereby increasing the efficiency and effectiveness of human 
annotators [4]. This approach is especially useful for applications such as clinical text 
classification where annotated data is expensive and time-consuming to obtain.

Cancer pathology reports are an important application where active learning can have 
real-world impact. Cancer is the second leading cause of death in the United States.1 
As part of its mission, the National Cancer Institute’s (NCI) Surveillance, Epidemiology, 
and End Results (SEER) program works with population-based cancer registries around 
the country to collect and publish cancer data including patient demographics, primary 
tumor site, tumor morphology and stage at diagnosis, first course of treatment, and fol-
low-up for vital status [5]. This information is critical for cancer research and surveil-
lance. While some of this information is stored in structured databases and can be easily 
extracted, key data elements such as primary tumor site and tumor morphology are gen-
erally recorded within unstructured cancer pathology reports that are written during 
the time of diagnosis. Each year, skilled human Certified Tumor Registrars (CTRs) must 
manually annotate hundreds of thousands of cancer pathology reports to extract these 
data elements. Recent research has made major strides toward automating portions of 
this process [1, 2]; unfortunately, these approaches still do not have the same level of 
accuracy as human annotators and often have low performance on rare cancer types 
with few training examples [2, 6]. Active learning can help address these weaknesses by 
prioritizing expert annotation of pathology reports that maximize the effectiveness of 
these automated approaches, thus helping close the gap in performance.

While active learning has been effectively applied to a wide variety of applications, 
including image classification, speech recognition, and natural language parsing, [7–10], 
its application to text classification on cancer pathology reports and other clinical text 
is relatively limited. Unlike other text classification tasks, classifying cancer pathology 
reports presents a distinctive set of challenges. These reports are characterized by the 
lack of a universal structure, variation in linguistic patterns, and the use of specific jar-
gon. Furthermore, documents can be several pages long, only a few keywords or key-
phrases in the document may be relevant to a specific classification task, and there may 

1  https​://www.cdc.gov/nchs/fasta​ts/leadi​ng-cause​s-of-death​.htm.

https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
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be long-distance linguistic dependencies across different sections of a document [2]. In 
addition, certain tasks may contain a large number of classes (i.e. 525 histology types), 
and the number of documents per class tends to be highly unbalanced.

In this paper, we evaluate the effectiveness of different active learning techniques on 
the task of classifying cancer pathology reports. We test a wide selection of different 
active learning strategies that have been successfully applied in other applications. Using 
a CNN-based approach as our learning model, we focus on two classification tasks—
identifying cancer subsite and histology. Our contributions are as follows:

•	 We perform a detailed comparative evaluation of different active learning techniques 
on two different text classification tasks using cancer pathology reports.

•	 We examine and compare the performance of active learning when being applied 
on two scenarios. In the first set of experiments, we use a large dataset with 15K ini-
tial labelled samples, adding 15K additional labelled samples each iteration of active 
learning. For the second set of experiments, we use a small dataset with 1K initial 
labelled samples, adding 1K additional labelled samples each iteration.

•	 Given that clinical text classification tasks generally have high class imbalance, we 
perform a detailed analysis of how different active learning techniques affect low 
prevalence classes.

•	 To our knowledge, this is the first work to perform a critical comparison of different 
active learning techniques for clinical text classification that utilizes a deep learning 
model as the classifier.

Related work

The benefits of classic active learning techniques that incorporate machine learning 
models have been widely studied for a variety of tasks [4, 11–14]. In the context of NLP, 
notable work includes Settles et al. [15] who evaluated 15 query strategies for the task 
of sequence labeling using conditional random fields on eight different corpora. Even 
though performance of individual active learning strategies varied across different cor-
pus, the best results were obtained with information density, sequence vote entropy, 
sequence entropy, and least confidence.

Although active learning and deep learning have each been researched extensively, the 
current literature at the intersection of both focuses mostly on image classification [16]. 
Wang et al. [17] proposed a framework that combines uncertainty sampling techniques 
with pseudo-labeling to reduce human annotation in the context of image classification 
using CNNs; their technique uses softmax confidence thresholds in the decision pro-
cess. Zhang et  al. [18] explored deep active learning with CNNs for text classification 
by applying an algorithm called Expected Gradient Length. This work is related to our 
study; however, it has a specific focus on word embeddings and representation learning.

Few studies have explored AL in the specific context of clinical NLP. These existing 
works are older studies that focus on using traditional machine learning approaches 
rather than state-of-the-art deep learning models. Chen et al. [19] applied seven active 
learning algorithms using logistic regression for the task of binary clinical text classifi-
cation. In a similar work, Kholghi et  al. [20] applied least confidence and information 



Page 4 of 25De Angeli et al. BMC Bioinformatics          (2021) 22:113 

density to the task of medical concept extraction, and showed that active learning can 
help classifiers to reach a target performance score using as little as 23% of the total data 
available. Figueroa et al. [21] applied three active learning algorithms—distance-based, 
diversity-based, and a combination of both—on five datasets. They used support vector 
machines as the base classifier for clinical text classification and concluded that diversity 
algorithms respond better on datasets with high diversity, and distance algorithms per-
form better on datasets with low uncertainty.

We extend these previous studies by performing a thorough evaluation of 11 differ-
ent active learning techniques using a modern CNN model as our classifier. We com-
pare performance on two different clinical text classification tasks—extracting subsite 
and histology from cancer pathology reports. We show that under certain conditions, 
some active learning strategies clearly beat out others; we expect that these results may 
provide a useful starting point for other applications of active learning in the context of 
clinical text classification.

Methods
Active learning

In the active learning scenario, we begin with an initial training set L0 of labeled samples 
and use it to train a classification model with parameter estimates θ0 . Then, we apply this 
model on a set of unlabelled data U0 and use a query strategy φ(xi|θ0) to assign an infor-
mativeness measure to each sample xi in U0 ; this informativeness measure indicates how 
helpful that sample would be to the classification model if it were to be trained on that 
sample. We then obtain ground truth labels for a subset of n samples in U0 with the high-
est informativeness value φ(xi|θ0) . This subset is moved from U0 to L0 to form the new 
larger training set L1 and new smaller unlabelled set U1.

A new classification model with parameter estimates θ1 is then trained on L1 and 
applied to U1 . Once again, the query strategy φ(xi|θ1) is used to select the most informa-
tive n samples from U1 to label and add to L1 to form U2 and L2 . This process is repeated 
until the classification model attains the desired performance or until no samples remain 
in U.

In the following subsections, we describe the various active learning query strategies 
that we evaluate in this work.

Uncertainty sampling

One of the most common active learning query strategies is uncertainty sampling [22], 
where φ is calculated based on the prediction confidence of the classifier—the assump-
tion is that the lower the confidence of a given sample, the more informative it will be for 
the model. Within the uncertainty sampling domain, least confidence (LC) is a simple 
algorithm which calculates φ based on Eq. 1:

where y∗ is the predicted class for a given sample, i.e., the class with the highest softmax 
value, and P(y∗|x; θ) represents the softmax value associated with that class.

Another uncertainty based query strategy introduced by Schein et al. [23] is marginal 
sampling (MC). Whereas least confidence only considers the highest softmax value 

(1)φLC(x) = 1− P(y∗|x; θ)
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from each predicted sample, marginal sampling utilizes the difference in confidence 
between the two most likely classes for each predicted sample (Eq. 2):

where y∗1 and y∗2 represents the two classes associated with the highest and second high-
est softmax values, respectively.

A third uncertainty sampling query strategy, named ratio of confidence (RC) in this 
paper, considers the ratio between the top two classes with the highest softmax values 
(Eq. 3):

Finally, Shannon Entropy [24], or entropy sampling (ES), has also been widely used as 
an uncertainty-based query strategy. Under this approach, φ is an entropy-based metric 
described in Eq. 4:

where 
∑C

c=1 represents the summation over all possible classes, and P(yi|x; θ) is the 
softmax value associated with class yi . Thus, unlike previous uncertainty sampling tech-
niques, ES takes into consideration the softmax distribution across all possible classes.

Diversity sampling

Diversity sampling (DS) algorithms aim to maximize the diversity of the training data-
set and calculate φ based on a similarity measure between the samples in the train-
ing set. Traditionally, diversity sampling algorithms were applied to machine learning 
approaches that utilized fixed-length input vectors such as TF-IDF, and the similarity 
measures for φ could be applied directly on these input vectors. However, in the context 
of deep learning models, the inputs are typically matrices of word embeddings that may 
or may not be zero-padded.

Therefore, to effectively utilize diversity sampling, we first generate a fixed-length doc-
ument vector representation for each document on which we can then apply the similar-
ity metric. In our study, these document vectors are the outputs from the penultimate 
layer of our text CNN model (described in detail in the “TextCNN” section). This vector 
represents the most important features of each document captured by the convolution 
filters that are used to make the classification decision for the given task.

We implement two DS algorithms which are named Euclidean Cluster-Based Sam-
pling (EC) and Cosine Cluster-Based Sampling (CC). We begin by separating docu-
ments in our training set by class and representing the document embeddings for each 
class as a unique cluster; within a given cluster, we assume that documents closer to 
the cluster centroid are less informative than documents that are further away from 
the cluster centroid. Given a sample in the unlabelled set, we calculate φ based on how 
far the document embedding is to the nearest cluster centroid. The difference between 

(2)φMS(x) = 1− (P(y∗1|x; θ)− P(y∗2|x; θ))

(3)φRC(x) =
P(y∗1|x; θ)

P(y∗2|x; θ)

(4)φES(x) =

C
∑

c=1

P(yi|x; θ) ∗ log P(yi|x; θ)
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the algorithms is the metric used: Euclidean distance or cosine similarity. Algorithm 1 
describes the implementation details.

Query‑by‑committee

The core idea behind Query-by-committee (QBC) based active learning [4, 25] is to train 
multiple predictive models (the committee) and calculate φ based on the disagreement 
between the models. The committee makes predictions on the holdout set, and sam-
ples are ranked based on how much disagreement there exists within the committee. 
Samples associated with the highest disagreement are selected and added to the training 
dataset.

In this work, we utilize a committee of 24 CNNs (described in greater detail in the 
“TextCNN” section) for all QBC-based methods. Each CNN is independently trained on 
the training data available during each iteration of active learning. Then, we test three 
different methods to measure the disagreement between the committee members. In 
our first method, which is named Softmax Sum (SS), we average the softmax score vec-
tors from all CNNs in the committee for each document in the holdout set. Then, we 
apply a method similar to Least Confidence and rank the documents based on the maxi-
mum softmax score across all possible classes. Documents with the lowest max-softmax 
values are labelled and moved to the training set. Our implementation is described in 
Eq. 5:

where H is the number of members in the committee and y∗∗ represents the softmax 
value associated with the class that has the maximum average softmax score across the 
committee.

(5)φSS(x) = 1−

(

H
∑

h

P(y∗∗|x; θh)/H

)
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For our second method, we apply Vote Entropy (VE), originally implemented by 
[26] for the task of part-of-speech tagging. For each document in the holdout set, this 
method first aggregates the class predictions among the committee members and then 
utilizes entropy as a measure of disagreement. Our implementation is described in Eq. 6:

where V(c, x) represents the number of committee members that predict class c for doc-
ument x.

Lastly, we utilize a modified version of Kullback–Leibler (KL) Divergence originally 
proposed by Pereira et. al. [27], called Kullback–Leibler Divergence to the Mean (KL-
D). KL Divergence is a common method to measure the difference between two prob-
ability distributions. In KL-D, we quantify the disagreement within the committee by 
calculating the mean KL Divergence between each committee member’s softmax vec-
tor and the average softmax vector of the whole committee. Our implementation is 
described in Eq. 7:

Density‑weighted method

Previous work has suggested that methods such as uncertainty sampling and QBC are 
predisposed to select outliers [28]. To solve this issue, Settles and Craven [15] proposed 
the method of Information Density (ID). This method accounts for both uncertainty 
and diversity by weighting the informativeness scores assigned by any uncertainty sam-
pling technique with a similarity term subject to parameter β . In practice, this method 
attempts to select samples that the model is uncertain about but that are also similar to 
other samples in the dataset. Our implementation is shown in Eq. 8:

where N represents the total number of samples in the holdout set.
In terms of similarity metrics, the authors of the original paper applied exponen-

tial Euclidean distance, KL-divergence, and cosine similarity. They reported the last 
one to be the most effective. For our implementation, we utilize marginal sampling for 
φuncertainty , cosine similarity for sim(x, xu) , and β = 1 . We utilize the softmax vectors 
from the CNN to calculate φuncertainty and the document embeddings generated by the 
penultimate layer of the CNN to calculate sim(x, xu).

Meta learning

We propose a novel active learning strategy which consists of training a separate 
machine learning algorithm to predict which samples will be most informative to the 
base CNN classifier. The intuition is that if we are able to predict what documents will be 

(6)φVE(x) = −
∑

c

V (c, x)

H
log

V (c, x)

H

(7)φKL−D(x) =
1

H

H
∑

h

C
∑

c

P(y = c|x; θh) log

(

P(y = c|x; θh)
1
H

∑

H

h P(y = c|x; θh)

)

(8)φID(x) = φuncertainty(x) ∗

(

1

N

N
∑

n=1

sim(x, xn)

)β



Page 8 of 25De Angeli et al. BMC Bioinformatics          (2021) 22:113 

misclassified by our model based on the confidence scores generated by the CNN, then 
we could query those samples and add them to our training dataset.

To achieve this, we first create a new training meta-dataset which consists of the logit 
vectors ( �xmeta ) obtained by running the trained CNN model on the validation and test 
datasets used for active learning. This new dataset also contains a binary label ( ymeta ) 
that represents whether the CNN correctly classified the corresponding ground truth 
labels. Then, we use this meta-dataset to train a separate random forest classifier with 
100 trees; this random forest learns how likely the CNN will misclassify a given docu-
ment based on the CNN’s relative confidence across the possible classes. For each docu-
ment in the holdout set, we obtain the CNN’s logit vectors and then calculate φ based on 
the random forest’s confidence that the CNN will misclassify that document (number 
of individuals trees out of 100). We refer to this method as Meta Learning (ML). To the 
best of our knowledge, we have not seen an implementation of this technique in the cur-
rent literature.

Application to cancer pathology reports

Cancer pathology reports are a critical resource for cancer surveillance and research. 
A cancer pathology report is a medical document written by a pathologist that records 
the cancer diagnosis of cells and tissues examined under a microscope. Cancer pathol-
ogy reports are generally multi-page documents with highly technical language and 
contain a variety of detailed information, including but not limited to patient informa-
tion, specimen details, descriptions of the sample as seen by the naked eye and under 
a microscope, cancer diagnosis, pathologist and laboratory information, and additional 
comments. While we are unable to share specific examples of pathology reports from 
our experimental dataset due to privacy restrictions, example pathology reports can eas-
ily be found online.

As part of its mission, the NCI SEER program collects hundreds of thousands of can-
cer pathology reports each year in partnership with cancer registries around the United 
States. Human experts must then manually annotate these reports for key data elements 
related to cancer primary site and morphology. To help ease the burden on human 
annotators, previous work has applied deep learning techniques such as CNNs to auto-
matically extract these key data elements. In these studies, a dataset of cancer pathol-
ogy reports is matched with gold standard human-annotations for key data elements, 
such as site, subsite, histology, and behavior. A machine learning model is then trained 
to predict these key data elements—this is generally treated as a single-task or multi-
task document classification problem where the input is a cancer pathology report and 
the output is one or more data elements [1, 2]. However, existing methods still do not 
achieve high enough accuracy to fully replace human annotators, especially on cancer 
types with low prevalence and few training examples [2, 6].

Active learning can help address this gap in performance by identifying pathology 
reports that are especially difficult for automated methods so that human annotators can 
prioritize annotation of these reports. This has the potential to improve the performance 
of these automated methods more than if humans experts annotated a random selection 
of additional cancer pathology reports. To better understand the potential benefits of 
active learning, we simulate a low data scenario and a high data scenario. Our dataset, 
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tasks, models, evaluation metrics, and experimental setup are described in greater detail 
in the following sections.

Dataset, tasks, and pre‑processing

Our dataset consists of cancer pathology reports obtained from the Louisiana Tumor 
Registry (LTR), Kentucky Cancer Registry (KCR), Utah Cancer Registry (UCR), and New 
Jersey State Cancer Registry (NJSCR) of the SEER Program.2 The study was executed 
in accordance to the institutional review board protocol DOE000152. Each pathology 
report in our dataset is associated with a unique tumor ID; the same tumor ID may be 
associated with one or more pathology reports. For each tumor ID, one or more human 
CTRs manually assigned ground truth labels for key data elements such as cancer site 
and histology based on all data available for that tumor ID. We note that these ground 
truth labels are at the tumor level rather than at the report level; as a consequence of 
this labelling scheme, tumor IDs associated with multiple pathology reports may have a 
tumor-level label that does not reflect the content within individual pathology reports. 
Thus, for this study, we only utilize tumor IDs associated with a single pathology report. 
The resulting LTR, KCR, UCR, and NJSCR datasets consist of 61,123, 46,859, 21,705, 
and 70,665 pathology reports respectively, yielding a total of 200,352 documents for our 
experiment.

For this study, we focus on identifying two key data elements that are of importance 
to NCI—subsite, which is used to identify cancer topology and is indicated by a 3-digit 
code, and histology, which is used to identify cancer morphology and is indicated by a 
4-digit code. Furthermore, these two tasks were chosen because they have a very large 
number of possible classes and thus are especially challenging for automated machine 
learning methods. In our dataset, each pathology report is labelled with one of 317 pos-
sible subsites and one of 525 possible histologies. For a full list of possible subsite and 
histology labels and their details, we refer readers to the official SEER program coding 
and staging manual.3 The two figures in Additional file  1 show the number of occur-
rences per label of the 50 most frequent classes for histology and subsite. We can see 
from the figures that there is extreme class imbalance—some classes are represented by 
less than a few hundred pathology reports, while others are represented by tens of thou-
sands of reports.

Similar to our previous studies, we applied standard text pre-processing techniques 
such as lowercasing and tokenization to clean our corpus [1, 2]; these steps are described 
in detail in Additional file  2. After pre-processing, the average pathology report is 
610 word tokens. To reduce the vocabulary size, all words with document frequency 
less than five were replaced with an “ unknown_word ” token, all decimals were con-
verted to a “decimal” word token, and all integers larger than 100 were converted to a 
“ large_integer ” word token. We limit the maximum length for each cancer pathology 
report to 1500 word tokens; reports longer than 1500 tokens are truncated and reports 
shorter than 1500 tokens are zero-padded.

2  NJSCR is no longer in the SEER Program, but is included in the current data release.
3  https​://seer.cance​r.gov/tools​/codin​gmanu​als/index​.html.

https://seer.cancer.gov/tools/codingmanuals/index.html
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For our active learning setup, we require four data splits: (1) an initial annotated train 
set to train the starting model used for active learning, (2) an annotated validation set to 
use for early stopping to prevent overfitting, (3) an annotated test set for performance 
evaluation, and (4) an unannotated holdout set on which active learning is applied to 
select new entries to annotate with ground truth labels and add to the train set. Using 
our cleaned corpus, we create two datasets to simulate active learning situations with 
different amounts of labelled data. For our first dataset, we begin with a labelled training 
set of 15K samples; this dataset represents an active learning scenario with a fairly large 
amount of labelled data. For our second dataset, we begin with only 1K labelled reports 
for the initial training set; this dataset represents an active learning scenario with a small 
amount of labelled data. We use the exact same validation and test sets for both scenar-
ios, and the holdout set is comprised of all remaining samples. Table 1 shows the size of 
each dataset partition that was used to simulate each active learning scenario.

TextCNN

For our classification model, we use a word-level text CNN because it is widely used for 
clinical NLP and text classification tasks [3, 29]. The CNN architecture is implemented 
based on the same architecture we have used in previous studies [1, 2]. The model 
hyperparameters are listed in Table 2. Our CNN uses randomly initialized word embed-
dings, which perform as well as or better than other pre-trained word embeddings when 
applied to our particular dataset, model, and experimental setup [30]. When training 
our CNN, we checkpoint after each epoch and stop training if validation accuracy does 
not improve for five consecutive epochs; we test using the checkpoint from the epoch 
with the best validation accuracy.

Evaluation metrics: F1 score

To evaluate the performance of each active learning method, we calculate the micro F1 
score (Eq.  11) of the CNN after each iteration of active learning. We note that micro 
F1 score is equivalent to classification accuracy in classification tasks such as ours in 
which each sample is assigned to exactly one class. Micro F1 score is an important met-
ric because it reflects the overall percentage of reports classified correctly.

Because micro F1 score measures overall accuracy regardless of class, in classification 
tasks with extreme class imbalance, the micro F1 score mostly reflects the performance 

Table 1  Data split and number of classes for the two tasks analyzed

Dataset Initial training Validation Testing Holdout Classes

Large 15,000 18,032 20,036 147,284 525 (Histology) 317 (Subsite)

Small 1000 18,032 20,036 161,284 525 (Histology) 317 (Subsite)

Table 2  CNN hyperparameters

Input length Word embed 
dim

Num filters Conv window 
sizes

Dropout Optimizer Learning rate Batch size

1500 300 100 3, 4, and 5 0.5 Adam 0.0001 128
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on majority classes. Therefore, we also report the macro F1 score (Eq. 12) of the CNN 
after each iteration. Macro F1 score equally weighs the F1 score on each unique class 
regardless of class size. As a result, macro F1 score is more heavily influenced by perfor-
mance on minority classes. In our application, it is important that automated classifiers 
correctly identify cancer subsites and histologies even if they are rare; as such, macro F1 
score is an useful indicator of the effectiveness of each active learning method on the 
rare classes.

In Eq. 12, Ci represents the subset of training samples belonging to class i, and |C| is the 
total number of possible classes.

Evaluation metrics: class imbalance

Extreme class imbalance is a common and problematic issue in clinical classification 
tasks, and it is often difficult to effectively train a classifier on a class with very few 
labelled samples. To better understand how active learning can reduce extreme class 
imbalance, we analyze the class imbalance of the training dataset after each iteration 
of active learning. We use a modified version of Shannon Entropy as a balance metric, 
described in Eq. 13:

where n represents the number of documents in the training set, C is the total number 
of possible classes (525 for histology and 317 for subsite), and ci is the number of training 
samples that belong to class i. This equation outputs a value of 0 when the training data-
set is perfectly imbalanced (i.e., contains only samples from a single class) and a value of 
1 when the training dataset is perfectly balanced (i.e., all classes have the same number 
of training samples).

Evaluation metrics: proportion of unique classes

We also track how active learning affects the number of unique classes seen by the 
model after each iteration. Intuitively, a model that has never seen samples from a rare 
class will never accurately predict that class; therefore we want to expose the model to as 
many unique classes as possible. To measure this, after each iteration of active learning, 

(9)Precision =
True Positive

True Positives+ False Positives

(10)Recall =
True Positives

True Positives+ False Negatives

(11)Micro F1 = 2 ∗
Precision * Recall

Precision+ Recall

(12)Macro F1 =
1

|C|

C
∑

Ci

F1(Ci)

(13)Balance =
−
∑C

i=1
ci
n ∗ log( cin )

logC
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we simply calculate the ratio between the number of classes present in the training data-
set and the total number of classes within the entire dataset.

Experimental setup

To compare the performance of the different active learning strategies, we benchmark 
using two different datasets simulating low and high resource settings (see Table 1). For 
each of these two datasets, we test the effectiveness of the CNN models on two different 
tasks—subsite and histology. These are treated as two independent single-task classifi-
cation problems—we train one CNN to predict subsite and a separate CNN to predict 
histology. This results in a total of four different active learning experiments.

For any given active learning strategy, we first train a CNN on the initial training set. 
Then, we use that active learning strategy with the trained CNN to select a subset of 
reports from the holdout set with the highest φ ; we select 1K samples per active learn-
ing iteration for the small dataset and 15K samples per active learning iteration for the 
large dataset. These selected reports are removed from the holdout set and added to the 
training set along with their ground truth labels, and a new CNN is trained from scratch 
on the new training set. For the large dataset, this process is repeated until there are no 
remaining documents in the holdout set. For the small dataset, we repeat this process 
nine times total until the training set consists of 10K samples. Figure 1 shows a general 
flowchart of the computational pipeline followed during each experiment.

At each iteration of active learning, we report the micro and macro F1 scores on the 
test set, the class imbalance of the training set, and the proportion of unique classes seen 
by the model. For micro F1 score, we calculate 95% confidence intervals using a boot-
strapping procedure [31] described in detail in Additional file 3. We note that we do not 
use bootstrapping on the macro F1 score because it tends to undersample the minority 
classes, which are critical for accurately representing macro F1 score. Also, we note that 
for all active learning strategies and at every iteration of active learning, the test and vali-
dation sets are fixed to maintain consistency.

Fig. 1  Flowchart of the computational pipeline used during the active learning experiments
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After each iteration of active learning, we train a new CNN from scratch (i.e., cold 
start) rather than continue training the weights from the previous CNN (i.e. warm start); 
this is because we found that warm start results in lower accuracy, especially in the later 
iterations of active learning. We provide a comparison plot between active learning with 
cold start, active learning with warm start, and no active learning from one of our exper-
iments in Additional file 4.

All experiments are run using Tensorflow 1.15 and a single NVIDIA V100 GPU (we 
note that the QBC models are trained in parallel, with each committee member trained 
on a single NVIDIA V100 GPU). For reference, we report the training and inference 
time for one of our experiments using the large dataset in Additional file 5. We note that 
the text CNN model that we use is a relatively simple DL model with approximately 22M 
learnable parameters, 20M of which are associated with the learnable word embeddings. 
Using our experimental settings (see Table 2), the model will train even on lower-end 
GPUs with less than 4 GB memory.

Results
Histology—Large dataset

The table in Additional file 6 shows the micro and macro F1 scores for the histology 
task using our large dataset with 15K initial training samples; we also plot the results 
with shaded 95% confidence intervals (Figs.  2, 3). After accounting for the confi-
dence intervals, all active learning strategies implemented in this paper except for 
the diversity-based methods performed significantly better than the baseline of no 
active learning, i.e., random sampling. We note that this difference in performance 
between active learning and random sampling decreases in the later iterations; this 

Fig. 2  Micro score results for the 11 active learning algorithms applied during the large dataset experiment 
on histology. Blue line represents random sampling
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is expected because by the last iteration of active learning, all methods (including 
random sampling) are training on the exact same data, i.e., all data available in the 
holdout set.

Diversity sampling, which makes decisions based on the similarity between docu-
ment embeddings created by the CNN, did not produce significant improvements 
over random sampling. These results suggest that the document embeddings gener-
ated by the CNN, which are optimized for classification, may not adequately cap-
ture the information necessary to distinguish informative documents. Furthermore, 
euclidean and cosine distance from the nearest class centroid may not be the best 
indicator of how informative a document is.

After excluding the diversity sampling strategies, no single active learning strategy 
stands out as a clear winner in terms of micro F1 scores after accounting for confi-
dence intervals. In terms of macro F1 scores, QBC with KL divergence obtained the 
strongest macro scores in early iterations, but most of the active learning methods 
managed to reach the maximum macro F1 score of ∼0.40.

One interesting observation is that the highest macro scores tend to appear 
towards the middle iterations of the experiment and then tend to go down during 
the last few iterations. This is a pattern that is not observed for micro scores, where 
the maximum score is attained near the middle iterations and remains high through-
out the rest of the iterations. We expect that this is because in the later iterations, 
most of the data remaining in the holdout set are less informative samples from 
majority classes; adding these samples does not negatively affect overall accuracy 
but may increase class imbalance and thus reduce performance on minority classes.

Fig. 3  Macro score results for the 11 active learning algorithms applied during the large dataset experiment 
on histology. Blue line represents random sampling
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Subsite—Large dataset

The table in Additional file 7 shows the micro and macro F1 scores for the subsite task 
using our large dataset with 15K initial training samples; Figs. 4 and 5 provide plots 
of our results with 95% confidence intervals. The results on our subsite task were very 

Fig. 4  Micro score results for the 11 active learning algorithms applied during the large dataset experiment 
on subsite. Blue line represents random sampling

Fig. 5  Macro score results for the 11 active learning algorithms applied during the large dataset experiment 
on subsite. Blue line represents random sampling
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similar to our results from our histology task. After accounting for confidence inter-
vals, the diversty-based methods failed to perform significantly better than random 
sampling, and Euclidian distance actually performed worse than random sampling. 
All other methods attained maximum micro and macro F1 scores much earlier than 
random sampling.

Once again, after excluding the diversity-based strategies, it is difficult to distinguish 
a clear winner in terms of micro F1 score after accounting for confidence intervals. The 
weakest method appears to be Meta Learning, which performed similarly to random 
sampling in the first three iterations of the experiment. In terms of macro F1 score, the 
QBC methods once again attained strong macro scores at early iterations of the experi-
ment; however, most of the other methods manage to reach the maximum macro F1 
score of ∼0.35 by the middle iterations of the experiment.

We note that in the subsite experiment, we do not observe the same drop in macro 
F1 scores toward the later iterations of active learning that we observed in the histology 
experiment. We expect that this is because there are fewer unique classes in the subsite 
task compared to the histology task, and thus the effect of class imbalance is less severe.

Histology—Small dataset

The table in Additional file 8 shows the micro and macro F1 scores for the histology task 
using our small dataset with 1K initial training samples; we also plot the results with 
shaded 95% confidence intervals in Figs. 6 and 7. Compared to the experiments on the 
large dataset, we notice several important similarities and differences. First, the diversity 
sampling strategies not only failed to outperform random sampling, but performed sig-
nificantly worse in these experiments. Secondly, most active learning strategies that had 
solid performance in the large dataset no longer show strong performance in this small 

Fig. 6  Micro score results for the 11 active learning algorithms applied during the small dataset experiment 
on histology. Blue line represents random sampling
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dataset—the QBC strategies, least confidence, entropy sampling, information density, 
and meta learning all failed to perform better than random sampling in most of the early 
and middle iterations.

After taking into account confidence intervals, the marginal sampling and ratio sam-
pling techniques were the only two active learning techniques that significantly outper-
formed the random sampling baseline in terms of micro F1 score. Interestingly, these 
two methods do not attain the best performance in macro F1 score, class balance, and 
proportion of unique classes seen by the model.

When examining macro F1 score, all active learning strategies except for the diversity 
sampling strategies and information density perform much stronger than the random 
sampling baseline. These results suggest that in general, the active learning strategies in 
this paper focus on minority classes at the expense of the majority classes; in some cases 
this may increase macro F1 score but reduce the potential gains in micro F1 score. We 
explore this phenomena in greater detail in our Discussion.

Subsite—Small dataset

The table in Additional file 9 shows the micro and macro F1 scores for the subsite task 
using our small dataset with 10K samples; we also plot the results with shaded 95% con-
fidence intervals in Figs. 8 and 9. The findings in this experiment are similar to our find-
ings in the histology experiment with the small dataset.

In terms of micro F1 score, marginal sampling and ratio sampling are the only two 
active learning strategies that significantly outperform the baseline of random sampling, 
and meta learning and the diversity sampling strategies significantly underperformed 
random sampling. However, in terms of macro F1 score, all methods except for the 
diversity sampling strategies outperform the random sampling baseline. Combined with 

Fig. 7  Macro score results for the 11 active learning algorithms applied during the small dataset experiment 
on histology. Blue line represents random sampling
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the histology results on our small dataset, these results suggest that the best active learn-
ing strategy depends on the size of the initial training set and the amount of labelled data 
added per iteration of active learning.

Discussion
Our experiments show that the best choice of active learning strategy is dependent on 
the size of the initial labelled training set and the amount of labelled data added per iter-
ation. In our large dataset experiments, there was no clear winner in terms of micro F1 
score (overall accuracy)—least confidence, ratio sampling, entropy sampling, marginal 
sampling, QBC softmax, QBC VE, QBC KL-D, and information density all had similar 
performance. If macro F1 score and performance on minority classes is of high impor-
tance, QBC KL-D had the strongest performance on early iterations; however this differ-
ence is not huge and the other high-performing active learning strategies achieve similar 
macro F1 score in later iterations. Therefore, the choice of best active learning strategy 
may simply come down to choosing the most computationally efficient method that is 
fastest to run.

From the algorithms implemented in this paper, the QBC techniques are the most 
computationally expensive because each iteration of active learning requires training a 
full committee of models. Other techniques involving document embeddings and clus-
tering techniques (information density and diversity sampling) are also compuationally 
expensive because they involve repetitive computation of distance between large vec-
tors. The most computationally inexpensive active learning approaches are the uncer-
tainty sampling strategies because they require the least additional computation beyond 
what is already provided by the base classification model. Consequently, these strategies 
are favored in settings with a high amount of initial labelled data and a large amount of 
labelled data added per iteration of active learning.

In our small dataset experiments, the marginal sampling and ratio sampling tech-
niques obtained significantly better micro F1 scores than all other active learning tech-
niques. However, these two methods did not maintain the best overall macro F1 scores; 
the best macro F1 scores were obtained by least confidence, entropy sampling, and the 
QBC approaches.

One possible explanation for this phenomenon is the impact of the majority classes on 
overall micro and macro F1 score. Both our histology and subsite tasks are characterized 
by extreme class imbalance. In the histology task, the 10 most common classes make up 
∼60% of the dataset, and in the subsite task, the 10 most common classes make up ∼50% 
of the dataset; the class distributions are available in Additional file 1. Thus, performing 
well on the majority classes greatly impacts micro F1 score while having a slight effect on 
macro F1 score.

On the large dataset with 15k initial labelled samples, the base model observes hun-
dreds or thousands of samples from the majority classes. After a few additional itera-
tions of active learning, it is likely that the classifier achieves strong performance on the 
majority classes, and thus additional gains in overall micro F1 score must account for 
the minority classes. We see this trend across all the successful active learning strate-
gies—the best performing strategies have strong performance in both micro and macro 
F1 score.
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However, on the small dataset with 1K initial labelled samples, the classifier is unlikely 
to have strong performance on the majority classes (or any other classes) mainly because 
it has not seen a sufficient number of samples. Thus, active learning methods that focus 
on maximizing performance on the majority classes achieve better overall micro F1 
score than strategies that focus on minority classes because the majority classes make up 
a larger portion of the test set; however, this may come at the expense of performance on 
the minority classes and therefore reduce macro F1 score. We observe this trend in our 
small dataset results—the two best performing strategies, marginal sampling and ratio 
sampling, do not have the best macro F1 scores after the initial two iterations of active 
learning.

A large number of unique labels with extreme class imbalance is a common property 
of many clinical text applications such as ours. To better understand how active learning 
affects performance on minority classes, we plot the class imbalance within the training 
dataset (Fig.  10, Additional files 10, 11, 12, and 13) and the number of unique classes 
seen in the training dataset (Fig. 11, Additional files 14, 15, 16, and 17) after each itera-
tion of active learning. Not surprisingly, for any given active learning strategy, there is 
a direct correlation between the macro F1 scores, the class balance, and the number of 
unique classes seen by the model.

Furthermore, we also examine how active learning affects the distribution of the train-
ing data compared to random sampling by visualizing the document embeddings in the 
final training set for the small histology experiment after 10 iterations of ratio sampling 
and 10 iterations of random sampling (Additional file 18). Documents embeddings are 
extracted from the penultimate layer of the CNN and reduced to 2D via t-distributed sto-
chastic neighbor embedding (TSNE), and we color each document embedding based off 
whether it belongs to a majority class (number of total samples in dataset above average) 
or minority class (number of total samples in dataset below average). After 10 iterations 
of random sampling, 89.4% of documents in the training set belonged to majority classes 
and 10.6% belonged to the minority classes, while after 10 iterations of ratio sampling 
72.1% of documents in the training set belonged to majority classes and 27.9% belonged 
to minority classes. Compared to random sampling, ratio sampling increases the overall 
percentage of minority classes in the training set; our visualization shows that many of 
these minority class documents form new small, well-defined clusters or expand the size 
of other small, existing clusters. We hypothesize that these documents play a large role 
in improving macro F1 score. We also note that some of the documents from the minor-
ity classes end up in the center without any clear clustering. This is likely because active 
learning may choose samples from extremely rare classes that do not yet cluster due to 
lack of training data or ambiguous edge cases that are difficult to classify; these samples 
may negatively affect overall micro F1 score in our small dataset experiments.

Our analysis of class balance and unique labels supports our hypothesis that in high 
data availability environments with a large amount of initial labelled data, boosting per-
formance on minority classes is important for micro F1 score. On the other hand, in 
low data availability environments with a small amount of initial labelled data, it is more 
important to focus on majority classes to improve micro F1 score. In the early iterations 
of our large dataset experiments, we see that the most effective active learning strate-
gies (uncertainty sampling and QBC) also generate the highest class balance and unique 
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classes in the training set. On the other hand, the two best active learning strategies in 
our small data experiments—marginal and ratio sampling—have lower class balance and 
unique classes compared to least confidence, entropy sampling, and the QBC strategies. 
Overall, this analysis suggests that in applications with a high number of unique labels 
and extreme class imbalance, active learning can play an important role in mitigating 

Table 3  Summary of  effectiveness of  each active learning strategy in  across  different key 
characteristics

Overall 
micro 
(Large)

Overall 
macro 
(Large)

Overall 
micro 
(Small)

Overall 
macro 
(Small)

Single 
iteration 
micro (Small)

Single 
iteration 
macro 
(Small)

Compute 
cost

Least Con. High High Med High Low Med Low

Entropy Sam. High High Med High Low Med Low

Ratio Sam. High High High Med High High Low

Marginal 
Sam.

High High High Med High High Low

Euclidian C. 
(D.S.)

V. Low V. Low V. Low V. Low V. Low V. Low Med

Cosine C. 
(D.S.)

V. Low V. Low V. Low V. Low V. Low V. Low Med

Information 
Den.

High High Low Low Low Low Med

Meta Learn‑
ing

Med Med Low Low Low Low Med

QBC—S.S. High High Med High Low High High

QBC—VE High High Med High Low High High

QBC—KL-D High High Med High Low High High

Fig. 8  Micro score results for the 11 active learning algorithms applied during the small dataset experiment 
on subsite. Blue line represents random sampling
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Fig. 9  Macro score results for the 11 active learning algorithms applied during the small dataset experiment 
on subsite. Blue line represents random sampling

Fig. 10  Class imbalance Plots. Black line represents the upper limit (most balance dataset possible). Y-values 
are computed with Eq. 13: y = 0 represents no balance, and y = 1 represents full balance

Fig. 11  Proportion of classes seen by the models at each iteration. The y values consists of the number of 
unique classes present in the training dataset divided by the total number of classes in each task (525 for 
histology and 317 for subsite)
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class imbalance such that rare classes have better representation in a given labelled 
dataset.

As mentioned in our results, Fig. 3 and Additional file 6 show that macro F1 scores 
dropped in the later iterations of the large dataset histology experiments. The balance 
and unique class proportion plots explain this unintuitive phenomenon. The overall class 
balance of the training dataset is much higher in the early iterations than in the later 
iterations. This is because by the later iterations, there are few or no samples from the 
minority classes left in the holdout set; consequently, the dominant classes and the least 
informative documents start to fill out the training dataset. As we have seen, lower class 
balance also correlates with lower macro F1 scores. Thus, in the later iterations, while 
active learning achieves high micro F1 scores, the performance on uncommon classes 
decreases because they make up a much smaller portion of the training set.

In Table 3, we summarize our findings regarding the effectiveness of each active learn-
ing strategy across three key characteristics—(1) overall performance in terms of micro 
and macro F1 scores, (2) effectiveness after only a single iteration of active learning 
with 1K additional labelled samples, which may be important in low resource settings 
where additional labels are difficult or expensive to obtain, and (3) computational cost 
to implement the strategy. Based on this table, we conclude that the ratio sampling and 
marginal sampling strategies are strong contenders for best overall active learning strat-
egy because they have overall strong performance in both the high data availability and 
low data availability settings, have the best performance when additional labelled data is 
extremely limited, and are computationally very simple.

Conclusions
In this work, we evaluated the effectiveness of 11 different active learning strategies in 
the context of classifying cancer subsite and histology from cancer pathology reports. 
Our dataset is characterized by a large number of unique labels with extreme class 
imbalance, and we use a text CNN as the base classification model. For each of our two 
classification tasks, we tested under two different active learning scenarios—(1) a high 
data availability setting where we start with 15K labelled samples and added an addi-
tional 15K labelled samples after each iteration of active learning, and (2) a low data 
availability setting where we start with 1K labelled samples and added an additional 
1K labelled samples after each iteration of active learning. After each iteration of active 
learning, we reported the micro and macro F1 scores of the classifier as well as the class 
balance and unique labels in the training dataset.

We showed that in the high data availability setting, the uncertainty sampling and 
QBC strategies obtained the best overall micro F1 scores, and the QBC KL-D strategy 
obtained the best overall macro F1 score. In terms of micro F1 score, there was no single 
clear winner. In the low data availability setting, ratio and marginal sampling achieved 
the strongest overall micro F1 scores but underperformed slightly in macro F1 scores; 
least confidence, entropy sampling, and the QBC strategies obtained the best macro F1 
scores. Ratio and marginal sampling are strong contenders for the overall best active 
learning strategy based on overall performance in the high and low data availability set-
tings, performance when additional labelled data is extremely limited, and low computa-
tion cost. Compared to a model trained on all available data, active learning can obtain 
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similar performance using less than half the data. Furthermore, on tasks with a large 
number of unique labels with extreme class imbalance, active learning can significantly 
mitigate the effects of class imbalance and improve performance on the rare classes.

The code for our text CNN and active learning algorithms will be released online prior 
to final publication.
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