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Abstract 

Background:  Machine learning involves strategies and algorithms that may assist 
bioinformatics analyses in terms of data mining and knowledge discovery. In several 
applications, viz. in Life Sciences, it is often more important to understand how a 
prediction was obtained rather than knowing what prediction was made. To this end 
so-called interpretable machine learning has been recently advocated. In this study, 
we implemented an interpretable machine learning package based on the rough 
set theory. An important aim of our work was provision of statistical properties of the 
models and their components.

Results:  We present the R.ROSETTA package, which is an R wrapper of ROSETTA 
framework. The original ROSETTA functions have been improved and adapted to the R 
programming environment. The package allows for building and analyzing non-linear 
interpretable machine learning models. R.ROSETTA gathers combinatorial statistics 
via rule-based modelling for accessible and transparent results, well-suited for adop-
tion within the greater scientific community. The package also provides statistics and 
visualization tools that facilitate minimization of analysis bias and noise. The R.ROSETTA 
package is freely available at https​://githu​b.com/komor​owski​lab/R.ROSET​TA. To 
illustrate the usage of the package, we applied it to a transcriptome dataset from an 
autism case–control study. Our tool provided hypotheses for potential co-predictive 
mechanisms among features that discerned phenotype classes. These co-predictors 
represented neurodevelopmental and autism-related genes.

Conclusions:  R.ROSETTA provides new insights for interpretable machine learning 
analyses and knowledge-based systems. We demonstrated that our package facilitated 
detection of dependencies for autism-related genes. Although the sample applica-
tion of R.ROSETTA illustrates transcriptome data analysis, the package can be used to 
analyze any data organized in decision tables.

Keywords:  Transcriptomics, Interpretable machine learning, Big data, Rough sets, 
Rule-based classification, R package
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Background
Machine learning approaches aim at recognizing patterns and extracting knowledge 
from complex data. In this work, we aim at supporting the knowledge-based data 
mining with an interpretable machine learning framework [1, 2]. Recently, under-
standing the complex machine learning classifiers that explain their output is a highly 
important topic [3]. Here, we implemented an R package for a non-linear interpret-
able machine learning analysis that is based on rough set theory [4]. Moreover, we 
enriched our tool with basic statistical measurements that is a unique development 
with comparison to current state-of-the-art tools. At the end of this section, we also 
briefly introduce the mathematical theory behind rough sets. For a complete presen-
tation of rough sets the reader is recommended to consult the tutorial [5] or other 
literature [1, 4, 6–8].

Classification models are trained on labeled objects that are a priori assigned to them. 
The universal input structure for machine learning analyses is a decision table or deci-
sion system [9–11]. This concept is similar to feature matrix that is well-known in 
image analysis [12, 13]. These structures organize data in a table that contains a finite 
set of features, alternatively called attributes or variables. However, decision tables are 
adapted for supervised learning. Specifically, a set of objects, also called examples or 
samples, is labelled with a decision or outcome variable. Decision system is defined as 
D =

(

U ,A ∪
{

d
})

 where U is a non-empty finite set of objects called universe, A is a 
non-empty finite set of features and d is the decision such that d /∈ A [5]. Importantly, 
most of the omics datasets can be represented as decision tables, and machine learn-
ing analysis can be applied to a variety of problems such as, for instance, case–control 
discrimination. When analyzing ill-defined decision tables, i.e. tables where |A| ≫ |U | , 
an appropriate feature selection step is necessary prior to the machine learning analysis 
[14–16]. The main goal of feature selection is to reduce the dimensionality to the fea-
tures that are relevant to outcome. Thus, it is recommended to consider feature selection 
as a standard step prior to the machine learning analysis, especially for big omics data-
sets such as transcriptome data.

The ROSETTA software is an implementation of a framework for rough set classifica-
tion [17]. It was implemented in C++ as a graphical user interface (GUI) and command 
line version. ROSETTA has been successfully applied in various studies to model bio-
medical problems [8, 18, 19]. Here, we present a more accessible and flexible implemen-
tation of ROSETTA that was used as the core program of the R package. R.ROSETTA 
substantially extends the functionality of the existing software towards analyzing com-
plex and ill-defined bioinformatics datasets. Among others, we have implemented func-
tions such as undersampling, estimation of rule-statistical significance, prediction of 
classes, merging of models, retrieval of support sets and various approaches to model 
visualization (Fig. 1). To the best of our knowledge, there is no framework that allows for 
such broad analysis of interpretable classification models. Overall, rough set-based algo-
rithms proved successful in knowledge and pattern discovery [20–22]. Here, we illus-
trated the functionality of R.ROSETTA by exploring rule-based models for synthetically 
generated datasets and transcriptomic dataset for patients with and without autism, 
hereafter called the autism-control dataset.
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Rough sets

Rough set theory has become an inherent part of interpretable machine learning. In 
recent years, the rough sets methodology has been widely applied to various scientific 
areas, e.g. [23–25]. It supports artificial intelligence research in classification, knowl-
edge discovery, data mining and pattern recognition [4, 7]. One of the most important 
properties of rough sets is the discovery of patterns from complex and imperfect data 
[26, 27]. The principal assumption of rough sets is that each object x such thatx ∈ X , 
whereX ⊆ U , is represented by an information vector. In particular, objects identified 
with the same information vectors are indiscernible. Let D =

(

U ,A ∪
{

d
})

 be a decision 
system. For any subset of features B ⊆ A there is an equivalence relationINDD(B) , called 
B-indiscernibility relation [5]:

where 
(

x, x′
)

 are objects that are indiscernible from each other by features from B if 
(

x, x′
)

∈ INDD(B).
Consider three subsets of features: B1 =

{

gene1
}

 , B2 =
{

gene2
}

 and 
B3 =

{

gene1, gene2
}

 for the decision system in Table  1. Each of the indiscern-
ibility relations defines a partition of U (1) INDD(B1) = {{x1, x2, x3}, {x4, x5}} (2) 
INDD(B2) = {{x1, x3, x5}, {x2, x4}} and (3) INDD(B3) = {{x1, x3}, {x2}, {x4}, {x5}} . For 
example, using B1 , objects {x1, x2, x3} are indiscernible and thus belong to the same 
equivalence class [5].

Let us consider decision system D with a subset of features B ⊆ A and subset of 
objectsX ⊆ U . We can then approximate X using features from B by constructing the 
so-called B-lower and B-upper approximations of B expressed as B

_
X and BX , respec-

(1)INDD(B) =
{

(

x, x′
)

∈ U2 : ∀a ∈ Ba(x) = a
(

x′
)

}

Fig. 1  Overview of R.ROSETTA and the major components that were implemented to enhance the ROSETTA 
functionality. (Icon with R logo included in this figure was released by the R Foundation under the CC BY-SA 
4.0 license)
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tively, where B
_
X =

{

x : [x]B ⊆ X
}

 and BX =
{

x : [x]B ∩ X �= ∅

}

 . The B-lower approxi-

mation contains objects that certainly belong to X and the B-upper approximation 
contains objects that may belong toX . The set BndB(X) = BX − B

_
X is called B-bound-

ary region of X . The set X is called rough if BndB(X)  = ∅ and crisp otherwise. The 
objects that certainly do not belong to X are in the B-outside region and their set is 
defined asU − BX . For example, ifX =

{

x : diagnosis(x) = case
}

 , as in Table 1, then the 
approximation regions areA

_
X = {x2, x5},AX = {x1, x2, x3, x5} , BndA(X) = {x1, x3} 

andU − AX = {x4}.
For such example (Table  2) we can define another table called decision-relative dis-

cernibility matrix M as shown in the literature [5, 28]. From M we can construct a dis-
cernibility function fDM(A) that is a Boolean [29] function in a conjunctive normal form 
of disjunctive literals where the literals are the names of features that discern in a pair-
wise fashion equivalence classes with different decisions. For example, 

(

g1 ∨ g3 ∨ rf
)

 dis-
cerns between q1 and q4 . Next, the Boolean formula is minimized and called a reduct. The 
discernibility function for our decision system is fDM(A) =

(

g1 ∨ g3 ∨ rf
)(

g2 ∨ g3 ∨ rf
)

(

g3 ∨ rf
)(

g3 ∨ rf
)(

g1 ∨ g
2
∨ g3 ∨ rf

)(

g1 ∨ g3 ∨ rf
)(

g2 ∨ rf
)(

g1 ∨ g2 ∨ rf
)(

g1 ∨ g2 ∨ rf
)

(

g1 ∨ g
2
∨ g3

)(

g2 ∨ g3
)(

g1 ∨ g
2

)(

g2
)(

g2
)(

g2 ∨ g3 ∨ rf
)(

g1 ∨ g
2
∨ g3 ∨ rf

)(

g1 ∨ g
2
∨ g3 ∨ rf

)

(

g2 ∨ g3 ∨ rf
)(

g2 ∨ g3 ∨ rf
)(

g2
)(

g1 ∨ g
2

)

 that after a simplification results in two reducts 

Table 1  An example decision table D = (U, A ∪ {d}) where A is a set of two genes, U is a set of five 
objects x1 , …, x5 and d is case or control diagnosis. The values in U are discrete gene expression levels 
“up” or “down”

Object gene1 gene2 diagnosis

x1 Up Up Case

x2 Up Down Case

x3 Up Up Control

x4 Down Down Control

x5 Down Up Case

Table 2  An example generalized decision table D = (U, A ∪ {d}) for  case–control study of  autism, 
where A is a set of three genes {g1, g2, g3} and a risk factor {rf } , and U is a set of objects that belong 
to equivalence classes [q1], . . . , [q8] . The values in U are discrete gene expression levels “low”, “medium” 
or “high” and  a  presence of  undefined risk factor “yes” or “no”. For  simplicity we omit the  brackets 
in  the  notation in  the  table. For  the  equivalence classes q4 and  q5 both  diagnoses are written 
since some of the indiscernible objects belong to the boundary region

Equivalence class g1 g2 g3 rf diagnosis

q1 Low Low Medium Yes Autism

q2 Medium Medium Medium Yes Autism

q3 Medium Low Medium Yes Autism

q4 Medium Low High No Autism or control

q5 Low Low High No Autism or control

q6 Low High Medium No Control

q7 Medium High Medium Yes Control

q8 Medium High High No Control
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fDM(A) =
(

g2 ∧ rf
)

∨
(

g2 ∧ g3
)

 . From the construction it follows that the reducts have 
the same discernibility as the full set of features. This study investigates two algorithms 
of computing reducts, called reducers, the Johnson reducer [30] which is a deterministic 
greedy algorithm, and the Genetic reducer [31] which is a stochastic method based on 
the theory of genetic algorithms. The reader may notice that this process is a form of 
feature selection. Finally, each reduct gives rise to rules by overlaying it over all objects in 
D (Table 2). For example, the first reduct 

(

g2 ∧ rf
)

 and the equivalence class q1 give a rule 
IF g2 = low AND rf = yes THEN diagnosis = autism . The IF-part of the rule consists of 
conjuncts and is called the condition (or predecessor, or left-hand side) of the rule and 
the THEN-part is a conclusion (or successor, or right-hand side). Importantly, rules can 
have an arbitrary, but finite number of conjuncts.

Numerical characterization of rules

Rules are frequently described with measurements of support, coverage and accuracy. 
The rule support represents the number of objects that fulfill the rule conditions. Left-
hand side support (LHS support) is the number of objects that satisfy the rule conjuncts 
i.e. IF-part of the rule. Right-hand side support (RHS support) is the number of the LHS 
objects of the respective classes i.e. of the THEN-part of the rule. The rule coverage can 
be explicitly determined from the LHS or RHS support as a percentage of objects con-
tributing to the rule. We discern between RHS and LHS coverage:

where nd is the total number of objects from U for a decision class d defined by the rule. 
Accuracy of the rule represents its predictive strength that is computed based on the 
support values. Specifically, accuracy for a rule is calculated as:

Johnson reducer

The Johnson reducer belongs to the family of greedy algorithms. For the decision table 
D =

(

U ,A ∪
{

d
})

 , the main aim of the Johnson algorithm is to find a feature a ∈ A 
that discerns the highest number of object pairs [32]. Computing reducts with Johnson 
approach has time complexity O(k •m2 • |R|) , where k is the number of features, m is 
the number of objects and R is the computed reduct [32]. The Johnson algorithm for 
computing a single reduct is expressed as follows [33]: (1) Let R = ∅.(2) Let amax ∈ A be 
the feature that maximizes 

∑

w(S) where w(S) denotes a weight for subsets S ⊆ S for set 
S obtained from discernibility matrix. The sum is taken over all S from S  that contain 

(2)coverageRHS(rule) =
supportRHS(rule)

nd

(3)coverageLHS(rule) =
supportLHS(rule)

nd

(4)accuracy(rule) =
supportRHS(rule)

supportLHS(rule)
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amax . (3) Add amax to R . (4) Remove all S from S that contain amax . (5) If S = ∅ return R . 
Otherwise, go to step 2.

Genetic reducer

The genetic algorithm is based on Darwin’s theory of natural selection [31]. This is a 
heuristic algorithm for function optimization that follows the “survival of the fittest” 
idea [34]. It simulates the selection mechanism with a fitness function f  [33, 34] that 
rewards hitting setsB:

where B are hitting sets such that B ⊆ A found through the search by the fitness func-
tion, S is a set obtained from discernibility matrix, α is a control parameter for weighting 
between subset cost and hitting fraction, and ε is the degree of approximation, i.e. hitting 
sets B that have a hitting fraction at least ε are kept in the list. For the Genetic reducer, 
the most time-consuming part is the fitness computation. The time complexity for the 
fitness function is O(k •m2) [31]. A more detailed description of applying genetic algo-
rithm for estimating reducts can be found in [31].

Implementation
R.ROSETTA was implemented under R [35] version 3.6.0 and the open-source pack-
age is available on GitHub (https​://githu​b.com/komor​owski​lab/R.ROSET​TA). The 
R.ROSETTA package is a wrapper (Additional file  1: Package architecture) of the 
command line version of the ROSETTA system [17, 36]. In contrast to ROSETTA, 
R.ROSETTA is an R package with multiple additional functionalities (Fig. 1). The fol-
lowing sections cover a detailed description of the new functions.

Undersampling

Class imbalance issue may lead to biased performance of the machine learning mod-
els [37, 38]. Ideally, each decision class shall contain approximately the same number of 
objects. To tackle this, we suggested to randomly sample a sufficient number of times 
the majority class without replacement in order to achieve an equal representation of 
classes. This approach of balancing the data is generally known as undersampling [37].

To build a balanced rule-based model, we have implemented an option that divides 
the dataset into subsets of equal sizes by undersampling the larger sets. By default, 
we require each object to be selected at least once, although the user can specify a 
custom number of sampled sets, as well as a custom size for each set. Classification 
models for each undersampled set are merged into a single model that consists of 
unique rules from each classifier. The overall accuracy of the model is estimated as the 
average value of the sub-models. Finally, the statistics of the merged rule-set shall be 
recalculated on the original training set using the function recalculateRules. Herein, 
the recalculation procedure compares each rule from trained model to the features 
from original data and calculates adjusted statistics.

(5)f (B) = (1− α)×
cost(A)− cost(B)

cost(A)
+ α ×min

{

ε,
|[S ⊆ S : S ∩ B �= ∅]|

|S|

}

https://github.com/komorowskilab/R.ROSETTA
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Rule significance estimation

The P value is a standard measure of statistical significance in biomedical studies. 
Here, we introduced P value estimation as a quality measure for the rules. Classifica-
tion models generated by R.ROSETTA consist of sets of varying number of rules esti-
mated by different algorithms. In the case of the Johnson algorithm, this set contains 
a manageable number of rules (Table 3, Additional file 1: Table S1), while in the case 
of the Genetic algorithm this set can be considerably larger (Additional file 1: Tables 
S1, S2). In both cases, supervised pruning of rules from the models would not heav-
ily affect the overall performance of the classifier. To better assess the quality of each 
rule we assume a hypergeometric distribution to compute P values [39] followed by 
multiple testing correction. The hypergeometric distribution estimates the represen-
tation of the rule support against the total number of objects. When estimating the P 
value for a rule, the hypergeometric distribution is adapted to the rule concepts:

where x is the RHS support of the rule, y is the LHS support of the rule, nd is the total 
number of objects matching the decision class d defined by the rule,no is the number of 
objects for the decision class(es) opposite to the given rule and N  is the total number of 
objects. Models enriched with rule P values can be pruned based on significance lev-
els to illustrate the essential co-predictive mechanisms among the features. Addition-
ally, the user may apply multiple testing correction. Herein, we used rigorous Bonferroni 
correction in order to protect from type I error and to account for the large number 
of rules generated by the Genetic reducer. To compare both reducers upon the same 
assumptions, Bonferroni correction was used also for rules generated with the Johnson 
reducer. However, this parameter can be tuned in R.ROSETTA for a less stringent cor-
rection that can be more adequate for models generated with the Johnson reducer only. 
We also implemented additional model-tuning statistical metrics for rules including risk 
ratio, risk ratio P value and risk ratio confidence intervals that are estimated with the R 
package fmsb [40]. Full set of statistical measurements is included in the output of the 
R.ROSETTA model.

(6)P(X = x) =

(nd
x

)

(

no
y−x

)

(

N
y

)

Table 3  Performance evaluation of  rules for  the  Johnson reduction method with  undersampling. 
The average statistic values of  rule support and  accuracy are presented in  the  table. For  the  rule 
statistics, the most significant co-predictors (Bonferroni-adjusted P ≤ 0.05) were selected

Class Control Autism

Total number of rules 207 194

Rule statistics Basic Recalculated Basic Recalculated

Number of rules (P ≤ 0.05) 150 89 128 94

LHS support 13 18 13 16

RHS support 13 17 13 14

Accuracy 0.97 0.94 0.98 0.85

Top co-predictors PPOX, NCS1 MAP7, NCKAP5L RHPN1, ZFP36L2 NCS1, CSTB
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Vote normalization in the class prediction

Rule-based models allow straightforward class prediction of unseen data using voting. 
Every object from the provided dataset is fed into the pre-trained machine-learning 
model and the number of rules for which their LHS is satisfied are counted in. In 
the final step, the votes from all rules are collected for each individual object. Typi-
cally, an object is assigned to the class with the majority of votes. However, for some 
models an imbalanced number of rules for each decision class over another may have 
been generated. For example, Johnson model generated more rules for control than 
the autism class (Table 3). This imbalance may impact the voting procedure. For such 
cases, we proposed adjusting for the rule-imbalance by normalizing the result of vot-
ing. Herein, vote counts represent the number of rules from trained model that match 
features and their discrete values from an external test set. We implemented various 
vote normalization methods in R.ROSETTA. Vote normalization can be performed 
by dividing the number of counted votes by its mean, median, maximum, total num-
ber of rules or square root of the sum of squares. We compared the performance of 
these methods in (Additional file 1: Table S3).

Rule‑based model visualization

The model transparency is an essential feature that allows visualization of co-predic-
tive mechanisms in a local (single rule) and global (whole model) scale. The package 
provides several ways for visualizing single rules, including boxplots and heatmaps 
(Additional file 1: Figs. S1d, S2) that illustrate the continuous levels of each feature of 
the selected rule for each object. Such rule-oriented visualizations gather the objects 
into those that belong to the support set for the given class, those that do not belong 
to the support set for the given class and the remaining objects for the other classes. 
Such graphic representations can assist towards the interpretation of individual rules 
of interest and visualization of interactions with respect to their continuous values.

A more holistic approach displays the entire model as an interaction network [41]. 
The R.ROSETTA package allows exporting the rules in a specific format which is suit-
able with rule visualization software such as Ciruvis [42] or VisuNet (Additional file 1: 
Fig. S1b) [43, 44]. Such model can be pruned to display only the most relevant co-pre-
dictive features and their levels. These approaches provide a different point of view on 
the interpretation of machine learning models that allow discovering known proof-
of-concept and novel co-predictive mechanisms among features [45, 46].

Recapture of support sets

R.ROSETTA is able to retrieve support sets that represent the contribution of objects 
to rules (Additional file 1: Figs. S1d, S2). As a result, each rule is characterized by a 
set of objects that fulfill the LHS or RHS support. For example, in case of the gene 
expression data, gene co-predictors will be represented with the list of corresponding 
samples (patients). There are several advantages into knowing this information for the 
corresponding objects. Support sets contribute to uncovering objects whose levels of 
features might have shared patterns. Such sets may be further investigated to uncover 
specific subsets within decision classes. Moreover, non-significant support sets allow 
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detecting objects that may potentially introduce a bias to the model and might be 
excluded from the analysis.

Synthetic data

To evaluate rule-based modelling with R.ROSETTA, we implemented a function to cre-
ate synthetic data. The synthetic dataset can be generated with a predefined number of 
features, number of objects and proportion of classes. Additionally, the user may choose 
between continuous and discrete data. The synthetic data structure is formulated as a 
decision table that follows the description in the introduction. A synthetic dataset is 
constructed from the transformation of randomly generated features computed from a 
normal distribution. In this approach, the randomly generated features are multiplied by 
the Cholesky decomposition of positive-definite covariance matrix [47]. The Cholesky 
decomposition D of the matrix L is calculated as:

where L is a lower triangular covariance matrix, and LT is conjugate transpose of L.

Results and discussion
Benchmarking

We benchmarked R.ROSETTA against three other R packages that perform rule-based 
machine learning including C50 [48], RoughSets [49] and RWeka [50] (Additional file 1: 
Benchmarking, Table S4). Using the autism-control dataset, we compared the efficacy of 
the classification algorithms by measuring the accuracy, the area under the ROC curve 
(AUC), the running time and the total number of rules (Fig. 2). To perform compatible 
benchmarking across algorithms, we standardized the classification procedure for equal 
frequency discretization and tenfold cross validation (CV). Additionally, to account for 
the stochasticity introduced by sampling in CV, each algorithm was executed 20 times 
with different seed values.

Even though R.ROSETTA produced one of the highest quality models (Fig.  2a, b), 
its runtime, especially for the genetic algorithm, was higher than of the other algo-
rithms (Fig. 2d). We highlight that computing single reduct is linear in time while find-
ing all minimal reducts is an NP-hard problem [5, 34]. In contrast to other systems, 
R.ROSETTA computes all minimal reducts. We believe this is an important feature 
since biological systems are robust and usually have alternative ways of achieving the 
outcome. Clearly, as a consequence of estimating multiple reducts, R.ROSETTA algo-
rithms tend to produce more rules in comparison to other methods (Fig. 2c). It is then 
natural to remove the weakest rules and obtain simpler and more interpretable models. 
To this end, we suggest to prune the set of rules using the quality measurements such as, 
for instance, support, coverage or P value. Furthermore, we observed that the surveyed 
packages do not provide straightforward quality-statistic metrics for the model and the 
rules. The R.ROSETTA package includes a variety of quality and statistical indicators for 
models (accuracy, AUC etc.) and rules (support, P value, risk ratio etc.) in an effortlessly 
and R-friendly inspectable output. Notably, the evaluated packages do not include newly 
implemented R.ROSETTA features such as undersampling, support sets retrieval and 
rule-based model visualizations.

(7)D = LLT
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In addition, we benchmarked R.ROSETTA against methods based on decision trees, 
which is a concept closely related to the rule-based systems [1] (Additional file 1: Fig. 
S3). Both are considered as highly interpretable approaches that are able to capture non-
linear dependencies among features. However, the main advantage of rough sets over the 
decision trees is an improved stability of models [51, 52]. To compare the performance 
of R.ROSETTA with tree-based methods, we investigated regression trees from package 
rpart [53], bagging from package ipred [54], random forest from package randomForest 
[55] and generalized boosted regression models from package GBM [56]. The evalua-
tion has been performed with the autism-control dataset using the same discretization 

a

c

b

d

Fig. 2  Benchmarking the R packages for rule-based machine learning applied onto the autism-control 
dataset. The packages were evaluated with various methods for default and tuned parameters. For the 
R.ROSETTA package, Johnson reducer (Johnson) and Genetic reducer (Genetic) were used. For the package 
C50, the C5.0 method (C50) was used. For the package RoughSets, Learning from Examples Module (LEM2), 
CN2 rule induction (CN2) and Quasi-optimal covering Algorithm (AQ) were used. For the package RWeka 
Repeated Incremental Pruning to Produce Error Reduction (JRip), 1-rule classifier (OneR) and partial decision 
trees-based (PART). Several methods were tuned for the number of boosting iterations (trials), times covering 
objects by rules (tc), algorithm complexity (K) and number of optimizations (O). Other methods were 
evaluated with default parameters. The results of benchmarking are presented for a accuracy distribution of 
classifiers, b ROC AUC distribution of classifiers, c number of estimated rules (logarithmic scale) and d average 
runtime of the algorithms (logarithmic scale). Two standard deviations were marked above each bar. The time 
was measured from inputting a decision table to receiving a model
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and CV approach as for the rule-based packages. The results showed that R.ROSETTA 
performance is, in terms of accuracy, similar to tree-based methods (Additional file 1: 
Fig. S3a). However, both R.ROSETTA reduction methods had the highest median AUCs 
among all tested approaches (Additional file 1: Fig. S3b). Moreover, increasing the num-
ber of trees or replications for the tree-based methods resulted in a time complexity sim-
ilar to the Genetic reducer, although without outperforming the rule-based classifiers 
(Additional file 1: Fig. S3c). Majority of benchmarked methods showed that the dataset 
is well-predictable. However, we emphasize that diverse datasets can perform in various 
ways. Furthermore, the choice of feature selection method can also play a major role in 
the final performance.

Sample application of R.ROSETTA on transcriptome data

To illustrate R.ROSETTA in a bioinformatics context, we applied the tool to a sample 
transcriptome analysis task. We examined gene expression levels of 82 male children 
with autism and 64 healthy male children (control) (Additional file 1: Table S5) down-
loaded from the GEO repository (GSE25507) [57]. The expression of 54,678 genes was 
measured from the peripheral blood material with the Affymetrix Human Genome 
U133 Plus 2.0 array. Previously, it has been reported that blood can be used as effec-
tively as brain for transcriptomic studies of autism [58, 59]. Importantly, while obtain-
ing the samples, blood is less invasive tissue than brain [58]. Other studies suggested 
that blood–brain barrier and immune system are altered in subjects with autism [60, 61]. 
The dataset was preprocessed (Additional file 1: Data preprocessing) and corrected for 
the effect of age (Additional file 1: Fig. S4). The decision table was ill-defined with the 
number of genes being much larger than the number of samples. To handle such high-
dimensional data, we employed the Fast Correlation-Based Filter (FCBF) [62] that is a 
classifier-independent method of feature filtration. FCBF belongs to the group of filter-
based methods, thus can be used prior to the learning processes [63, 64]. Furthermore, 
we favored the FCBF method as an algorithm with low time complexity and operating 
on pre-discretized data (Additional file 1: Feature selection, Table S6). The final decision 
table was reduced to 35 genes (Additional file 1: Table S7), which allowed us to generate 
classifiers with a reasonably low time complexity.

We constructed two models (Additional file  1: Classification) with R.ROSETTA for 
Johnson and Genetic reducers with 80% and 90% (0.88 and 0.99 area under the ROC 
curve) accuracy, respectively. Model significance was determined using a permutation 
test. The labels for the decision class were randomly shuffled 100 times and a new model 
was constructed on each modified dataset. We compared these shuffled models to the 
original (non-shuffled) models, and found that none of the random models resulted 
in a better accuracy or AUC (P ≤ 0.01) (Additional file 1: Fig. S5). To test the influence 
of undersampling, we generated balanced models with 82% and 90% accuracy (0.85 
and 0.98 area under the ROC curve), respectively (Fig.  3a, Additional file  1: Fig. S1a, 
Table  S1). As the difference between unbalanced and balanced data performance was 
small, we analyzed these models interchangeably. For simplicity and regarding the com-
putation time complexity, undersampling was turned off in models used for permutation 
tests (Additional file 1: Fig. S5) and benchmarking (Fig. 2, Additional file 1: Fig. S3).
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The overall performance of the Genetic algorithm was better than Johnson’s. How-
ever, its tendency to generate numerous rules reduced the significance of individual 
rules after correcting for multiple testing (Fig. 3c, Additional file 1: Fig. S6, Table S1). 
To identify the most relevant co-predictors among genes, we selected several sig-
nificant (Bonferroni-adjusted P ≤ 0.05) top rules (Fig. 3d, Table 3) from the Johnson 
model. In addition, for the same model, we presented a sample set of strongly signif-
icant (Bonferroni-adjusted P < 0.001) rules in Additional file 1: Table S8. The high-
est ranked co-predictors include the medium expression levels of neuronal calcium 
sensor 1 (NCS1) and low expression levels of cystatin B (CSTB). The NCS1 gene is 
related to the calcium homeostasis control [65] and is predominantly expressed in 
neurons [66]. In previous studies, dysregulated expression and mutations in NCS1 
have been linked to neuropsychiatric disorders [65, 66]. Moreover, another study has 

Fig. 3  Rule-based model evaluation for the autism-control dataset performed with the Johnson reduction 
method. Discretization levels were obtained from the equal frequency method by categorizing the features 
into three bins. a ROC AUC for the model. Sensitivity that is as a true positive rate (TPR) and 1-specificity that 
is a false positive rate (FPR). b VisuNet network of co-predictive features for the autism class. Connection 
values represent the strength of node or edge. These values were estimated based on the rule support 
and accuracy. Rules were selected based on their statistical significance (Bonferroni-adjusted P ≤ 0.05). 
c Distribution of the significance of rules in the model. Bonferroni-adjusted P values were marked as 
ns(P > 0.05), *(P ≤ 0.05), **(P ≤ 0.01) and ***(P ≤ 0.001). d Distribution of support sets for the top-ranked rule 
from the recalculated model. Support sets represent sets of objects that fulfil the RHS of the rule (THEN-part). 
Boxplots display scaled gene expression values for objects supporting and non-supporting the given rule
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demonstrated that calcium homeostasis is altered in autism disorders [67]. CSTB 
is a second component of the rule and its elevated expression have been linked to 
immune response [68]. Furthermore, the reduced expression of CSTB has been 
linked to the mechanism of pathogenesis in epilepsy [69].

We also utilized the VisuNet framework that supports visualization and explora-
tion of rule-based models. Moreover, we displayed a pruned rule-based network for 
the significant rules for autism (Bonferroni-adjusted P ≤ 0.05) (Fig. 3b). The largest 
node in the network is the cyclooxygenase 2 (COX2) gene and suggests a meaningful 
contribution to the prediction of young males with autism. Elevated expression of 
COX2 has been earlier associated with autism [70]. The study reported that COX2 
carried the Single Nucleotide Polymorphism (SNP) rs2745557 and the GAAA haplo-
type that were significantly associated with autism [70]. Moreover, COX2 is constitu-
tively expressed in neuronal tissues of patients with psychiatric disorders [71]. Other 
studies have shown that COX2-deficient mice show abnormal expression of autism-
related genes [72] and presented its possible therapeutic character for neuropsychi-
atric disorders [73, 74]. Based on the network, we can also observe a very strong 
co-prediction between the high expression levels of rhophilin rho GTPase binding 
protein 1 (RHPN1) and the low expression levels of ZFP36 ring finger protein like 2 
(ZFP36L2). The association of abnormalities in the GTPase signaling pathway and 
neurodevelopmental disorders has been previously reported [75]. Rho GTPases par-
ticipate in the spectrum of signaling pathways related to neurodevelopment such as 
neurite extension or axon growth and regeneration [75]. The second component is 
a zinc-finger protein coding gene [76]. The enrichment of lowly expressed zinc fin-
gers in the case–control studies of autism was also discovered by the authors of this 
dataset [57]. We investigated other autism-related genes that have been reported 
and described in Additional file  1: Feature validation. The described co-prediction 
mechanisms illustrate dependencies among the genes that may suggest biological 
interactions. Although we found relationships to neurodevelopmental and autistic 
pathways, given hypotheses shall be further verified experimentally.

Synthetic data evaluation

To explore the influence of the basic properties of the decision table onto the rule-based 
modelling, we implemented a function that generates synthetic decision tables. We used 
such synthetic data to describe the rule-based model performance with respect to the 
number of features, the number of objects and the decision-class imbalance (Additional 
file 1: Figs. S7, S8). Multiplying the number of features did not affect the quality of the 
model that remained stable across tests (Additional file 1: Fig. S7b, c). However, increas-
ing the number of objects moderately improved the overall quality of the model (Addi-
tional file 1: Fig. S7e, f ). To show that undersampling corrects biased performance that 
arose from the class imbalance, we generated random synthetic datasets with various 
imbalance proportions. We showed that the class imbalance issue biases the accuracy 
and the bias is corrected after applying the undersampling (Additional file 1: Fig. S8). We 
also confirmed that it is better to assess the performance with the AUC values, which are 
immune to uneven distribution of samples (Additional file 1: Fig. S8).
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Conclusions
The R.ROSETTA is a response to the needs of developers of interpretable machine 
learning models for Life Sciences. It facilitates the access to the functionality of the 
R environment that is one of the major environments used in bioinformatics. To our 
knowledge, it is the first and only learning system that makes available a comprehensive 
toolbox of statistical measures essential in analyzing, validating and, potentially, certi-
fying classifiers at the level of the models and their components. Furthermore, several 
original ROSETTA procedures were improved and/or adapted to the R environment and 
target bioinformatics applications. These improvements include undersampling meth-
ods to account for imbalance, estimation of the statistical significance of classification 
rules, retrieving objects from support sets, normalized prediction of external datasets 
and integration with rule-based visualization tools.

Rule-based models generated under the paradigm of rough sets have several attrac-
tive properties but also limitations. Models are built using a well-defined procedure of 
Boolean reasoning to obtain reducts i.e. minimal subsets of the original set of features 
that maintain discernibility of the decision classes; usually, approximate reducts are 
generated, both for the sake of computational efficiency but also for their often better 
generalization properties. Rough sets are especially useful in the applications to model-
ling biological systems since living organisms are robust and often have multiple ways of 
achieving their goals. These may be captured by multiple reducts. The price for finding all 
possible reducts is the complexity of the problem, which is NP-hard, while finding only 
one minimal subset of features (corresponding to finding one reduct in R.ROSETTA) is 
linear in time. Another disadvantage of R.ROSETTA may be the very large number of 
rules generated with the Genetic heuristics which makes such models more difficult to 
interpret. However, we showed that with the use of the toolbox it is possible to prune 
such models and keep the statistically significant rules. Another feature of the rough set-
based models is the need to discretize the values of the features. Depending on the appli-
cation this at times may hamper the quality of classification, but equally well, this may 
improve interpretation of the models and their generalization power.

Herein, we investigated the package to describe the influence of the properties of deci-
sion tables on the rule-based learning performance. Next, a real sample application of 
analyzing autism and controls using gene expression data was introduced and the clas-
sifier interpreted. The autism-control dataset was also exploited to benchmark the pack-
age with a broad selection of the state-of-the-art methods within the rule- and decision 
tree-based domains. R.ROSETTA compared favorably with the other methods with the 
Genetic heuristics usually outperforming the Johnson heuristics; both heuristics com-
pared favorably with the other systems. We showed that a rule set, be it generated with 
any of the two heuristics, can be visualized in the form of co-predictive rule-networks, 
which further enhance the interpretability of rule-based models. Finally, we investigated 
the performance of R.ROSETTA depending on the properties of the decision tables that 
are input to the system.

In contrast to methods that allow explaining black box approaches, so-called post hoc 
explanation methods, rough sets theory is a technique that directly produces interpreta-
ble models. On the other hand, commonly used algorithms, such as ELI5 [77], LIME [78] 
or SHAP [79], are able to explain most of machine learning models. However, recent 
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studies have shown that explanations of black box models may be affected by biases and 
their application has been questioned [80, 81]. Nevertheless, interpretable models and 
explainable methods have a common goal of elucidating classifications and are likely to 
complement each other.
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