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Background
Long noncoding RNAs (lncRNAs) are noncoding RNAs that are greater than 200 nt in 
length and make up the bulk of transcripts [1]. Currently, accumulating research has dis-
covered that lncRNAs play important roles in multiple biological processes [2–5] and 
are highly associated with diverse human diseases such as tumours and cancers [6–9]. 
However, the functions and molecular mechanism of the vast majority of lncRNAs 
remain unknown.

To understand the functions of lncRNAs, there is a fundamental path to identify pro-
teins that interact with lncRNAs. Most lncRNAs need to bind to one or more proteins to 
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function [10]. Based on the LncRNA–protein interaction (LPI) results, further insights 
into the functions and molecular mechanisms of lncRNAs can be inferred with the help 
of abundant annotation information of the protein. Therefore, it is of profound signifi-
cance to study LPIs. There are several ways to explore LPIs, which can be divided into 
experimental methods [11] and computational methods. Experimental methods are 
time-consuming and expensive [12], while computational methods are efficient and 
economical.

There are many computational methods of LPI. For instance, Muppirala et al. devel-
oped a computational model called RPISeq [12] in 2011, which applies sequence fea-
tures of lncRNAs and proteins and contains support vector machine (SVM) and random 
forests (RF) classifiers. In 2013, Lu et al. proposed a method named LncPro [13], which 
integrates secondary structure features, hydrogen-bonding propensities, and van der 
Waals interaction features and chooses matrix computation as the calculation method. 
Then, Suresh et al. proposed RPI-Pred [14] in 2015, which uses sequence features and 
structure features to develop a model based on SVM. Later, Akbaripour-Elahabad et al. 
developed RpiCool [15], which utilizes sequence features and motif features and chooses 
RF as a classifier. In 2015, Li et al. proposed a novel LPI prediction method LPIHN [16] 
based on random walks with restart on the heterogeneous network constructed by the 
lncRNA-lncRNA similarity network, LncRNA–protein interaction network, and pro-
tein-protein interaction network. In 2016, a network computational method for LPI 
prediction on LPBNI [17] was developed by Ge et al. In 2017, Zhang et al. developed 
LPLNP [18], which integrates interaction profile, expression profile, sequence compo-
sition features of lncRNAs and interaction profile, CTD features of proteins, and uses 
the linear neighbourhood similarity and a label propagation process to predict potential 
LPI. In the same year, Zhang et al. proposed a sequence-based feature learning method 
called SFPEL-LPI [19]. SFPEL-LPI uses lncRNA sequences, protein sequences, and 
known LncRNA–protein interactions to compute three lncRNA-lncRNA similarities 
and protein-protein similarities and combines them with a feature projection ensemble 
learning frame. In 2018, Zhao et al. proposed a semisupervised model LPI-BNPRA [20], 
which integrates the lncRNA similarity matrix, protein similarity matrix, and LncRNA–
protein interaction matrix to infer LPI. Then, Zhao et al. developed IRWNRLPI [21] for 
LncRNA–protein interaction prediction by combining random walk algorithms and 
neighbourhood regularized logistics, which included the lncRNA similarity matrix, pro-
tein similarity matrix, and LncRNA–protein interaction matrix. Hu et al. proposed an 
ensemble method named HLPI-Ensemble [22] by integrating sequence features and the 
ensemble strategy based on SVM, RF and eXtreme Gradient Boosting. In 2019, Yi et al. 
developed LPI-Pred [23], which is inspired by the similarity between natural language 
and biological sequences. LPI-Pred uses word2vec to obtain RNA2vec and Pro2vec as 
the word embedding features of lncRNAs and proteins, respectively. RF was selected as a 
classifier to predict LPI.

In recent years, deep learning models have been used for the prediction of LPI. In 
2016, Pan et  al. developed the computational method IPMiner [24], which employs 
sequence features and makes use of deep learning to learn hidden features. Then, three 
RF models were trained, and stacked ensembling was used to integrate different clas-
sifiers to further enhance the prediction performance. In 2018, a comprehensive tool 
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named LncADeep [25] was proposed by Yang et al. In the LPI part, LncADeep integrates 
the sequence and structure features used in lncPro and some lncRNA features used for 
lncRNA identification such as Fickett nucleotide features and features of LCDs to infer 
LPI based on the deep stacking network. In 2020, LPI-CNNCP [26], a novel convolu-
tional neural network method with a copy-padding trick, was proposed by Zhang et al. 
Zhang et al. also proposed an ensemble deep learning model: lncIBTP [27], which uses 
sequence features and ensemble CNN and full connection layers as the architecture of 
lncIBTP. Wekesa et al. proposed a graph representation learning method called GPLPI 
[28] based on sequence and structural features for LPI prediction. Meanwhile, Wekesa 
et al. developed a multifeature fusion-based method named DRPLPI [29], which uses a 
multihead self-attention long short-term memory encoder-decoder network to extract 
high-level features and feds them into Catboost and extra tree classification algorithms 
for LPI prediction.

For most application fields, with the support of large sample sets, deep learning mod-
els have better learning performance than traditional machine learning. Deep learning 
architectures are good at high-level feature extraction, which allows end-to-end learning 
to be implemented. The design of the deep learning architecture is very flexible. Many 
deep learning architectures such as CNN [30], DBN [31], RNN [32], BiLSTM [33], atten-
tion network [34], capsule network [35] and graph neural network [36] have been devel-
oped. The capsule network is one of the most representative networks. To improve the 
performance of LPI prediction and to explore the effectiveness of the capsule network 
for LPI, a capsule network has been applied for LPI prediction, which is first proposed 
for the image recognition field. In the image recognition process, multiple depth fea-
tures obtained by the feature extraction subnetworks can be well used by the capsule 
network to make predictions [35]. Compared with other deep learning architectures, 
the capsule network is more sensitive to the relationship between features. One more 
advantage of the capsule network over other deep learning architectures is that there are 
very few parameters to be trained. In our architecture, the capsule network part has only 
36 parameters that need to be trained, which makes training faster and improves the 
overfitting.

Inspired by the better feature-learning capability of the capsule network, in addition 
to capturing the panorama of LPI information, multiple features are combined, includ-
ing sequence features, motif information, physicochemical properties and secondary 
structure features. Another reason for using multimodal features is that lncRNAs and 
proteins are complex and have many aspects such as sequence information, structural 
information, and physical and chemical information. Single-modal features have diffi-
culty fully representing lncRNA and protein information, so integrating multimodal 
features can theoretically produce better prediction performance. At the same time, the 
advantages of the flexible design of deep learning architectures also create opportunities 
for the use of multimodal features. For example, Deng et al. proposed a multimodal deep 
learning framework named DDIMDL [37] in 2020, which constructs deep neural net-
work (DNN)-based submodels to deal with four features and then adopts a joint DNN 
framework to combine the submodels to make a prediction. In recent years, a variety 
of LPI prediction methods [22, 28, 29] have adopted multimodal features and achieved 
good results.
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Therefore, we propose a novel multichannel capsule network framework to integrate 
these multimodal features for LPI prediction, capsule-LPI. The main contributions of 
Capsule-LPI include: 

1.	 Multimodal features are designed to capture the full information of LPI, including 
sequence features, motif information, physicochemical properties and secondary 
structure features. More information features such as physicochemical properties 
and motif information are integrated into Capsule-LPI compared to existing LPI pre-
diction tools.

2.	 To better integrate and learn multimodal features, a deep learning architecture based 
on multichannel capsule networks is proposed to integrate the multimodal features.

3.	 Capsule-LPI outperforms state-of-the-art methods for LPI prediction with a preci-
sion of 87.3% and an F-value of 92.2%. Capsule-LPI also has the significant advan-
tage that very few network parameters need to be trained in the feature-binding part, 
which makes Capsule-LPI require much less time for training and prediction than 
other deep learning-based tools.

4.	 To maximize the convenience for users, a webserver (http://​csbg-​jlu.​site/​lpc/​predi​
ct) has been developed. In addition, the source code and dataset used in this paper 
are provided at http://​csbg-​jlu.​site/​lpc/​downl​oad. The source code usage refers to the 
“README” file in the source code package.

Methods
Capsule‑LPI overview

The flowchart of Capsule-LPI is shown in Fig.  1. Capsule-LPI includes two steps: (a) 
Multimodal feature extraction. When Capsule-LPI received a LncRNA–protein pair, 
four groups of features, including sequence features, motif information, physicochemi-
cal properties and secondary structure features, could be extracted automatically. Each 
group of features, after being extracted, forms a feature vector. Therefore, four different 
feature vectors are obtained. (b) The architecture of Capsule-LPI. The architecture of 
Capsule-LPI consists of four feature-learning subnetworks and one capsule subnetwork 
[35]. The feature-learning subnetwork consists of fully connected layers. Four differ-
ent feature vectors obtained by multimodal feature extraction are input into the feature 
learning subnetworks to automatically learn the more informative and high-level fea-
tures. Then, capsule subnetworks further integrate the features and predict LPI.

Data description

The dataset is downloaded from NPInter database [38]. The database removes lncRNA–
protein interacting pairs for nonhuman species and ncRNAs less than 200 nt in length. 
A total of 6204 lncRNA–protein interacting pairs were eventually retained. No negative 
lncRNA–protein samples existed in the database, so we needed to construct negative 
samples. We use the method of negative sample construction used in existing meth-
ods for LPI prediction [15]. The process of generating a negative sample set was as fol-
lows: first, all the lncRNAs and proteins used in the positive sample were obtained from 
the NPInter database, and there were 2356 lncRNAs and 90 proteins in total. Then, 

http://csbg-jlu.site/lpc/predict
http://csbg-jlu.site/lpc/predict
http://csbg-jlu.site/lpc/download
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Fig. 1   Flowchart of Capsule-LPI. a Multimodal feature extraction. The figure shows the feature extraction 
process of one LncRNA–protein pair. Firstly, sequence features, motif information, physicochemical properties 
and secondary structure features of the lncRNA and protein are extracted, respectively. The same groups 
of features of lncRNA and protein are concatenated respectively, yielding four feature vectors. F1–F4 stands 
for sequence features, motif information, physicochemical properties and secondary structure features, 
respectively. Note that the dimensions of the four feature vectors are not the same. b The architecture 
of Capsule-LPI. The architecture of Capsule-LPI is divided into two parts, the first part is four different 
feature-learning subnetworks for four feature vectors, each subnetwork consists of fully connected layers. The 
second part is one capsule network. F1–F4 are feature vectors, refer to sequence feature, motif information, 
physicochemical properties and secondary structure, respectively. First, each feature vector passes through 
its own feature learning subnetwork to get a three-dimensional output vector. Then the output vectors are 
treated as capsules and obtain U1–U4 . U1–U4 include diversified information with prediction by each feature. 
W1–W4 are transformation matrices. They are able to transform U1–U4 into the same prediction space and 
they are the only parameters learned through backpropagation in the second part. U′

1
–U′

4
 represent the 

predictions of different features in the same prediction space. Next, add U′

1
–U′

4
 to get a new capsule. Using the 

“squashing” activation function to compress the length of the new capsule to a range from 0 to 1 to get the 
final Capsule V. Then take the length of V to represent the final prediction result, with lengths greater than 
0.5 as interactions and lengths less than 0.5 as no interactions. Note that U1–U4 , U′

1
–U′

4
 and V are essentially 

vectors; we call them “capsules” because they are the units of capsule network
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the 2356 lncRNAs and 90 proteins were combined one by one, resulting in a total of 
212,040 LncRNA–protein pairs. Finally, the 6204 LncRNA–protein pairs in the positive 
sample were removed, and 205,836 (21,040-6,204) LncRNA–protein pairs were consid-
ered negative samples. The imbalance between large positive samples and negative sam-
ples can lead to prediction bias [39], so we randomly divided 205,836 negative samples 
into 33 sets, and each set contained 6204 negative samples. Thus far, we have obtained 
6204 lncRNA–protein interacting pairs and 33 sets consisting of 6204 lncRNA–protein 
noninteracting pairs, which can be obtained at http://​csbg-​jlu.​site/​lpc/​downl​oad. Each 
lncRNA–protein noninteracting pair set was combined with a lncRNA–protein inter-
acting pair set to train one model. Then, we adopted EasyEnsemble [40] to ensemble 33 
models to obtain the final model. More details refer to (Additional file 1: S1).

Multimodal features extraction

To capture more perspectives of LPI, four types of features (sequence features, motif 
information, physicochemical properties and secondary structure features) are 
extracted. The extraction process of multimodal features is shown in Fig. 1a. The follow-
ing four subsections are detailed descriptions of each type of feature.

Sequence features

For lncRNAs, 4-mer frequency features are chosen to encode each lncRNA with a 256 
( 4 × 4 × 4 × 4 ) dimensional vector, and each element of the vector corresponds to 
the frequency of the corresponding 4-mer (e.g., AUUC, AACG, CGUC) in the sequence 
of lncRNAs. The formula for calculating the frequency is as follows:

where i is a serial number, fi is the k-mer frequency of the i-th k-mer and ni represents 
the number of i-th k-mer in the sequence.

For proteins, to reduce the feature dimension, the Novo method [22] is used to classify 
amino acids into four groups: {D, E}, {H, R, K}, {C, G, N, Q, S, T, Y, A}, {F, I, L, M, P, V, 
W}. Then 3-mer frequency features are chosen to encode each protein with a 64 (4×4× 4) 
dimensional vector, and each element of the vector corresponds to the frequency of the 
corresponding 3-mer in the sequence of the protein. The calculation of frequency refers 
to Formula 1.

We selected 4-mer frequency features and 3-mer frequency features to encode each 
lncRNA and protein sequence, respectively, because smaller k-values are poor represen-
tations of the sequence, while larger k easily results in sparse representation. In the exist-
ing models, the 4-mer frequency features for lncRNA and 3-mer frequency features for 
protein are mostly considered for LPI prediction [12, 41–43].

In total, the dimension of the sequence feature vector of each lncRNA–protein pair 
was 320 (256+64).

Motif information

Many motifs have been found to be helpful to predict RNA-protein interactions [44–46]. 
We use the number of each motif in the sequence to form motif features. Each lncRNA 

(1)fi =
ni

∑256
j=1 nj

http://csbg-jlu.site/lpc/download
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is encoded with an 18-dimensional vector corresponding to 18 motifs: Fox1, Nova, Slm2, 
Fusip1, PTB, ARE, hnRNPA1, PUM, U1A, HuD, QKI, U2B, SF1, HuR, YB1, {AU}, {UG} 
and a motif group, which combines Fox1, Nova, ARE, PUM and U1A. Each protein is 
encoded with an 11-dimensional vector corresponding to 11 motifs: {H, R}, {HR, RH}, 
{E}, {K}, {H}, {R}, {EE}, {KK}, {RS, SR}, {RGG} and {YGG}. The details of each motif are 
provided in (Additional file 1: S2).

In total, the dimension of the motif feature vector of each lncRNA–protein pair was 29 
(18 + 11).

Physicochemical properties

The physicochemical properties were used to predict LPI in lncPro [13] and LncADeep 
[25]. In Capsule-LPI, we adopt the physicochemical properties used in lncPro and add 
some other physicochemical properties. For lncRNAs, van der Waals interactions and 
hydrogen-bonding propensities [47] were used to encode each lncRNA sequence into 
2 numerical vectors. For proteins, Bull & Breese hydrophobicity [48], Kyte & Doolit-
tle hydrophobicity [49], Zimmerman polarity [50], Grantham polarity [51], isoelectric 
point, bulkiness, Eisenberg hydrophobicity [52] and Hopp & Woods hydrophobicity 
propensities [53] were used to encode each protein sequence into 8 numerical vectors. 
These physicochemical properties are selected because they have been validated by 
many LPI methods [13, 25].

However, because the dimension of each feature vector depends on the length of the 
corresponding lncRNA or protein sequence, the input feature vector dimensions of dif-
ferent samples are different. Therefore, the vectors need to be transformed to the same 
dimension. Here, we adopt the method in lncPro, and use the Fourier transform, which 
is applied to transform two physicochemical properties into a spectrum domain. The 
formula of the Fourier series is as follows:

where L is the length of the original feature vector and Xn is the n-th value in the origi-
nal feature vector. The first 10 terms of the Fourier series were used as a new spectrum 
feature vector. Each lncRNA sequence was encoded into two 10-dimensional spectrum 
vectors corresponding to its two physicochemical feature vectors. Each protein sequence 
was encoded into eight 10-dimensional spectrum vectors corresponding to its 8 phys-
icochemical feature vectors.

In total, the dimension of the physicochemical spectrum property feature vector of 
each lncRNA–protein pair was 100 (2 × 10 + 8 × 10).

Secondary structure features

The secondary structure of lncRNAs and proteins is more conserved than the sequence, 
which is an important feature to infer LPI. The secondary structure of each lncRNA was 
obtained using RNAfold [54] based on the minimum free energy algorithm. Then, we 
transferred the secondary structure to a numerical vector consisting of 0 and 1, in which 
the paired nucleotide was replaced by 1 and the unpaired nucleotide was replaced by 0.

(2)X
′

k =

√

2

L

L
∑

n=0

Xn cos

[

π

L

(

n+

1

2

)(

k +

1

2

)]

, k = 0, 1, ..., 9
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There is also the problem that the length of the numerical feature vector is related to 
the length of the sequence, which causes the input vector dimension of different samples 
to be different. The Fourier transform is used to transform the feature vector and keep 
the first 10 terms as a new spectrum feature vector. The Fourier series is shown in For-
mula 2. In this way, the secondary structure feature vector of each lncRNA with dimen-
sions of 10 was obtained.

For the protein secondary structure, the secondary structure sequence of each protein 
was first obtained using Predator [55]. Then, the secondary structure sequence of each 
protein was encoded into a numerical feature vector by the Chou-Fasman propensities 
[56], which were used in the lncPro and LncADeep methods. Each feature vector is also 
transformed by Fourier transform, and the first 10 terms are retained as a new spectrum 
feature vector. In this way, the secondary structure feature vector of each protein with 
dimensions of 10 was obtained.

In total, the dimension of the secondary structure feature vector of each lncRNA–pro-
tein pair was 20 (10+10).

Here, the feature vector encoding process was completed. For each lncRNA–protein 
pair, we obtained 4 groups of feature vectors: sequence feature vector (320-dimensional 
vector), motif feature vector (29-dimensional vector), physicochemical properties fea-
ture vector (100-dimensional vector) and secondary structure feature vector (20-dimen-
sional vector).

Architecture of capsule‑LPI

The key architecture of Capsule-LPI is divided into two parts, as shown in Fig. 1b. The 
first part is four feature-learning subnetworks, and the second part is one capsule sub-
network [35] for prediction. In this section, the architecture of Capsule-LPI and the 
hyperparameter setting are introduced in detail.

Each feature vector needs one feature-learning subnetwork. Each feature learning 
subnetwork is made up of fully connected layers, and this subnetwork can not only 
extract high-level features but also unify the dimensions of feature vectors. The hyper-
parameters of the feature learning subnetworks are shown in Additional file  1: S3. By 
experiments, 5 fully connected layers for each subnet are selected because the prediction 
accuracy does not grow significantly when the layer number is larger than 5, and a larger 
hidden layer number brings more computation. The number of neurons in each hidden 
layer was obtained through multiple experiments. PReLU is used as an activation func-
tion. To prevent overfitting, we add dropout layers [57] to the hidden layers.

Then, each feature vector is fed into its own feature learning subnet, and the output 
of each vector is obtained with dimension 3. The dimension 3 was chosen because after 
trying multiple output dimensions, when the output dimension of the feature extraction 
subnets is 3, the prediction accuracy of the model is the highest.

The second part of the architecture is a capsule network. The novel learned high-level 
abstract feature vectors from feature learning subnets are treated as capsules and further 
fed into the capsule subnetwork. A capsule is essentially a vector; we call it a “capsule” 
because it is the unit of the capsule network and needs to be distinguished from the vector. 
A capsule is a group of neurons, and as opposed to a single neuron, a capsule contains more 
information [35]. As shown in Fig. 1b, U1–U4 are capsules corresponding to four high-level 
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abstract features, which contain multiple predicted information on LPI. W1–W4 are trans-
formation matrices that are able to transform U1–U4 into the same prediction space and 
they are the only parameters learned through backpropagation in the second part. U ′

1
–U ′

4
 

are the predictions of different features in the same prediction space. The length of U ′

i rep-
resents the interaction rate of LncRNA–protein obtained by prediction with the i − th 
feature, and its direction represents other information on LPI. If U ′

1
–U ′

4
 are long in length 

and close in orientation, these properties indicate that the multiple features support LPI in 
terms of prediction propensity, as well as other interaction information stored in capsules; 
if U ′

1
–U ′

4
 are long but differ in orientation, these properties indicate that only the prediction 

propensity of each feature supports LPI, but other interaction information stored in cap-
sules is not sufficient to support LPI. This network makes the prediction, considering not 
only the predictive tendencies of each feature but also other interaction information and 
the relationships between the different features.

To determine whether the capsules ( U ′

1
–U ′

4
 ) mostly agree with LPI in terms of prediction 

propensity (reflected in the length of the capsules) as well as other interaction information 
(reflected in the orientation of the capsules), we add these capsules to obtain a new capsule, 
S. If S is long, the length of S shows that most of the capsules ( U ′

1
–U ′

4
 ) are long and the 

capsules are oriented similarly, indicating that U ′

1
–U ′

4
 mostly agree with LPI and their other 

stored information also fits. We do not use the dynamic routing algorithm that is used in 
the capsule network paper in the adding step because we are a biclassing problem that only 
needs to output one capsule, which does not require a dynamic routing algorithm. The 
architecture of the capsule network is shown in (Additional file 1: S3).

Use the length of the final output capsule to represent the LPI’s possibility. Therefore, the 
“squashing” activation function [35] in the capsule network is used to ensure that the short 
vector shrinks to almost 0 length and the long vector shrinks to a length slightly below 1. 
The “squashing” activation function formula is:

where V is the output capsule, and S is the sum of U ′

1
–U ′

4
.

Finally, take the length of V to represent the predictions, with lengths greater than 0.5 as 
interactions and lengths less than 0.5 as no interactions.

Evaluation criteria

To evaluate the performance of Capsule-LPI, we use six evaluation metrics: AUC, AUPRC, 
accuracy, precision, recall, and F-value. AUC and AUPRC are the area under the ROC and 
P-R curves, respectively. The formulas for the rest of the evaluation metrics are as follows:

(3)V =

||S||2

1+ ||S||2
S

||S||

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)Precision =

TP

TP + FP
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where TP, FP, TN and FN represent true positives, false positives, true negatives and 
false negatives, respectively. TP is the number of samples in the test set for which the 
prediction result is positive and the label is also positive. FP is the number of samples in 
the test set for which the prediction result is positive but the label is negative. TN is the 
number of samples in the test set for which the prediction result is negative and the label 
is also negative. And FN is the number of samples in the test set for which the prediction 
result is negative but the label is positive. Precision reflects the confidence level when 
the outcome prediction is positive. Sensitivity reflects the probability that we capture 
the sample when the sample is positive. Accuracy and F − value are composite measures 
used to evaluate the comprehensive performance score.

Results
Three experiments have been conducted to evaluate Capsule-LPI in terms of architec-
ture, feature combination, and overall performance.

Architecture comparison

First, it is necessary to evaluate the performance of the architecture of Capsule-LPI. 
Since Capsule-LPI uses a deep learning architecture, we built three deep learning frame-
works, fully connected network (FC), CNN and LSTM, to compare with the architec-
ture of Capsule-LPI. In addition, we also compared the architecture of the existing LPI 
tool such as the deep stacking network architecture of LncADeep [25]. The architectures 
were tested on four kinds of features designed in our work (sequence features, motif 
information, physicochemical properties and secondary structure features). Moreover, 
a set of control experiments between the architecture of Capsule-LPI and LncADeep 
using the features of LncADeep was also added to fully assess the performance of the 
architecture of Capsule-LPI. The features of LncADeep include sequence features and 
structural features (Additional file 1: S4). The performances of the architecture of Cap-
sule-LPI and other architectures with 10-fold cross-validation are shown in Table 1.

Table 1 shows that under the same features as well as the same test environment, the 
architecture of Capsule-LPI achieved better performance than the architecture of other 
deep-learning architectures. On AUC, AUPRC, accuracy, recall and F-value, Capsule-
LPI achieves 95.31%, 93.30%, 91.66%, 96.25% and 92.02% under 4 features, respectively, 
which are all higher than FC, CNN, LSTM and deep stacking network architecture. The 
architecture of Capsule-LPI has the greatest improvement in the recall metric, which 
increases close to 3%. The high recall index means that the architecture of Capsule-
LPI can identify more potential LPIs. The F-value has a nearly 1% increase, indicating 
that the overall performance of Capsule-LPI is better. To further evaluate whether the 
improvement of the Capsule-LPI architecture is significant, we calculated the p-values of 
the F-value between the Capsule-LPI architecture and other deep learning architectures 

(6)Recall =
TP

TP + FN

(7)F − value =
2× Precision× Recall

Precision+ Recall
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using the paired t-test on the results of ten iterations. The p-values of F-value for dif-
ferent architecture comparisons are listed as follows: 6.53e-3 for Capsule-LPI vs FC, 
1.58e-4 for Capsule-LPI vs CNN, 1.56e-5 for Capsule-LPI vs LSTM, 4.53e-7 for Capsule-
LPI vs lncADeep, 8.13e-7 for Capsule-LPI (Use features of LncADeep) vs lncADeep (Use 
features of LncADeep). All p-values are less than 0.05, which shows that the improve-
ment is significant. The architecture of the performance of Capsule-LPI is also higher 
than the performance of LncADeep when using the features of LncADeep, indicating 
that the architecture of Capsule-LPI is not only dependent on the 4 features mentioned 
in this paper.

Evaluation of combinations of different features

After verifying that the architecture of Capsule-LPI performs well, the multimodal fea-
tures that are appropriate for Capsule-LPI need to be selected. Here, four features are 
evaluated. To understand whether each feature is valid in predicting and what combina-
tion of features is the best choice, we conducted 15 experiments to evaluate the perfor-
mance of different features and feature combinations using the Capsule-LPI architecture. 
The architecture needs to be fine-tuned when inputting different feature combinations. 
When some features are not adopted, the Capsule-LPI architecture only needs to close 
the corresponding channel of these features. The architectures of Capsule-LPI for differ-
ent numbers of feature combinations are shown in Additional file 1: S5. The results for 
different combinations under 10-fold cross-validation are shown in Table 2.

As shown in Table 2, the single feature of physicochemical properties had the highest 
recall score, which was 97.83%. The combination of sequence features, motif informa-
tion, and physicochemical properties yielded the highest AUC score and precision score, 
which were 95.42% and 88.46%, respectively. For the AUPRC, accuracy and F-value, the 
combination of 4 features obtained the highest values of 93.30%, 91.66% and 92.02%, 
respectively. Among the six evaluation indexes, three comprehensive indexes of the 
combination of 4 features obtained the highest scores, so the combination of 4 features 
can be considered to be more suitable for the architecture of Capsule-LPI.

Comparison of capsule‑LPI performance with existing tools

After verifying the architecture of Capsule-LPI and selecting the suitable feature combi-
nations for Capsule-LPI, the overall performance of Capsule-LPI needs to be evaluated. 

Table 1  Comparison of the performances of the Capsule-LPI with other deep learning architectures 
under 10-fold cross-validation

Tools AUC (%) AUPRC (%) Accuracy (%) Precision (%) Recall (%) F-value (%)

FC 95.19± 0.73 92.93± 1.18 90.96± 0.86 88.75± 1.61 93.87± 0.77 91.22± 0.76

CNN 94.64± 0.78 92.25± 1.30 89.70± 1.22 87.24± 1.51 93.03± 1.11 90.03± 1.14

LSTM 93.26± 0.84 88.66± 1.64 89.70± 0.89 88.13± 1.37 91.82± 1.94 89.91± 0.91

LncADeep 90.55± 1.18 85.33± 2.04 87.73± 1.03 83.89± 1.45 93.45± 1.64 88.39± 0.96

Capsule-LPI 95.31± 0.41 93.30± 0.92 91.66± 0.86 88.15± 0.86 96.25± 0.90 92.02± 0.82

LncADeep (Use 
LncADeep’s features)

89.52± 0.84 84.16± 1.60 87.29± 1.04 83.70± 1.69 92.69± 1.81 87.94± 0.97

Capsule-LPI (Use 
LncADeep’s features)

95.11± 0.50 93.19± 0.65 91.34± 1.01 87.11± 1.48 97.08± 0.85 91.82± 0.91
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Several state-of-the-art tools for predicting RNA-protein interactions are compared, 
i.e., RPISeq [12], lncPro [13], RPI-pred [14], rpiCool [15], IPMiner [24] and LncADeep 
[25]. For the experiments to be comparable, Capsule-LPI is evaluated concerning the 
methodology in LncADeep, in which the same dataset used in lncADeep, as well as the 
evaluation method, are adopted. For the same data set, Capsule-LPI uses the exact same 
positive sample as LncADeep. Since LncADeep does not provide the negative sample, 
Capsule-LPI uses the same negative sample generation method as LncADeep. For the 
same evaluation method, 5-fold cross-validation, which is used in LncADeep, is used to 
evaluate the performance of Capsule-LPI. The comparison results are shown in Table 3.

As shown in Table 3, under the 5-fold cross validation averaging assessment condi-
tion, Capsule-LPI with 87.3% precision and 92.2% F-value is superior to other existing 

Table 2  Comparison of the performance of different features and different feature combinations 
under 10-fold cross-validation

Feature 
Combinations

AUC (%) AUPRC (%) Accuracy (%) Sensitivity (%) Precision (%) F-value (%)

SF (Sequence 
feature)

94.16± 0.79 89.99± 1.66 90.78± 0.74 87.48± 1.20 95.20± 0.59 91.17± 0.65

Mtf (Motif informa-
tion)

87.97± 2.37 82.01± 4.70 85.20± 1.28 78.99± 1.67 96.00± 0.73 86.66± 1.04

PC (Physicochemi-
cal)

93.89± 0.72 90.66± 1.47 88.99± 1.07 83.15± 1.28 97.83± 0.97 89.89± 0.93

SS (Secondary 
structure)

89.46± 2.38 85.35± 4.98 83.68± 1.60 78.59± 1.79 92.67± 2.32 85.03± 1.42

SF + Mtf 94.43± 0.89 91.37± 1.43 91.03± 1.03 87.33± 1.64 96.03± 0.85 91.46± 0.91

SF + PC 95.33± 0.63 93.42± 0.93 91.49± 1.02 87.76± 1.71 96.48± 0.93 91.90± 0.90

SF + SS 94.79± 0.77 92.31± 1.41 90.83± 0.99 86.95± 1.27 96.09± 1.00 91.29± 0.91

Mtf + PC 94.01± 0.80 90.82± 1.34 89.00± 1.12 83.24± 1.60 97.74± 1.35 89.89± 0.97

Mtf + SS 91.37± 1.30 89.45± 1.83 84.79± 1.10 77.96± 1.44 97.08± 0.74 86.46± 0.83

PC + SS 94.12± 0.61 91.66± 0.60 89.12± 1.02 83.53± 1.19 97.50± 1.12 89.97± 0.91

Mtf + PC + SS 94.13± 0.81 91.14± 1.55 89.02± 1.18 84.14± 1.70 96.24± 2.12 89.76± 1.09

SF + PC + SS 95.23± 0.65 93.17± 0.96 91.41± 1.02 86.94± 1.43 97.48± 0.71 91.90± 0.91

SF + Mtf + SS 94.73± 0.57 92.21± 0.86 90.75± 0.82 86.98± 1.44 95.90± 0.87 91.21± 0.71

SF + Mtf + PC 95.42± 0.51 93.27± 1.00 91.62± 0.80 88.46± 1.46 95.79± 0.98 91.96± 0.71

SF + Mtf + PC + SS 95.31± 0.41 93.30± 0.92 91.66± 0.86 88.15± 0.86 96.25± 0.90 92.02± 0.82

Table 3  Comparison of performances for predicting lncRNA–protein interaction by Capsule-LPI and 
other tools under 5-fold cross validation

Tools Sensitivity (%) Precision (%) F-value (%)

RPISeq(RF) 99.1± 0.2 50.1± 0.1 66.5± 0.1

RPISeq(SVM) 93.5± 0.7 50.2± 0.2 65.3± 0.4

lncPro 80.3± 0.9 52.2± 0.6 63.2± 0.4

RPI-pred 88.0± 0.3 49.8± 0.6 63.6± 0.5

rpiCool 92.0± 0.8 83.3± 0.8 87.5± 0.6

IPMiner 89.8± 1.1 85.6± 0.7 87.6± 0.6

LncADeep 97.0± 0.5 85.4± 0.8 90.8± 0.4

Capsule-LPI 97.6± 0.6 87.3± 0.2 92.2± 0.3
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tools. Since other tools do not support retraining, we only calculated the AUC and 
AUPRC of Capsule-LPI under 5-fold cross validation, which were 95.28± 0.47% and 
95.26± 0.62% , respectively. The precision of Capsule-LPI was at least 1.7% higher 
than the precision of the other tools, indicating that the LncRNA–protein interaction 
pairs obtained by Capsule-LPI prediction are highly reliable. The F-value of Capsule-
LPI also achieves a 1.4% improvement, showing that the overall performance of Cap-
sule-LPI is the best. For sensitivity, Capsule-LPI obtains 97.6%, which is slightly lower 
than the highest sensitivity of 99.1% obtained by RPISeq (RF). However, RPISeq does 
not perform well on the other two metrics, and its precision is only 50.1%. Therefore, 
overall Capsule-LPI outperforms the outstanding current tools.

Discussion
In the results section, three experiments have evaluated the performance of Capsule-
LPI. First, to verify the architecture of Capsule-LPI, it was tested against four architec-
tures. The experimental results show that the architecture of Capsule-LPI outperforms 
these four architectures, which shows that it is an effective architecture. Second, a com-
prehensive feature evaluation experiment is conducted. We consider four kinds of fea-
tures used in the existing LPI prediction tools and select the best combination of features 
for Capsule-LPI, which contains sequence features, motif information, physicochemical 
properties and secondary structure features. Finally, Capsule-LPI is compared to other 
outstanding LPI prediction tools. The results show that Capsule-LPI outperforms state-
of-the-art methods in LPI prediction.

However, a good tool should not only have good performance but also be helpful to 
scientific research and easy to use. In this regard, we have done a case study to introduce 
how this work can help with the research of lncRNAs and develop a webserver that is 
convenient to use.

One case study: finding lncRNA related diseases

To demonstrate the effectiveness and practicability of Capsule-LPI for follow-up 
research on lncRNAs, a case study for lncRNA-disease association was conducted. In 
this case, study, we used Capsule-LPI to predict which proteins interact with the top 10 
lncRNAs of interest on PubMed and less studied lncRNAs on PubMed. Then, for each 
lncRNA, the diseases were inferred according to the enriched diseases of the predicted 
interacting proteins computed by hypergeometric distribution inference. The process of 
the case study is as follows: 

1.	 We queried the PubMed database to obtain H19, MALAT1, HOTAIR, MEG3, 
NEAT1, GAS5, UCA1, XIST, PVT1 and TUG1 and downloaded the sequences of 
these lncRNAs.

2.	 A total of 26,560 protein sequences of Homo sapiens were downloaded from the 
UniProt database.

3.	 Capsule-LPI was used to predict the interacting proteins for lncRNAs, in which the 
threshold value was set to 0.87 for the higher confidence of the LPI results.

4.	 The potential disease association of each lncRNA was inferred by the enrichment 
analysis of disease association for the interacting proteins through the DAVID online 
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service website. Here, we show the potential disease association results of H19 in Fig.  
2, and the rest of the lncRNAs are referred to (Additional file 1: S6).

Furthermore, potentially related diseases are categorized into different types of dis-
eases, including metabolic, chemical dependence, cardiovascular, immune, pharmacog-
enomic, cancer, infection, neurological, renal, ageing, developmental, haematological, 
psych, reproduction and vision. The top 10 lncRNAs on PubMed are highly related to 
metabolic, chemical dependence, cardiovascular, immune and pharmacogenomic pro-
cesses. To test the validity of this result, we searched the LncRNADisease database for 
the diseases corresponding to each lncRNA, and the vast majority of the diseases were 
covered by our predictions. For example, the diseases currently known to be associated 
with H19 are coronary artery disease, gastric cancer, neural tube defects, kidney can-
cer, infertility, etc., which correspond to cardiovascular, cancer, neurological, renal, and 
reproduction, respectively. 

5.	 For some less studied lncRNAs on PubMed and LncRNADisease, the same process is 
executed. The potential disease association results of APF are shown in Fig. 3. Here, 
APF lncRNA was selected with only 2 reports in PubMed and only associated with 
myocardial infarction disease in the LncRNADisease database. By conducting the 
above process, more disease associations are inferred, including diabetes mellitus type 
2, metabolic syndrome X, obesity, asthma and hair diseases. These unreported dis-
eases can provide insightful directions for future work with biological and medical 
researchers.

All the sequences of lncRNAs, proteins, predicted interacting proteins and inferred 
potential disease associations for each lncRNA can be downloaded at our website 
(http://​csbg-​jlu.​site/​lpc/​downl​oad). This case study demonstrates the effectiveness 
and practicability of our Capsule-LPI tool. Furthermore, with the interacting proteins 
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predicted by Capsule-LPI, we can not only analyse their association with disease but also 
gain more information inference for lncRNAs such as function, evolution and subcel-
lular localization.

Webserver of capsule‑LPI

We developed a webserver of Capsule-LPI with a user-friendly interface to facilitate 
users. The screenshot of the webserver of Capsule-LPI is shown in Fig. 4. Capsule-LPI 
allows online prediction of large volumes of data. The upper input limit for both lncRNA 
and protein sequences is 100, which means 10000 LncRNA–protein pairs can be pre-
dicted online. For each task submitted, a job ID can be assigned, and the prediction 
results can be downloaded by this job ID. For more functions and help, please refer to 
“help” on the website.

Conclusions
Identifying LPI is key to understanding lncRNA functions. Compared to experimental 
methods, computational methods are much more economical and efficient. Although 
some LPI prediction computational methods have been developed, how to integrate 
multimodal features from more perspectives and build deep learning architectures 
with better recognition performance has always been a challenging research highlight. 
Inspired by the better theory and the improved performance of the capsule network 
than CNN acting in image recognition, we propose a novel multichannel capsule net-
work framework (Capsule-LPI) to integrate multimodal features for LPI prediction.

Capsule-LPI integrates four groups of multimodal features, including sequence 
features, motif information, physicochemical properties and secondary structure 
features. The architecture of Capsule-LPI is composed of four feature learning sub-
networks and one capsule subnetwork. The multichannel framework of Capsule-LPI 
can make it better to integrate and learn multiple features by considering not only the 
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predictive tendencies of each feature but also other interaction information and the 
relationships between different features.

To comprehensively evaluate the performance of Capsule-LPI, three different kinds 
of experiments were conducted: (i) tool architecture comparison; (ii) evaluation of 
different feature combinations; and (iii) comparison with existing tools. Through 
comprehensive experimental comparisons and evaluations, we demonstrated that 
both multimodal features and the architecture of a multichannel capsule network can 
significantly improve the performance of LPI prediction. Capsule-LPI performs better 
than existing state-of-the-art tools. A webserver (http://​csbg-​jlu.​site/​lpc/​predi​ct) has 
been developed to be convenient for users.

This study provides a novel and feasible LPI prediction tool based on the integration 
of multimodal features and a capsule network. In the future, we expect to integrate 
more advanced structural features and external association information to further 

Fig. 4  The screenshot of Capsule-LPI’s webserver

http://csbg-jlu.site/lpc/predict
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improve the accuracy of Capsule-LPI and provide more convenient and practical 
tools for researchers.

Abbreviations
lncRNAs: Long noncoding RNAs; LPIs: LncRNA–protein interactions; LPI: LncRNA–protein interaction; SVM: Support vec-
tor machine; RF: Random forests; DNN: Deep neural network; FC: Fully connected network.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04171-y.

Additional file 1. Supplementary materials for Capsule-LPI Contains: S1. Dataset for Capsule-LPI; S2. The details of 
motifs; S3. The architecture of Capsule-LPI; S4. Features of LncADeep used in architecture comparison section; S5. 
Samples of the architectures of Capsule-LPI for different number of feature combination; S6. The potential lncRNA-
disease association results.

Acknowledgements
The author thanks Jilin University for using high-performance computing facility and related services to support this 
work. The authors thank all the participators and providers of online lncRNA and protein resources. The authors thank 
all contributors to open source software. The authors also thank the editor and anonymous reviewers for handling this 
manuscript.

Authors’ contributions
YL conceived the study and participated in its design and coordination, and drafted the manuscript. HS participated in 
the design, carried out the model analysis, design the webserver and drafted the manuscript. SYF helped to draft the 
manuscript. WD and QZ helped to build the webserver. SYH helped to extract the features of lncRNA and proteins. All 
authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China (61872418), Natural Science Foundation 
of Jilin Province (20180101331JC and 20180101050JC). The funding bodies have not played any role in the design of the 
study, the collection, analysis, interpretation of data, or the writing of the manuscript.

Availability of data and materials
The source code of Capsule-LPI and datasets can be accessed at the following URL: http://​csbg-​jlu.​site/​lpc/​downl​oad/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer 
Science and Technology, Jilin University, Qianjin Street, 130012 Changchun, China. 2 Department of Computer Science, 
Faculty of Engineering, University of Bristol, Bristol BS8 1UB, UK. 

Received: 22 September 2020   Accepted: 5 May 2021

References
	1.	 Gutschner T, Diederichs S. The hallmarks of cancer: A long non-coding rna point of view. RNA Biology. 

2012;9:703–19.
	2.	 Guttman M, Rinn JL. Modular regulatory principles of large non-coding rnas. Nature. 2012;482:339–46.
	3.	 Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding rnas: lack of conservation does not mean lack of func-

tion. Trends Genet. 2006;22:1–5.
	4.	 Kutter C, Watt S, Stefflova K, Wilson MD, Goncalves A, Ponting CP, Odom DT, Marques AC. Rapid turnover of long 

noncoding rnas and the evolution of gene expression. PLoS Genet. 2012;8:1002841.
	5.	 Kung JT, Colognori D, Lee JT. Long noncoding rnas: past, present, and future. Genetics. 2013;193:651–69.
	6.	 Wilusz JE, Sunwoo H, Spector DL. Long noncoding rnas: functional surprises from the rna world. Genes Dev. 

2009;23:1494–504.

https://doi.org/10.1186/s12859-021-04171-y
http://csbg-jlu.site/lpc/download/


Page 18 of 19Li et al. BMC Bioinformatics          (2021) 22:246 

	7.	 Harries LW. Long non-coding rnas and human disease. Biochem Soc Trans. 2012;40:902–6.
	8.	 Fu M, Zou C, Pan L, Liang W, Qian H, Xu W, Jiang P, Zhang X. Long noncoding rnas in digestive system cancers: 

Functional roles, molecular mechanisms, and clinical implications (review). Oncol Rep. 2016;36:1207–18.
	9.	 Rathinasamy B, Velmurugan BK. Role of lncrnas in the cancer development and progression and their regulation by 

various phytochemicals. Biomedicine & Pharmacotherapy. 2018;102:242–8.
	10.	 Dangelmaier, E., Lal, A.: Adaptor proteins in long noncoding rna biology. Biochimica et Biophysica Acta (BBA)–Gene 

Regulatory Mechanisms 1863, 194370 (2020)
	11.	 McHugh, C., Russell, P., Guttman, M.: Mchugh, ca, russell, p and guttman, m. methods for comprehensive experimen-

tal identification of rna-protein interactions. genome biol 15: 203. Genome biology 15, 203 (2014)
	12.	 Muppirala UK, Honavar VG, Dobbs DJBB. Predicting rna-protein interactions using only sequence information. 

2011;12:1–11.
	13.	 Lu Q, Ren S, Lu M, Zhang Y, Zhu D, Zhang X, Li T. Computational prediction of associations between long non-

coding rnas and proteins. BMC Genomics. 2013;14:651.
	14.	 Suresh V, Liu L, Adjeroh D, Zhou X. Rpi-pred: predicting ncrna-protein interaction using sequence and structural 

information. Nucleic Acids Research. 2015;43:1370–9.
	15.	 Akbaripour-Elahabad, M., Zahiri, J., Rafeh, R., Eslami, M., Azari, M.J.J.o.T.B.: rpicool: A tool for in silico rna–protein inter-

action detection using random forest 402, 1–8 (2016)
	16.	 Li A, Ge M, Zhang Y, Peng C, Wang M. Predicting long noncoding rna and protein interactions using heterogeneous 

network model. Biomed Res Int. 2015;2015:671950.
	17.	 Ge M, Li A, Wang M. A bipartite network-based method for prediction of long non-coding rna-protein interactions. 

Genomics Proteomics Bioinformatics. 2016;14:62–71.
	18.	 Zhang W, Qu Q, Zhang Y, Wang W. The linear neighborhood propagation method for predicting long non-coding 

rna-protein interactions. Neurocomputing. 2018;273:526–34.
	19.	 Zhang W, Yue X, Tang G, Wu W, Huang F, Zhang X. Sfpel-lpi: Sequence-based feature projection ensemble learning 

for predicting LncRNA–protein interactions. PLoS Comput Biol. 2018;14:1006616.
	20.	 Zhao Q, Yu H, Ming Z, Hu H, Ren G, Liu H. The bipartite network projection-recommended algorithm for predicting 

long non-coding rna-protein interactions. Mol Ther Nucleic Acids. 2018;13:464–71.
	21.	 Zhao Q, Zhang Y, Hu H, Ren G, Zhang W, Liu H. Irwnrlpi: Integrating random walk and neighborhood regularized 

logistic matrix factorization for LncRNA–protein interaction prediction. Front Genet. 2018;9:239.
	22.	 Hu H, Zhang L, Ai H, Zhang H, Fan Y, Zhao Q, Liu H. Hlpi-ensemble: Prediction of human LncRNA–protein interac-

tions based on ensemble strategy. RNA Biol. 2018;15:797–806.
	23.	 Yi HC, You ZH, Cheng L, Zhou X, Jiang TH, Li X, Wang YB. Learning distributed representations of rna and pro-

tein sequences and its application for predicting LncRNA–protein interactions. Comput Struct Biotechnol J. 
2020;18:20–6.

	24.	 Pan X, Fan YX, Yan J, Shen HB. Ipminer: hidden ncrna-protein interaction sequential pattern mining with stacked 
autoencoder for accurate computational prediction. BMC Genomics. 2016;17:582.

	25.	 Cheng, Y., Yang, L., Man, Z., Xie, H., Zhang, C., Wang, M.D., Zhu, H.J.B.: Lncadeep: An ab initio lncrna identification and 
functional annotation tool based on deep learning, 22 (2018)

	26.	 Zhang SW, Zhang XX, Fan XN, Li WN. Lpi-cnncp: Prediction of LncRNA–protein interactions by using convolutional 
neural network with the copy-padding trick. Anal Biochem. 2020;601:113767.

	27.	 Zhang Y, Jia C, Kwoh CK. Predicting the interaction biomolecule types for lncrna: an ensemble deep learning 
approach. Brief Bioinform. 2020.

	28.	 Wekesa JS, Meng J, Luan Y. A deep learning model for plant LncRNA–protein interaction prediction with graph 
attention. Mol Genet Genomics. 2020;295:1091–102.

	29.	 Wekesa JS, Meng J, Luan Y. Multi-feature fusion for deep learning to predict plant LncRNA–protein interaction. 
Genomics. 2020;112:2928–36.

	30.	 Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Com-
puter Vision

	31.	 Hinton GEJS. Deep belief networks. 2009;4:5947.
	32.	 Williams R, Zipser DJNC. A learning algorithm for continually running fully recurrent neural networks. 2014;1:270–80.
	33.	 Schuster, M., Paliwal, K.K.J.I.T.o.S.P.: Bidirectional recurrent neural networks 45, 2673–2681 (2002)
	34.	 Laar, P.v.d., Heskes, T., Gielen, S.J.N.N.: Task-dependent learning of attention 10, 981–992 (1997)
	35.	 Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules (2017)
	36.	 Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M.: Graph neural networks: A review of methods and 

applications (2018)
	37.	 Deng Y, Xu X, Qiu Y, Xia J, Zhang W, Liu S. A multimodal deep learning framework for predicting drug-drug interac-

tion events. Bioinformatics. 2020;36:4316–22.
	38.	 Yuan, J., Wu, W., Xie, C., Zhao, G., Zhao, Y., Chen, R.: Npinter v2.0: an updated database of ncrna interactions. Nucleic 

Acids Research 42, 104–108 (2013)
	39.	 He H, Garcia EA. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering. 

2009;21:1263–84.
	40.	 Liu XY, Wu J, Zhou ZH. Exploratory undersampling for class-imbalance learning. 2009;39.
	41.	 Yi H-C, You Z-H, Huang D-S, Li X, Jiang T-H, Li L-P. A deep learning framework for robust and accurate prediction of 

ncrna-protein interactions using evolutionary information. Molecular Therapy–Nucleic Acids. 2018;11:337–44.
	42.	 Pan JF, Wang T, Yu YH, Zhang DB. Preparation and thermal properties of non-equilibrium al/ptfe reactive materials. 

Hanneng Cailiao/Chinese Journal of Energetic Materials. 2016;24:582–6.
	43.	 Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H. Predicting protein-protein interactions based only on 

sequences information. Proc Natl Acad Sci U S A. 2007;104:4337–41.
	44.	 Jiang, P., Singh, M., Coller, H.A., Zavolan, M.J.P.C.B.: Computational assessment of the cooperativity between rna bind-

ing proteins and micrornas in transcript decay 9, 1003075 (2013)



Page 19 of 19Li et al. BMC Bioinformatics          (2021) 22:246 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	45.	 Pancaldi V, Bähler J. In silico characterization and prediction of global protein-mrna interactions in yeast. NUCLEIC 
ACIDS RES. 2011;39.

	46.	 Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, Gueroussov S, Albu M, Zheng H, Yang A, Na H, Irimia M, 
Matzat LH, Dale RK, Smith SA, Yarosh CA, Kelly SM, Nabet B, Mecenas D, Li W, Laishram RS, Qiao M, Lipshitz HD, Piano 
F, Corbett AH, Carstens RP, Frey BJ, Anderson RA, Lynch KW, Penalva LOF, Lei EP, Fraser AG, Blencowe BJ, Morris QD, 
Hughes TR. A compendium of rna-binding motifs for decoding gene regulation. Nature. 2013;499:172–7.

	47.	 Morozova N, Allers J, Myers J, Shamoo YJB. Protein-rna interactions: exploring binding patterns with a three-dimen-
sional superposition analysis of high resolution structures. 2006;22:2746–52.

	48.	 Bull HB, Breese K. Surface tension of amino acid solutions: A hydrophobicity scale of the amino acid residues. 
Archives of Biochemistry and Biophysics. 1974;161:665–70.

	49.	 Kyte, J., Doolittle, R.F.J.J.o.M.B.: A simple method for displaying the hydropathic character of a protein 157, 105–132 
(1982)

	50.	 Zimmerman, J.M., Eliezer, N., Simha, R.J.J.o.T.B.: The characterization of amino acid sequences in proteins by statistical 
methods 21, 170–201 (1968)

	51.	 Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974;185:862–4.
	52.	 Eisenberg, D., Schwarz, E., Komaromy, M., Wall, R.J.J.o.M.B.: Analysis of membrane and surface protein sequences 

with the hydrophobic moment plot 179, 125–142 (1984)
	53.	 Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. 1981;78:3824–8.
	54.	 Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L.: Viennarna package 

2.0. Algorithms for Molecular Biology 6, 26 (2011)
	55.	 Frishman D, Argos P. Incorporation of non-local interactions in protein secondary structure prediction from the 

amino acid sequence. Protein Engineering, Design and Selection. 1996;9:133–42.
	56.	 Chou, P.Y., Fasman, G.D.J.A.i.E., Biology, R.A.o.M.: Prediction of the secondary structure of proteins from their amino 

acid sequence 47, 145–148 (1978)
	57.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks 

from overfitting. Journal of Machine Learning Research. 2014;15:1929–58.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Capsule-LPI: a LncRNA–protein interaction predicting tool based on a capsule network
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Capsule-LPI overview
	Data description
	Multimodal features extraction
	Sequence features
	Motif information
	Physicochemical properties
	Secondary structure features

	Architecture of capsule-LPI
	Evaluation criteria

	Results
	Architecture comparison
	Evaluation of combinations of different features
	Comparison of capsule-LPI performance with existing tools

	Discussion
	One case study: finding lncRNA related diseases
	Webserver of capsule-LPI

	Conclusions
	Acknowledgements
	References


