
Multi‑labelled proteins recognition 
for high‑throughput microscopy images using 
deep convolutional neural networks
Enze Zhang1,2, Boheng Zhang3, Shaohan Hu4, Fa Zhang1,2, Zhiyong Liu1,2 and Xiaohua Wan1,2*   

From Fifteenth International Conference on Intelligent Computing (ICIC 2019)  
Nanchang, China. 3-6 August 2019

Abstract 

Background:  Proteins are of extremely vital importance in the human body, and no 
movement or activity can be performed without proteins. Currently, microscopy imag-
ing technologies developed rapidly are employed to observe proteins in various cells 
and tissues. In addition, due to the complex and crowded cellular environments as well 
as various types and sizes of proteins, a considerable number of protein images are 
generated every day and cannot be classified manually. Therefore, an automatic and 
accurate method should be designed to properly solve and analyse protein images 
with mixed patterns.

Results:  In this paper, we first propose a novel customized architecture with adaptive 
concatenate pooling and “buffering” layers in the classifier part, which could make the 
networks more adaptive to training and testing datasets, and develop a novel hard 
sampler at the end of our network to effectively mine the samples from small classes. 
Furthermore, a new loss is presented to handle the label imbalance based on the effec-
tiveness of samples. In addition, in our method, several novel and effective optimiza-
tion strategies are adopted to solve the difficult training-time optimization problem 
and further increase the accuracy by post-processing.

Conclusion:  Our methods outperformed the SOTA method of multi-labelled protein 
classification on the HPA dataset, GapNet-PL, by above 2% in the F1 score. Therefore, 
experimental results based on the test set split from the Human Protein Atlas dataset 
show that our methods have good performance in automatically classifying multi-class 
and multi-labelled high-throughput microscopy protein images.

Keywords:  Protein pattern recognition, DNNs, Multi-class and multi-label, Label 
imbalance, High-throughput microscopy images

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Zhang et al. BMC Bioinformatics          (2021) 22:327  
https://doi.org/10.1186/s12859-021-04196-3

*Correspondence:   
wanxiaohua@ict.ac.cn 
1 High Performance 
Computer Research Center, 
Institute of Computing 
Technology, Chinese 
Academy of Sciences, Beijing, 
China
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-9340-878X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04196-3&domain=pdf


Page 2 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 

Background
Proteins execute all kinds of functions in the human body within different types of cells, 
and proteins in various environments perform differently. Therefore, recognizing and 
understanding proteins under distinct circumstances are vital to studying the physiolog-
ical activity of people. Recently, the HPA (Human Protein Atlas) [1] was built as a smart 
microscopy system to identify and localize proteins through high-throughput images. 
An algorithm capable of classifying mixed patterns of proteins was needed to make the 
system “smarter”. Although experts can generally classify protein images manually, the 
process would be highly time consuming. In addition, there are many similar and confus-
ing patterns and features in these protein images, making this task even more difficult. 
Therefore, the algorithm or method is expected to accurately and efficiently recognize 
multi-patterns that are mixed together among various types of cells. As the HPA project 
has provided adequate protein microscopy images, as shown in Fig. 1, with annotations 
to feed a large neuron network, we decided to adopt the DNN method, which has good 
performance in classifying images.

DNNs (deep neuron networks) have become an extremely popular tool in computer 
vision and image analysis areas. In particular, CNNs (convolutional neuron networks), 
e.g., InceptionNet [2], ResNet [3], DenseNet [4], have been applied to classification, 
detection, segmentation, and tracking due to their good feature learning and representa-
tion. Recently, CNNs have also been used to analyse microscopy images, such as biologi-
cal images and medical images [5], such as MIL [6] and M-CNN [7]. However, the effects 
of these methods are usually unsatisfactory for extremely noisy data. Additionally, the 
patterns in these data are always complex, and the resolution is high. Therefore, new 
methods are urgently required to adapt to this kind of dataset.

GapNet-PL [8] is a SOTA architecture designed to tackle the characteristics of high-
throughput fluorescence microscopy imaging data. Because the spatial details and con-
text are equally important in biomedical recognition tasks, this architecture extracts and 
combines some different levels and stages of intermediate features, which perform well 

Fig. 1  One protein microscopy image from HPA Cell Atlas datasets (above) and the gray images of 4 
channels (RGBY) generated from the microscopy image (below)



Page 3 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 	

on HPA datasets. However, the lightweight backbones of GapNet are too naive to deal 
with such complex protein datasets well. Meanwhile, the performance will decline in sit-
uations of severe label imbalance. We designed a novel data processing method while 
making training and testing datasets based on the data characteristics.

First, when designing networks, we proposed customized layers such as “buffering” 
layers and adaptive concatenate pooling (ACP) layers in the base models of the encoder 
and head parts, which made the proposed networks more adaptive to the task. Addi-
tionally, we introduced the hard sampler at the end of the architecture for mining hard 
examples better. Second, E-loss was proposed based on the effectiveness of samples for 
each class to solve the label imbalance. Finally, we developed novel optimization strate-
gies in training and testing time. Group learning and cyclic learning can help the models 
converge better, and the multi-threshold searching process fits the model to the valida-
tion and test sets, both improving the accuracy of the proposed methods.

The experimental results demonstrate that our methods make the base models achieve 
higher F1 scores than other baseline approaches, including the SOTA method. In the 
following section, we explain our datasets in detail, as well as the methods proposed for 
improving the model performance.

Datasets

All experiments were conducted on datasets released for the “Human Protein Atlas 
Image Classification” challenge by the Human Protein Atlas project [9]. The main data-
set contains approximately 30,000 samples for training and 11,500 samples for testing 
from part of the HPA Cell Atlas led by Dr. Emma Lundberg. There are 28 distinct classes 
(or types) of proteins in the dataset. The data were collected by the confocal micros-
copy approach. However, the dataset includes 27 different cell types with highly differ-
ent morphologies, which could influence the protein patterns of the distinct organelles. 
Every sample in the dataset is formed from 4 image channels, red, green, blue and yel-
low. Each channel filter is stored as an individual file. The red channel represents micro-
tubules, green represents proteins, blue represents the nucleus, and yellow represents 
the reticulum.

Obviously, our classification task is multi-class and multi-label. The number of labels 
of one sample can range from one to twenty-eight. In addition, as we can see in Fig. 2, 
there is an extreme label imbalance in the dataset. Some majority types of proteins may 
take most (several tens of thousands) of the whole dataset, e.g., the nucleoplasm and 

Fig. 2  Long tail distribution that all 28 protein classes follow in the whole dataset



Page 4 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 

cytosol. Rare classes, such as rods and rings, can account for only a few hundred, which 
are difficult to learn but play an important role in the score. Therefore, this imbalance 
problem urgently needs to be solved. We removed approximately 6000 duplicated sam-
ples, which seem extremely similar to image hashing because they are mostly majority 
classes.

To handle this imbalance problem, we first oversample the minority classes a few 
times to increase their number. We cannot oversample too much because this can cause 
overfitting. Then, we adopt multi-label stratification splitting to balance any inconsistent 
minority distributions that may exist. We split the training/validation data and different 
training data folds randomly and equally.

Although the green filters represent proteins, as shown in Fig. 3, we utilized other 
channels as well as references. Therefore, we used all the filters as our inputs.

The data were provided as two versions of the same images, a scaled set of 512 × 512 
PNG files and full-sized original images (a mix of 2048 × 2048 and 3072 × 3072 TIFF 
files). However, there are only full-sized images for our external data. To obtain more 
accurate prediction results, full-sized original images were adopted. Although the 
original images are of high quality, we must find a balance between model efficiency 
and accuracy. Therefore, we resized every image to 768 × 768 or 1024 × 1024 depend-
ing on its original size. We randomly crop 512 × 512 patches from 768 × 768 images 
(or cropping 768 × 768 patches from 1024 × 1024 images) when training-time aug-
mentations before feeding the images to the models.

Results and discussion
Environments and settings

All experiments are implemented with Python 3.6 under the PyTorch framework 
[10]. To conduct a fair comparison, we reimplemented all methods, including all 
baselines and our methods, and optimized the relevant hyper-parameters and even 

Fig. 3  Protein images (green) related to endosomes and three other filter channels. The first row shows a 
sample that contains only endosomes proteins. The second row displays another sample containing two 
mixed types of protein including endosomes and lysosomes



Page 5 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 	

structures for each method. As the classification task is multi-class and multi-label 
with 28 classes, the final output layers of all networks contain 28 units. All models 
are optimized by E-loss or other basic losses for comparison. Since there is no extra 
information, we cannot set α for each class in E-loss. Therefore, we tend to set α as a 
fixed value (such as 0.9, 0.99…) for all classes since the Vs are usually large enough. 
The batch sizes for the models depend on memory consumption and are set as large 
as possible to fit 8 NVIDIA GTX 1080 Ti GPUs. We use a stochastic gradient descent 
(SGD) with a default learning rate of 0.01, default weight decay of 1e−6 and, default 
momentum of 0.9 for the optimizer of all models.

Trainings settings for different base models

DenseNet50

DenseNet [4] is an extraordinary architecture with good performance and a low num-
ber of parameters due to its feature reuse. We use the learning rates of [2e−3, 4e−3] 
to train for approximately 5 cycles until we find the best performance.

ResNet50

For modified ResNet50, cycle learning with a length of 4 epochs is used, and we apply 
the learning rates of [1e−2, 2e−2] to train for 3 or 4 cycles until we find the best 
performance. One buffering layer of 1024 units with a 0.5 dropout ratio is employed 
following the flattened ACP layer of 4096 units. We use 512 × 512 crops to feed the 
networks and adopt a batch size of 74 after several attempts.

InceptionV4

InceptionV4 has been widely applied. Although it improves the memory consumption 
problem on InceptionV3, it is still space-consuming. Therefore, we use a batch size 
of 48 with an input size of 512 × 512. The channel number of the encoder outputs is 
1536, and it becomes 3072 after the ACP layer. We add one buffering layer with 1024 
units for minimal information maintenance, followed by a 50% dropout.

GapNet‑PL

This architecture has a relatively simple structure and a low number of parameters. 
To achieve the best performance, we add some convolutional blocks in the first step, 
thus passing more features to the second stage. A large input size of 768 × 768 is fed 
because we want to test the best capability on the dataset. The SGD with a momen-
tum of 0.9 is kept as well as its original initial learning rate of 0.01. To avoid overfit-
ting, the following regularization techniques are applied: L1 norm of 1e−7 and L2 
norm of 1e−5, which is the same as the original settings. The dropout rate in the fully 
connected layers is still 30%, and we use a large batch size of 128.

ResNet101

Because we have enough data for feeding this large network, the model shall be solid. 
The alteration of ResNet101 is the same as that of ResNet50 except that the ACP layer 



Page 6 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 

is followed by two separate buffering layers with 4096 units, a 0.25 dropout ratio and 
1024 units, a 0.5 dropout ratio.

SENet

The motivation of this network is explicitly to find the relationship between features 
and channels [11]. The squeeze-and-excitation mechanism helps the layers of the 
networks to “attend” the feature maps better and reduces the impact of unimportant 
features on the total results. Since there are many different kinds of proteins in our 
datasets, SENet could be helpful in weighting different filter channels based on the 
type of input data. We use [1e−3, 3e−3, 5e−3] as the learning rate to train the origi-
nal SENet until divergence. A batch size of 80 is used.

Evaluation and results

We use the F1-macro as our evaluating metric because it is a multi-class multi-labelled 
task. The equations are as follows:

where R denotes the recall and P represents precision. We use TP (true positive) and 
FN (false negative) to compute the recall scores and use TP and FP (false negative) for 
the precision scores. The F1 for each class is calculated by P and R. Because there are 
multiple classes, we averaged the F1 of each class and obtained an F1 macro score that 
represents the score of total classes.

(1)R =
TP

TP+FN

(2)P =
TP

TP+FP

(3)F1 =
2PR
P+R

(4)F1 macro =

∑
N

i=1
F1i

N

Table 1  Comparison of the model performance (F1) between original and modified ones

The bold of “0.771” means that SENet with hard sampler performs best for the model performance (F1)

Model Original Customized With hard 
sampler

ResNet50 (fold 0) 0.737 0.750 0.761

ResNet50 (fold 1) 0.729 0.734 0.752

ResNet50 (fold 2) 0.735 0.746 0.758

ResNet50 (fold 3) 0.731 0.741 0.749

ResNet50 (fold 4) 0.726 0.730 0.755

InceptionV4 (single fold) 0.736 0.749 0.756

SENet (single fold) 0.745 0.736 0.771
Dense50 (random fold 1) 0.732 0.738 0.741

Dense50 (random fold 2) 0.729 0.735 0.748

Dense50 (random fold 3) 0.732 0.741 0.754

ResNet101 (single fold) 0.742 0.758 0.760



Page 7 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 	

Here, we use three tables to demonstrate the evaluation results of the proposed 
methods because the confusion matrix cannot be used. For each sample in the multi-
labelled classification tasks, it is somewhat difficult to say which class is mistaken for 
another if there are two or more classes in the label of one sample. In Table 1, we can 
see that the proposed customized architectures help to greatly improve the identifica-
tion accuracy (F1) of multi-class and multi-labelled protein images compared with 
the original backbones. Additionally, there is a large increase in F1 with hard example 
mining at the end of the networks. Therefore, this method should work well in most 
label-imbalanced situations. Additionally, we tried some more recent architectures 
in the backbone. Instead of using ResNet18, we adopted DenseNet50 with similar 
parameters but more layers, and it works better with or without modified architec-
tures. We also tried SENet, which performed best in this task.

Table 2  Scores of models with E-loss based on modified architectures (except GapNet)

The bold of “0.782” means that the modified SENet performs best in this stage

Model with E-loss Macro F1

ResNet50 (fold 0) 0.770

ResNet50 (fold 1) 0.766

ResNet50 (fold 2) 0.768

ResNet50 (fold 3) 0.758

ResNet50 (fold 4) 0.762

InceptionV4 (single fold) 0.767

SENet (single fold) 0.782
Dense50 (random fold 1) 0.758

Dense50 (random fold 2) 0.761

Dense50 (random fold 3) 0.766

ResNet101 (single fold) 0.778

GapNet-PL 0.765

Table 3  F1 of models with the proposed optimization strategies based on Table 2 (except GapNet)

The bolds of “0.786, 0.784 and 0.789” mean that SENet, ResNet101 and SENet can reach up to the best macro F1 score for TA, 
TE and TA+TE, respectively

Model TA TE TA + TE

ResNet50 (fold 0) 0.774 0.772 0.774

ResNet50 (fold 1) 0.769 0.771 0.773

ResNet50 (fold 2) 0.773 0.769 0.775

ResNet50 (fold 3) 0.763 0.760 0.765

ResNet50 (fold 4) 0.765 0.763 0.767

InceptionV4 (single fold) 0.772 0.770 0.772

SENet (single fold) 0.786 0.783 0.789
Dense50 (random fold 1) 0.762 0.760 0.765

Dense50 (random fold 2) 0.765 0.763 0.766

Dense50 (random fold 3) 0.771 0.769 0.774

ResNet101 (single fold) 0.782 0.784 0.785

GapNet-PL 0.765 0.765 0.765



Page 8 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 

In Table 2, we know that sample duplication does exist in datasets, and E-loss works 
well together with other losses (focal) dealing with label imbalance problems based 
on the effective sample number of each class. The models can improve 1–2% in F1 
with E-loss. Nevertheless, the modified SENet performs best in this stage and can 
outperform GapNet by approximately 2%.

In Table  3, where TA denotes training-time optimization and TE denotes testing 
time, we can obtain the performance of all models based on Table 2, optimized with 
the proposed strategies (both training time and inference time). Although the effect 
may not be as significant as the previous methods, it can still help to increase approx-
imately 1% in macro F1, making almost every model with single-fold data outperform 
the SOTA model GapNet-PL. Finally, we obtained some models with excellent per-
formance using the proposed methods, which is proven in the tables above. The best 
score from the SENet backbone can reach up to 0.789 with only a single model, which 
is even 2.4% higher in the macro F1 score than that of the state-of-the-art model 
GapNet-PL.

Conclusion
In this work, we proposed an effective data processing method, as we made our train-
ing and testing datasets. When designing our network architectures, we proposed our 
customized layers, such as “buffering” layers and ACP layers, which made our networks 
more adaptive to the task. We proposed the hard sampler in our architecture for mining 
the samples of small classes better. We proposed a new loss to handle the label imbal-
ance based on the sample effectiveness. We developed novel and effective optimization 
strategies in training and testing time. We designed group learning and cyclic learning 
with learning rate scheduling to solve the difficult optimization problem during training. 
For the test time post-process design, we proposed multi-threshold searching and multi-
sized model ensembling.

Our evaluation results based on the test set split from the Human Protein Atlas dataset 
show the extraordinary performance of our methods. Our methods even outperformed 
the SOTA method of multi-labelled protein classification on the HPA dataset, GapNet-
PL, by over 2% in the F1 score. This work demonstrates the great contributions and use-
fulness of our methods and networks for multi-class and multi-labelled high-throughput 
microscopy protein image recognition.

In future work, we may try different combinations of input channels instead of using all 
provided channel filters. We will adopt larger input crops if more computing resources 
are available.

Methods
Modified architectures and hard example mining

We basically adopt some typical classification backbones, such as ResNet or Inception-
Net, with our novel modifications. We improve the networks with input layers, con-
nection parts and head parts to make our models more accurate and adaptive. Figure 4 
shows the novel network architecture we proposed. The encoders are collected mostly 
from the widely used classifiers because the latter have been proven effective in many 



Page 9 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 	

tasks. We replace the 3-channel input layers with 4 channels, as we want to use all filter 
channels.

We drop the GAP (global average pooling) layers at the beginning of other typical 
heads in the connection parts because high-throughput microscopy images are often 
related to high resolution and various sizes. Instead, we propose and build an ACP layer 
by concatenating two kinds of pooling layers, an adaptive average pooling layer and an 
adaptive max-pooling layer, in the channel dimension. An adaptive average pooling layer 
applies GAP (global average pooling) over an input signal composed of several input 
planes, while an adaptive max-pooling layer applies GMP (global max-pooling). By com-
bining them, we can acquire both advantages. The output size is H × W for any input 
size. The number of output features is equal to the number of input planes. This strat-
egy allows us to decide what output dimensions we want instead of choosing the input 
dimensions to fit a desired output size. Therefore, we set the H and W to be 1. Regardless 
of the size of the input images, this layer will act as an adaptive global pooling. We utilize 
and concatenate both types of pooling layers to provide the model with the information 
of both methods and to improve performance.

In the head parts, we add some “buffering layers” to prevent rapid feature information 
loss. Usually, the channel amounts would be large after the encoder; if we shrink the 
channel number to the target channel number as classifiers usually do, many features 
will be lost in this fully connected process. Therefore, we add one or two middle FC lay-
ers with decreasing numbers of neurons to maintain the feature information.

Since there is extreme label imbalance in datasets, the samples of large classes are 
dominant in the final losses. The small samples, on the contrary, are hard to learn. After 
several backward iterations of the gradient, the weights are trained to predict nor-
mal samples better, and losses of those samples tend to be small. Here, we introduce a 
method that can learn the small classes better based on the final losses of each batch. We 
designed a hard sampler to first sort the samples in this batch by their losses (as shown 
in Fig. 4). Then, we select the top K losses, which are basically generated by small classes, 
from B samples. Therefore, the majority classes contribute almost nothing during back-
propagation, while the minority classes dominate the learning process, making it easier 
to learn the head examples. These novel modifications all worked in the experiments 
because they helped the classifiers be more accurate and adaptive to this kind of task, 
especially for the learning of hard samples in small classes.

Fig. 4  The novel network architecture with 4-channel inputs and ACP layer, as well as Hard Sampler for HEM. 
Full explanation of GAP/GMP/ACP is  available at the end of the article



Page 10 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 

E‑loss with label imbalance and effectiveness

As there is severe label imbalance in the datasets, we adopt a weighted loss function for 
different classes based on their numbers. However, there are more similarities among 
samples in majority classes, which would cause duplication or overlapping in feature 
space. Therefore, technically, assume we have n samples, and each takes 1 volume in the 
feature space area. It is not hard to find that the total volume V must be less than n 
because there may be overlap among every group of samples. The larger the class is, the 
more duplications may exist in this group. Therefore, it is illogical to simply use the sam-
ple number as the loss weight for that class. We should use the effective numbers to do 
that.

Now, we have to calculate the expectation number (volume) Qn with n current sam-
ples. Assuming the probability that the newly added sample can be represented by other 
existing samples is p, the probability is 1 − p when adding a brand-new sample in the 
feature space. Figure 5 demonstrates that the current sample could overlap with the pre-
vious samples by possibility p or not overlap by possibility 1 − p. Obviously, p = Qn−1/V. 
Therefore, we have the following equation:

Apparently, Q1 = 1. Let V−1
V  = α , and we can obtain Qn = 1−αn

1−α
 from induction. When 

V = 1, α = 0, Q1 = 1. When V → ∞ , α → 1 , Qn → n . Assume the batch number is B, and 
they belong to classes c1 and c2 . . . ck , respectively; then, we have:

where L
(
pc, yc

)
 denotes the loss (any loss function such as BCE) between the ground 

truth and predictions, and nc denotes the sample number of class C. Therefore, the 
weight 1nc of each class is replaced by 1

Qnc
 from the proposed E-loss, which contributes 

greatly to the final results.

(5)Qn = p ∗ Qn−1 + (1− p) ∗ (Qn−1 + 1) = V−1
V Qn−1 + 1

(6)EL =
∑

c

1
Qnc

L
(
pc, yc

)
=

∑

c

1−α
1−anc L

(
pc, yc

)

Fig. 5  The current sample could be overlapped with previous samples by possibility p, or not by possibility 
1 − p. Dark cycle means some random sample in this iteration, and the gray rectangle denotes the feature 
space of the existing samples obtained before



Page 11 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 	

Optimization strategies

Although we may have designed good architectures, we discovered that it is rather chal-
lenging to train on this dataset, and we cannot obtain an ideal result. Therefore, we 
design more effective and efficient optimization strategies at training and testing times.

Training‑time optimization strategies

When choosing the training strategies, we divide our networks into 2 different layer 
groups with distinct learning rates during training. Moreover, we adopted cyclic learn-
ing with cosine annealing and learning rate scheduling during gradient descent.

The first learning rate group contains mainly the encoder layers, and the second group 
will usually contain the heads. We apply distinct learning rates to different layer groups. 
Building CNNs based on pre-trained weights usually results in better performance than 
building CNNs from scratch because pre-trained weights have already learned many 
object features from other data, which means that they have some prior knowledge. The 
earlier the layers lie, the more basic features they contain. The primary features do not 
need to change because they are very similar. It is necessary to change most weights of 
the head for a new task because they are newly initialized and present more high-level 
object features. Because the images in the HPA datasets are quite different from those 
in ImageNet, which only include normal and daily pictures, we decrease the learning 
rate of the first layer group (encoder part) by only 2–3 times compared with that of the 
second group. Therefore, the models are trained with [lr/3, lr] or [lr/4, lr/2, lr], where lr 
denotes the learning rate.

When choosing the starting learning rates, we no longer attempt the learning rate 
from a larger learning rate to a small one. We first find the optimal initial learning rate 
with a relatively low learning rate (approximately 1e−5). Then, we gradually increase 
the learning rate exponentially with each batch, and the loss is recorded in an array for 
each learning rate at the same time. The current optimal learning rate is the value found 
where the learning rate is highest yet the loss is still decreasing.

Because we have our optimal starting learning rate, we adopted cycle learning with 
learning rate scheduling to train our models (see Fig.  6b). Cycle learning, inspired by 
Leslie Smith’s work [12], contains two key factors: cosine annealing and cycle repeti-
tion. During the training process, the total loss of the architecture should be increasingly 
closer to the minimum (local or global). However, it is often difficult to converge as the 
loss approaches its minimum value. Cosine annealing solves the problem by decreasing 
the learning rate following the mode of cosine function with each batch of data. We start 
at a high-level learning rate and decrease the learning rate based on a cosine function. 
We found that this mode of learning rate decrease works very well with the convergence 
problem in this task. Moreover, it is very likely for loss to be trapped at its local mini-
mum instead of at the global minimum during training. Therefore, if we increase the 
learning rate suddenly, the current loss may find its way towards the global minimum by 
“jumping” out of the local minimum with a larger step. We reset the learning rate each 
time the learning rate drops to its minimum value by cosine annealing, and we call that 
a “cycle”. We repeat the process every time one cycle is performed until the loss hardly 
decreases.



Page 12 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 

Testing‑time optimization strategies

Additionally, we proposed a novel and effective method for choosing the thresholds 
for each class. During training, we simply used 0.5 as the threshold value of output 
logits for 28 classes. However, at test time, 0.5 may not be the best value for each 
class. The model responds very strongly to common classes because they have more 
training samples than the others. Therefore, the probability scores of these classes 
are more likely to be higher than 0.5, even approaching 1.0. The rare classes, in con-
trast, tend to obtain much smaller scores, even close to 0. We first find the optimal 
single threshold for all classes by searching the threshold from 0.1 to 0.9 by a step 
of 0.05 and further obtain an optimal validation F1 score at one threshold. Then, we 
use this value, equal to 0.3, as the initial value for each class. We start from the first 
class and fix the thresholds of other classes, finding and choosing the local optimal 
value with which the highest score can be achieved on the validation set. Next, we 
move on to the second class and do the same. Obviously, this is a “greedy” process 
(see Fig. 6c). After we finish all 28 classes, the process is performed, and it works well 
in the experiments.

Fig. 6  a The network is divided into 2 layer groups with separate learning rates. b An example of cycle 
learning with cosine annealing and cycle repetition (lr restart). c The single (above) and multi-threshold 
(below) in the post optimization process based on greedy searching



Page 13 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 	

For ensemble learning, we used cross-validation for each backbone model. Finally, 
we use models with different input sizes and different architectures. The performance 
improved slightly on single models by averaging the advantages of various models with 
different input sizes.

Abbreviations
HPA: Human Protein Atlas; CNNs: Convolutional neuron networks; TA: Training-time optimization; TE: Testing-time optimi-
zation; GAP: Global average pooling; GMP: Global max pooling; ACP: Adaptive concatenate pooling; HEM: Hard example 
mining.

Acknowledgements
The authors thank the Fa Zhang’s Research Group of ICT, NCIC to support computation resources and thank the HPA to 
provide open-sourced data for experiments.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 22 Supplement 3, 2021: Proceedings of the 2019 
International Conference on Intelligent Computing (ICIC 2019): bioinformatics. The full contents of the supplement are 
available online at https://​bmcbi​oinfo​rmati​cs.​biome​dcent​ral.​com/​artic​les/​suppl​ements/​volume-​22-​suppl​ement-3.

Authors’ contributions
EZ, BZ and SH collected the data. EZ and XW designed the project, developed the algorithm and methods, did the cod-
ing and computation, and wrote the manuscript. FZ and ZL revised the manuscript. All authors read and approved the 
final manuscript.

Funding
This research is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences Grant 
(No. XDA19020400), the National Key Research and Development Program of China (Nos. 2017YFE0103900 and 
2017YFA0504702, 2017YFE0100500), Beijing Municipal Natural Science Foundation Grant (No. L182053), and the NSFC 
projects Grant (Nos. U1611261, U1611263, 61672493, 61932018 and 62072441). Publication costs are funded by NSFC 
projects Grant (Nos. U1611263, U1611261 and 61672493). The funding body did not play any role in the study design 
and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets used in our experiments are available at https://​www.​kaggle.​com/c/​human-​prote​in-​atlas-​image-​class​ifica​
tion. The images included in this study are available in the HPA Cell Atlas (https://​www.​prote​inatl​as.​org).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Bei-
jing, China. 2 University of Chinese Academy of Sciences, Beijing, China. 3 Department of Automation, Tsinghua University, 
Beijing, China. 4 School of Software, Tsinghua University, Beijing, China. 

Received: 26 April 2021   Accepted: 13 May 2021

References
	1.	 The human protein atlas homepage. http://​www.​prote​inatl​as.​org/.
	2.	 Szegedy C, Ioffe S, Vanhoucke V. Inception-v4, inception-ResNet and the impact of residual connections on learning. 

In: Proceedings of the thirty-first AAAI conference on artificial intelligence (AAAI), p. 4278–4284; 2017.
	3.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: IEEE conference on computer vision 

and pattern recognition (CVPR), p. 770–778; 2016.
	4.	 Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: IEEE conference 

on computer vision and pattern recognition (CVPR), p. 2261–2269; 2017.
	5.	 Dürr O, Sick B. Single-cell phenotype classification using deep convolutional neural networks. J Biomol Screen. 

2016;21(9):998–1003.
	6.	 Kraus OZ, Ba JL, Frey BJ. Classifying and segmenting microscopy images with deep multiple instance learning. 

Bioinformatics. 2016;32(12):i52–9.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-22-supplement-3
https://www.kaggle.com/c/human-protein-atlas-image-classification
https://www.kaggle.com/c/human-protein-atlas-image-classification
https://www.proteinatlas.org
http://www.proteinatlas.org/


Page 14 of 14Zhang et al. BMC Bioinformatics          (2021) 22:327 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	7.	 Godinez WJ, Hossain I, Lazic SE, Davies JW, Zhang X. A multi-scale convolutional neural network for phenotyping 
high-content cellular images. Bioinformatics. 2017;33(13):2010–9.

	8.	 Rumetshofer E, Hofmarcher M, Röhrl C, Hochreiter S, Klambauer G (2019) Human-level protein localization with 
convolutional neural networks. In: International conference on learning representations (ICLR); 2019.

	9.	 Human protein atlas image classification challenge homepage; 2018. https://​www.​kaggle.​com/c/​human-​prote​in-​
atlas-​image-​class​ifica​tion.

	10.	 PyTorch 1.0 library HomePage. https://​pytor​ch.​org/. 23 Feb 2019.
	11.	 Hu J, Shen L, Sun G. Squeeze-and-excitation networks. arXiv preprint; 2017.
	12.	 Smith LN. Cyclical learning rates for training neural networks. In: 2017 IEEE winter conference on applications of 

computer vision (WACV), p. 464–472; 2017.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.kaggle.com/c/human-protein-atlas-image-classification
https://www.kaggle.com/c/human-protein-atlas-image-classification
https://pytorch.org/

	Multi-labelled proteins recognition for high-throughput microscopy images using deep convolutional neural networks
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Datasets

	Results and discussion
	Environments and settings
	Trainings settings for different base models
	DenseNet50
	ResNet50
	InceptionV4
	GapNet-PL
	ResNet101
	SENet

	Evaluation and results

	Conclusion
	Methods
	Modified architectures and hard example mining
	E-loss with label imbalance and effectiveness
	Optimization strategies
	Training-time optimization strategies
	Testing-time optimization strategies

	Acknowledgements
	References


