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Background
Cancer is an abnormal lesion formed when the organism, under the action of various 
carcinogenic factors, loses the normal regulation of the growth of local tissue cells at 
the genetic level, resulting in abnormal cell growth [1]. In the field of cancer research, 
the study of subtype classification is a very important task. Objective and accurate 
subtype classification of cancer can enable doctors to correctly understand the patho-
genesis and primary location of cancer, which is of great significance to the study of 
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cancer genesis [2]. Based on the different cancer sites and the different pathogene-
sis of the same type of cancer, the World Health Organization(WHO) has published 
guidelines for the classification of cancer and its subtypes, providing a global diagnos-
tic standard for cancer and pathologists [3, 4].

With the completion of the Human Genome Project, large amounts of RNA 
sequence data need to be processed and analysed more rapidly [5]. Since then, 
high-throughput sequencing technologies have evolved, and many types of molecu-
lar biology data have been rapidly accumulated (mainly in terms of the characteris-
tic dimension of the data, rather than the number of samples). Traditional analysis 
methods are difficult to meet the analysis requirements of high-dimensional data, so 
the use of bioinformatics to process genetic information at the molecular level has 
received increasing attention in recent years [6, 7]. Considering the comprehensive-
ness of gene expression data and its high correlation with cancer, it is highly feasible 
to use gene expression data to develop classification models for cancer subtypes [8].

The sequence of the entire human genome contains about 3 billion base pairs and 
tens of thousands of genes [9]. Gene expression data is essentially a high-dimensional 
data and its feature dimension is highly correlated with the number of genes [10]. 
Humans possess tens of thousands of genes, resulting in unprocessed gene expres-
sion data that typically has tens of thousands of features. On the one hand, the spatial 
structure of gene expression data is very complex and belongs to the high-dimen-
sional space, so it is impossible to predict the distribution of data accurately [11]; on 
the other hand, gene expression data has high adaptability requirements for cancer 
subtype classification algorithms, so that conventional cancer subtype classification 
algorithms tend to fall into the local optimum in the process of finding the optimal 
one [12]. In addition, a large part of the gene expression profiles were obtained with-
out considering labeling, which resulted in the gene expression data with labeling 
only accounting for a small part of the total data [13, 14].

In general, gene expression data are commonly characterized by high feature 
dimension, many missing values, small sample size, noise and redundant informa-
tion [15]. All of these indicate that the classification of cancer subtypes based on gene 
expression data belongs to a class of biological information processing with high dif-
ficulty and complexity [16]. At this stage, the use of gene expression data to complete 
the classification of cancer subtypes is both valuable and challenging [17].

To solve these problems, Chen et al. [18] combined particle swarm and decision tree 
algorithms for simultaneous gene selection and cancer classification to identify genes 
that are highly correlated with specific tissues. Support vector machine (SVM) [19], as 
a bicategorical non-probabilistic algorithm, improved by plat scaling and other meth-
ods [20], has gradually become the most widely used method for cancer classification 
using gene expression data due to its excellent performance. Ramani et al. [21] pro-
posed a cancer prediction framework for gene expression datasets, using the weights 
of rank the gene selection (RWFS) method to identify the features of various gene 
selection algorithms improves the classification accuracy of the model. Guo et al. [22] 
proposed the BCDForest framework based on Zhou et al. [23], which achieves better 
classification performance compared to the direct use of deep forest.
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In this paper, we proposed a novel FNT-based deep neural network framework, the 
laminar augmented cascading flexible forest (LACFNForest), which not only breaks the 
dichotomous limitation of FNT, but also implements the forced deepening of DFNFor-
est without introducing additional parameters. The main contributions are summarized 
as follows. (1) We proposed the idea of hierarchical broadening to enhance the diversity 
of the model and the number of classifiers layer by layer. This not only enhances the 
robustness of classification results, but also makes the whole model more interpretable, 
which provides a new idea for the structural design of classifier ensemble learning. (2) 
DFNForest was used as the base classifier of the model, which transforms the multi-clas-
sification problem into multiple dichotomous problems by M-ary method. The diversity 
and structural complexity of the classifiers were guaranteed by the way of cascading. (3) 
After obtaining the classification result of each forest layer, we assigned different weights 
to this result and introduce an output judgment mechanism to reduce the computa-
tional complexity of the model as much as possible while ensuring the accuracy of the 
classification result. (4) The structure of densely connected CNN was introduced into 
LACFNForest, which significantly improved the prediction accuracy of the model. The 
experimental results showed that when classifying the subtypes of breast invasive carci-
noma (BRCA), lung cancer (LUNG) as well as glioblastoma multiforme (GBM), the clas-
sification accuracy of LACFNForest was significantly better than other current forms of 
classifiers.

Results
Datasets and parameters

The data used in this paper are RNA sequence gene expression data, which were 
obtained from The Cancer Genome Atlas (TCGA) [24]. TCGA is the largest open access 
cancer genome-wide database sponsored by the US government. In order to make bet-
ter comparison with other classifier models, the experiments used the datasets of three 
kinds of cancers used in the literature [25]: breast invasive cancer (BRCA), glioblastoma 
multiforme (GBM) and lung cancer (LUNG). The labels of data samples are based on 
real clinical data of cancer patients provided by TCGA. There are four basic subtypes of 
BRCA: Basal-like, HER2-enriched, Luminal-A and Luminal-B and 514 valid data sam-
ples are available. There are three subtypes in LUNG: Bronchioid, Magnoid and Squa-
moid, with 275 effective samples. GBM has four basic subtypes: Classical, Mesenchymal, 
Neural and Proneural subtypes, and there are 164 valid samples available.

The Parameter of LACFNForest listed in Table 1 is mainly used by FNT which is the 
base classifier of our model. In the tree structure optimization algorithm using grammar 
guided genetic programming, we give the population size of 50, individual crossover and 
mutation probability were 0.4 and 0.01 respectively. When using particle swarm optimi-
zation to optimize the parameters of the FNT, we set the learning factors C1 and C2 to 
2, and the maximum speed of particle movement to 2. The right side of the table shows 
some of the hyperparameters that are commonly used during CNN construction. While 
“Uncertain” indicates that the default value is unknown or that different settings are usu-
ally required for different tasks.

It is obvious that convolutional neural networks have many hyperparameters for 
which no definite values can be given. There are almost unlimited combinations of these 
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parameters, and they determined the performance of CNN to a large extent. In differ-
ent experiments, the values of these parameters are usually set based on the researcher’s 
experience. However, these hyperparameters do not exist in our model, or exist but can 
be determined automatically during the optimization process of our model.

The preprocessing steps are: outlier deletion, missing data imputation and normali-
zation : if the gene expression data has more than 20% missing value in a patient, the 
patient data will be filtered; for the missing data, K-nearest neighbors is used to fill in; 
the normalization of cancer gene expression data is processed as follows:

where f is the gene expression data feature, f̃  is the normalized gene expression feature, 
and E(f) and Var(f ) are the mean and variance of f [26].

Comparison between the LACFNForest and other classifiers on the BRCA dataset

We used the proposed model on the BRCA dataset to test its classification performance. 
To demonstrate the superiority of LACFNForest in classification performance, we com-
pared it with k-nearest neighbor (KNN), support vector machine (SVM), multilayer 
perception (MLP), random forest (RF), multi-granularity cascade forest (gcForest), and 
deep flexible neural forest (DFNForest), respectively. In the BRCA original dataset, each 
sample contains 4247 genes. The BRCA original data were used as the input for each 
classifier. And the experimental results are the average classification accuracies obtained 
by 10 experiments. To reduce the possibility of overfitting, in each experiment, the five-
fold cross-validation was used to assess the overall accuracy of the different methods. 
The full dataset was randomly divided into 5 parts, each of the 5 parts was taken in turn 
as testing data (and the remaining as training data) in each of the 5 runs of a cross valida-
tion experiment. For each classifier, we compared the results in terms of average preci-
sion, recall, and F-1 score, and the results are shown in Table 2.

In order to compare the classification results of different classifiers on the BRCA data-
set more intuitively, we made the following comparison plots and give the deviation val-
ues of the experimental results (as shown in Fig. 1).

(1)f̃ =
f − E(f )
√

Var(f )

Table 1  Summarizes the hyper-parameters of deep neural networks (e.g., convolutional neural 
networks) and LACFNForest, where the default values used in our experiments are given

“Uncertain” indicates that the default values of the parameters are unknown or usually require different settings for 
different tasks. These hyperparameters do not exist in our model, or exist but can be determined automatically during the 
optimization process of our model

Parameter of LACFNForest Value Hyper-parameter of CNN Value

Population size 50 No. hidden layers Uncertain

Crossover probability 0.4 No. feature maps Uncertain

Mutation probability 0.01 No. nodes in hidden layers Uncertain

Level 4 Learning rate Uncertain

C1 2.0 Kernal size Uncertain

C2 2.0 Momentum Uncertain

Vmax 2.0 L1/L2 weight regularization penalty Uncertain
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It can be seen that the LACFNForest model achieved 94.4% in classification accuracy 
when classifying cancer subtypes of BRCA. The classification performance is signifi-
cantly better than other classifiers. The experimental results of the deviation values in 
Fig. 1 showed that our proposed model not only achieves higher classification accuracy, 
the classification results are also more stable, which shows that LACFNForest has good 
robustness in terms of its performance on data processing.

Comparison between the LACFNForest and other classifiers on the GBM dataset

In processing the gene expression data, the same gene selection method was used in the 
GBM data set. The input for each classifier was the GBM original dataset, each sample 
contains 3398 genes. After obtaining the results of LACFNForest classification on GBM 
cancer subtypes, We compare it with KNN, SVM, MLP, RF, gcForest and DFNForest, 
respectively. For all the comparative experiments in this paper, the kNN method used k 
= 3. And we used the support vector machine with RBF kernel, MLP with two hidden 
layers for all cases. The random forest used in this paper is a standard random forest 
with 2000 trees. To be fair, we used five-fold cross-validation to assess the overall accu-
racy of the different methods. The experimental results of classification accuracies were 
shown in Table 3.

For the classification results of each classifier, we compared the average precision, 
recall and F-1 score, and give the deviation of the experimental results, as shown in 
Fig. 2.

It can be seen that LACFNForest achieves 84.4% in classification accuracy. Com-
pared to other classifiers, LACFNForest still showed its superiority in classification 

Table 2  Comparison of precision of KNN, SVM, MLP, RF, gcForest, DFNForest, and LACFNForest on 
the BRCA dataset

Method KNN SVM RF MLP gcForest DFNForest LACFNForest

Precision 0.816 0.888 0.872 0.880 0.880 0.928 0.944

Recall 0.800 0.888 0.880 0.888 0.872 0.936 0.944

F-1 Score 0.808 0.888 0.876 0.884 0.876 0.932 0.944

Fig. 1  Comparison of the overall performance of multiple classifiers on the BRCA dataset: average precision, 
recall, F-1 score and their respective deviation values
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performance on this dataset. At the same time, we can also notice that on the GBM 
dataset, the classification results are much lower than that on the BRCA dataset. This 
is due to the small number of samples in the training set. This occurrence confirms, to 
some extent, the problem we raised earlier. With the limited number of training samples 
that can be used, how to correctly classify each sample remains an issue that we need to 
further consider.

Comparison between the LACFNForest and other classifiers on the LUNG dataset

The method combining fisher ratio and neighborhood rough set was used for gene selec-
tion on LUNG data set.We tested the performance of the proposed model for the clas-
sification of these cancer subtypes on the LUNG dataset. In the LUNG original dataset, 
each sample contains 4596 genes. The LUNG original data were used as the input for 
each classifier. For assessing the performance of LACFNForest and other classifiers, the 
five-fold cross-validation was performed in this data set. We let it be compared with 
KNN, SVM, MLP, RF, gcForest and DFNForest, respectively. The classification results of 
each classifier were compared in terms of average precision, recall and F-1 score, and the 
results are shown in Table 4.

In order to compare the classification results of different classifiers on the LUNG data-
set more intuitively, we made the following comparison chart. As shown in Fig. 3.

As shown in Fig. 4, LACFNForest achieved a classification accuracy of 88% on the 
LUNG dataset, which was better than other classification models. Compared with 
KNN, SVM, MLP, RF and gcForest, the proposed model still showed better classi-
fication performance on this dataset. Experiments on the standard deviation of 

Table 3  Comparison of precision of KNN, SVM, MLP, RF, gcForest, DFNForest, and LACFNForest on 
the GBM dataset

Method KNN SVM RF MLP gcForest DFNForest LACFNForest

Precision 0.684 0.632 0.658 0.684 0.737 0.816 0.844

Recall 0.684 0.658 0.684 0.719 0.781 0.816 0.875

F-1 Score 0.684 0.645 0.671 0.702 0.759 0.816 0.860

Fig. 2  Comparison of the overall performance of multiple classifiers on the GBM dataset: average precision, 
recall, F-1 score and their respective deviation values
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classification accuracy showed that the experimental results obtained by LACFNFor-
est are more stable than other classification models.

Over‑fitting test

Determining whether a model is overfitted by producing learning curves is a common 
approach in the field of machine learning. From the learning curves, we can see how 
the model benefits as the number of samples increases, and determine what state the 
model is in. If the training score is very high but the cross-validation score is very low 
at the maximum sample size (i.e., the difference between the two curves is particu-
larly large), then the model is generally considered to be in an over-fitting situation.

Table 4  Comparison of precision of KNN, SVM, MLP, RF, gcForest, DFNForest, and LACFNForest on 
the LUNG dataset

Method KNN SVM RF MLP gcForest DFNForest LACFNForest

Precision 0.710 0.776 0.746 0.791 0.830 0.865 0.880

Recall 0.746 0.791 0.746 0.776 0.791 0.830 0.873

F-1 Score 0.728 0.784 0.746 0.784 0.810 0.848 0.876

Fig. 3  Comparison of the overall performance of multiple classifiers on the LUNG dataset: average precision, 
recall, F-1 score and their respective deviation values

Fig. 4  Learning curves of the laminar augmented cascading flexible neural forest model on BRCA, GBM, and 
LUNG datesets. The value in the abscissa of each coordinate system represents the number of samples used 
in the experiment. The ordinate value is the classification accuracy of the proposed model



Page 8 of 17Zhong et al. BMC Bioinformatics          (2021) 22:475 

To test whether LACFNForest is over-fitting, numerous classification experiments 
were performed on each of the three data sets BRCA, GBM, and LUNG. For assessing 
the performance of the proposed model, five-fold cross-validation was performed on the 
proposed model. The original data were used as the input for each classifier. Learning 
curves on three data sets were made as shown in Fig. 4, and the classification accuracy 
was taken as the score of each experiment. Figure 4 showed the score of LACFNForest 
on the validation set(test set) and training set with the increase of the number of samples 
on three data sets.

As shown in the figure, all the learning curves showed an overall increasing trend as 
the number of samples increases, which means that with the increase of the number 
of samples available for the model, the performance of LACFNForest on both training 
set and testing set becomes better and better. Taking the learning curve on BRCA as an 
example, the training score has been in a relatively high position, while the cross-vali-
dation score has gradually increased to the highest classification accuracy of the model. 
When all the samples were used, the difference between the scores of the training set 
and the verification set is very small, which indicated that the proposed model is not 
over-fitting. On the GBM and LUNG data sets, although the score on the training set 
is relatively high at the beginning, the cross-validation score gradually increases. At the 
end, the difference between the scores of the training set and the verification set is very 
small, and the two curves almost coincide, indicating that the model is not over-fitted.

The main reasons why LACFNForest is not over-fitting are: (1) the base classifier FNT 
has sparse structure and supports cross-layer connection, which can effectively avoid 
over-fitting and has good generalization performance. (2) The model used DFNForest 
for each layer, and the number of layers in its cascade structure is determined automati-
cally: when the accuracy on the validation set no longer increases, the number of levels 
will stop increasing.

Discussion
When training neural networks, good classification results often rely on a large num-
ber of training samples [20]. However, it is difficult to find a model with high classifi-
cation accuracy and good robustness when the number of training samples is small. 
Gene expression data of cancer subtypes were used as a continuous type of small sam-
ple size data. On the one hand, there is a strong correlation between gene expression 
information, which means that it is better not to discretize it. And this red will lead to 
many classifiers (e.g., decision trees, random forests) that tend to perform poorly when 
using gene expression data to classify cancer subtypes [27]. On the other hand, the high 
cost of acquiring gene expression data and the small number of samples available place 
demands on the structural and functional complexity of the classification model and on 
the adequate use of each sample by the classifier.

The number of classifiers and the diversity of classifiers tend to show a positive cor-
relation with the performance of the ensemble model [28].However, too many classifiers 
and too complicated diversity not only bring a huge computation volume, but also cause 
a kind of “waste” to a large extent. How to make each classifier have enough “meaning” 
and interpretability while taking advantage of the ensemble learning is a problem to be 
considered when designing classifier architecture.
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The proposed LACFNForest model uses DFNForest as its base classifier, which is not 
only capable of adaptively generating good neural network structure and parameters, 
but also capable of performing various kinds of classification tasks.Through the forced 
deepening of the forest structure, the model ensures that it still has enough structural 
complexity when dealing with small sample size data sets. We extend the deep neural 
forest to the densely connected deep neural forest, which further improves the predic-
tion accuracy of the model. We introduce the output judgment mechanism to each layer 
of the forest to reduce the computational complexity of the model. This model also real-
izes the differential processing of different samples by judging the output of forest single-
layer classification results, which reduces the computational complexity of the model. 
With the idea of layer-by-layer broadening model, the classification performance, diver-
sity and robustness of the model have been further improved. LACFNForest provides a 
new way of thinking for the ensemble learning of the classifier in the structural design.

Conclusion
Cancer is characterized by many subtypes, complex pathogenesis, and the possibility of 
mutation at any time. Correctly classifying the subtypes of cancer plays an extremely 
important role in promoting in-depth research on cancer in the medical field and real-
izing precise treatment for patients.

The close association between gene expression data and cancer subtypes makes the use 
of gene expression data for cancer subtype classification a natural advantage. However, 
the small sample size of gene expression data and the close association between genetic 
information make it difficult for many classifier models to classify them into subtypes. 
We proposed a laminar augmented cascading flexible forest model. The forced deepen-
ing of DFNForest ensures that the model was sufficiently complex to handle small sam-
ple size data sets and solves the problem of the limited number of FNTs in DFNForest. 
The accuracy of the model’s classification of each sample was ensured by introducing the 
structure of densely connected CNN into LACFNForest and assigning different weights 
to the classification results for each layer of forest. In addition, the hierarchical filtering 
of the sample points was used to prevent the model from being overly complex due to 
the increase in structural complexity.

More importantly, the idea of incremental broadening of the model was proposed, 
which not only strengthened the diversity and complexity of the ensembled model, but 
also avoided meaningless calculations as far as possible. The design gave the model bet-
ter robustness and provided a new approach to the structural design of the classifier for 
ensemble learning. The experimental results showed that LACFNForest consistently 
outperforms state-of-the-art methods for classifying cancer subtypes using RNA-seq 
gene expression data.

Methods
Flexible neural tree

The advantages of artificial neural networks (ANNs) such as layer-by-layer processing, 
back propagation, and sufficient model complexity have made them a great success in 
all aspects of machine learning [29]. The excellent performance of deep learning built on 
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various neural network models in areas such as classification and prediction has led to 
the further development of ANNs in terms of applications and algorithms.

However, excessive hyper-parameter settings and the dependence of neural network 
structures on experience are persistent problems in the construction of neural networks 
[30]. Based on this, Chen et al. [31] proposed the flexible neural tree (FNT). The advan-
tage of this model over other forms of artificial neural networks is that the FNT can 
adaptively determine its own structure during the training process, and the user does 
not need to give these hyperparameters in advance. And FNT can also adaptively select 
key features from all input features. It is worth mentioning that FNT allows cross-layer 
connection between nodes and input vectors, which can easily produce some network 
structures with sparse connections between nodes in adjacent layers (as shown in Fig-
ure 5). This is difficult to do when relying only on human experience to set the network 
structure [32].

To construct the FNT model, we choose the functional set (non-leaf nodes) F =

{+2,+3,+4} and the terminal instruction set (leaf nodes) T = {x0, x1, . . . , x6} . The model 
is defined as follows

We can construct a structurally diverse tree neural network model by set-
ting different functional sets for FNT. To increase the diversity of 
classifiers, three other structures with different function sets are used in LACFNFor-
est:F = {+2,+3,+5}, F2 = {+2,+4,+5}, F3 = {+3,+4,+5}.The algorithmic rules for 
the FNT model are shown in Table 5.

In terms of the choice of the activation function σ(x), three common nonlinear acti-

vation functions are: Gaussian: σ(x) = exp

(

−

(

x−b
a

)2
)

, Logistic: σ(x) = 1
1+exp(−x) , 

(2)S = F ∪ T = {+2,+3,+4} ∪ {x0, x1, . . . , x6}

(3)y non-leaf = σ





M
�

j=0

ωjIj + θ





Fig. 5  A typical representation of neural tree with function instruction set F = {+2,+3 , +4, }, and terminal 
instruction set T = {x0, x1, . . . , x6}
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ReLU: σ(x) = max(0, x) . In this paper we use logistic function as the activation func-
tion for FNT [33]. The pipeline of FNT is shown in Fig. 6.

In the population generated during the optimization of the FNT structure and 
parameters,the individual is determined by the size of the adaptation function Fit(i). 
This paper uses standard variance as the adaptation function.

where N denotes the total number of samples. yi1 and yi2 are the actual value of the i-th 
sample and the output of the FNT. Fit(i) denotes the adaptation value of the i-th tree. 
Fit(i) reflects the error between the actual output and the expected output [34]. For a 
flexible neural tree, the smaller the value of Fit(i), the smaller the error between the 
actual output and the expected output, which means that the actual output is very close 
to the expected result. The smaller the value of Fit(i), the better FNT we will get [35].

Deep flexible neural forest

Although FNT have many advantages that other artificial neural networks do not 
have, the single-output nature dictates that it cannot be used directly to deal with 
multi-classification problems. To solve this problem, Xu et al. [25] proposed the deep 
flexible neural forest(DFNForest) model. As shown in Fig. 7.

The model uses the M-ary method to transform the multi-class problem into several 
two-class problems in a forest. The number of FNTs used in the forest is determined 
based on the number of dichotomous problems generated. For example, when using 
DFNForest for a four-class problem, two FNTs are needed in each forest 

(

log2 4 = 2
)

.

(4)Fit(i) =

√

1

N
�
(

yi1 − yi2
)2

Table 5  Algorithmic rules for flexible neural tree models

1 The output of the leaf node is the value of a given input feature variable

2 The output of a flexible neuron +M(non-leaf nodes) can be produced as formula (3) where Ij  is the input to 
the current node, ωj is the corresponding weight and θ is the node’s oset or bias

3 The output of each node is used as the input value of the node to which it is connected at the previous level

4 Calculate the value of the output vector from bottom to top, from leaf node to root node

Fig. 6  The pipeline of FNT. It mainly includes two parts: tree structure evolution process and parameter 
optimization process. The algorithm stops when the optimal tree structure is generated and the termination 
conditions are met
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Another work did by Xu is to deepen the FNT.DFNForest use grammar guided genetic 
programming (GGGP) and particle swarm optimization (PSO) algorithm [36] to evolve 
the structure and optimize the parameters values of FNT [37]. After the final output of 
each FNT is obtained, this output is merged together with the initial feature vector as an 
augmented feature vector. And they are sent as a new input to the next layer of FNT for-
est adjacent to it for processing. The number of layers of the entire forest is determined 
until the classification accuracy obtained by the neighboring layer forest is no longer 
increased, which has the advantage of deepening the FNT while not adding new param-
eters. In addition, Xu also increases the number and diversity of forests by setting three 
different functional sets for the FNTs.

Laminar augmented cascading flexible neural forest

Although the performance of DFNForest in classifying cancer subtypes is better than 
other models [25], it still has many shortcomings. Firstly, the number of FNTs in DFN-
Forest is limited by the problem to be solved - it can only be log2M (M is the number of 
classes in the dataset to be classified). This results in a very small number of neural trees 
in the model. Too few FNTs will lead to instability in the classification performance of 
the whole model, and good classification results depend only on the performance of a 
single tree. In other words, the robustness of DFNForest is poor. Although the model 
has attempted to improve the diversity of the model and increase the number of FNTs 
by replacing different sets of functions. However, the number of trees is still too small 
for an integrated model to take advantage of integrated learning.Moreover, replacing the 
function set also brings an increase in other parameters.

Secondly, although DFNForest has deepened FNT by cascading it. However, since 
FNT is a better neural network by itself, it is easy to have a problem when using this 
model for classification(especially when dealing with small sample datasets): there are 
too few layers of model deepening due to the insignificant performance improvement 
of two adjacent layers. Insufficient model depth will not serve the purpose of deepening 
the FNT model well enough. In addition to this, DFNForest adds a very small number of 
new enhanced sample points per layer (the same number as for FNT). The model’s use 
of these sample points is limited to combining them with the original data samples and 
feeding them into the next layer. This results in inadequate use of the augmented sam-
ples and poor interpretability of the model.

Fig. 7  A deep flexible neural forest model. Each forest contains log2 M FNTs which are deepened by 
cascading. The output of the model is the average of all FNT outputs in the last level
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Finally, DFNForest acts as a complex neural network computational model. Its compu-
tational complexity in calculating the output of each sample point is high. How to reduce 
the computational complexity as much as possible is also a problem to be considered. 
For these reasons, we propose a laminar augmented cascading flexible neural forest 
model. As shown in Fig. 8.

We treat DFNForest as a base classifier capable of performing multiple classification 
tasks. The number in each DFNForest is log2M ∗ K(M is the number of categories, and 
the value of K can be changed, K ∈ N+ ). For example, when dealing with the 4 -class 
problem, we assign K a value of 3, and the structure of the first layer of the model is 
shown in Fig. 9.

To prevent the forest deepening process from ending prematurely, we give the model 
a depth of 4. In this way, LACFNForest causes the FNT to be further forced to deepen 
to four times the original depth on top of the already deepened structure. As shown in 
Fig. 8, the output of the single-layer forest is the average prediction obtained after the 
K DFNForests stop deepening. This means that The convergence of the model is based 
on the performance of DFNForest. For each DFNForest, the training set is divided into 
two parts: one for training and the other for validation. When a new layer is added, the 
validation set verifies the entire cascade. The number of layers stops increasing when the 
classification accuracy stops increasing. In this way, the number of cascade layers can be 
determined automatically. After the number of all DFNForest layers within the fourth 
layer is determined, the structure of the entire model is determined.

After the processing of all the samples in each layer of the forest, we introduce an 
output judgment mechanism. We set a prediction confidence and divide the samples 
into two parts [38], one is the samples that have reached a high classification accu-
racy, which we call sample set Y. The other is the samples that have a low classification 
accuracy, which we call sample set X. For example, we give the prediction confidence 

Fig. 8  Laminar augmented cascading flexible neural forest model. We generate four forests with different 
syntaxes: the red forest uses the function set {+2,+3,+4} ; the blue forest uses the function set {+2,+3,+5} ; 
the purple forest chooses the function set {+2,+4,+5} and the green forest uses the function set 
{+3,+4,+5}
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interval as [0 ∼ 0.1] ∪ [0.9 ∼ 1]. Suppose there are 5 samples that have been processed 
in the first layer and the outputs are {0.07, 0.35, 0.52, 0.83, 0.95} . Then we can split the 
sample set into two parts: the two samples{0.07, 0.95} are within the prediction con-
fidence interval we set, so these two samples belong to sample set Y. The other three 
samples that do not meet the confidence requirement belong to sample set X.

For each sample in Y, we have sufficient confidence in which class they can be clas-
sified without having to continue to send them into the next layer to be reclassified, 
while for each sample in the sample set X, the neural network structure and param-
eters constructed in all the previous layers have no way to classify them effectively, so 
we need to continue to optimize the model structure to continue to classify them. We 
deepened the entire model in a cascading way, while broadening the model structure 
by introducing a forest of different function sets, which increase the diversity of the 
forest on the one hand, and make the model can be adapted to deal with each sample 
by constantly building new neural network structures on the other.

The main purpose of widening the forest layer by layer and setting an output judg-
ment mechanism is to solve the problem of excessively complex model calculations 
due to meaningless calculations. As the number of forest layers increases, the number 
of samples that meet the confidence level requirement increases layer by layer. At the 
same time, the number of samples that need to be sent to the next layer to continue 
the classification becomes smaller and smaller. Since we set the number of forest lay-
ers to 4, we change the prediction confidence to 0.5 after getting the output of the 
fourth forest layer to achieve the classification of all samples.

When calculating the final output of the sample, we wanted to avoid classification 
errors due to the large discrepancy between the classification results of a single layer 
of forests for the same sample and the classification results of other layers of forests. 

Fig. 9  Forest first layer structure diagram. There are three DFNForests in this framework. For the four-class 
problem, there are two FNTs in each DFNForest. The two FNTs perform different two-class tasks respectively
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We chose to let the classification results of each layer participate in the final output of 
the sample with a certain weight. The result yf  is calculated as

where N is the number of layers, yi + 1 is the output of layer i + 1 forest, and ωi+1 is the 
weight of the final output accounted for by the classification results of layer (i + 1)-th 
forest.

Finally, after processing the input samples at each layer of the forest, we were able to 
obtain log2M ∗ K  augmentation samples. In using these augmented sample points, we 
refer to the fully connected CNN [39] structure, as shown in Fig. 10.

We let the augmented sample points of each layer be combined with the initial sample 
points to form a new input feature vector to be sent to the next layer of the forest for 
processing. On one hand, this can realize the full use of the augmented samples. On the 
other hand, as the number of forest layers increases, the number of augmented sample 
points increases. The densely connected use of augmented sample points ensures that 
the model still has a prominent performance advantage when dealing with small sample 
size datasets. This advantage will become more pronounced as the depth of the model 
increases.
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